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Abstract

New knot tables based on the notion of knot families are given.1 Using
the methods of experimental mathematics, particular results obtained for
knots with n ≤ 19 crossings belonging to the families p, pq, p1q, p11q,
p111q, pqr, pq1r are extended, extrapolated and generalized to whole
families. As the result, general formulas for Alexander polynomials, sig-
natures, unknotting numbers, and data about symmetry properties of all
knots belonging to the families mentioned, are derived and estimated.

1 Introduction

A possibility to study knots from the mathematical point of view was for the
first time proposed by C.F. Gauss. Gauss formulated the ”crossing problem”,
by assigning letters to the crossing points of a self-intersecting curve and trying
to determine ”words” defining a closed curve. J.B. Listing represented knots
by their projections (diagrams) and made an attempt to derive and classify
all projections having fewer than seven crossings using so-called Complexions-
Symbols. Almost complete derivation of alternating knots having fewer than
11 crossings and non-alternating knots with n ≤ 10 crossings was given by
P.G. Tait, T.P. Kirkman, and C.N. Little till the end of 19th century [23,24].
Kirkman’s geometrical system for the systematic derivation of knot projections,
closely connected with the enumeration of polyhedra, represented at the same
time the geometrical method for the classification of knot projections [16].

In the 30-ties, after the appearance of the first modern polynomial knot
invariant, discovered by J.W. Alexander, the knot theory was established as the
part of topology, completely loosing connection with its roots - geometry. In
K. Redmeister’s book ”Knotentheorie” (1932), each knot is represented by one
projection, (randomly?) chosen from several possible ones. After Redmeister
[20], all knot tables that can be found in knot theory books are simple copies
of the first: sometimes, some projection is slightly changed, or turned upside
down, and that’s all. In order to compare them, the reader may consider knot
tables from the books [1,4,14,15,19,21].

All knot tables are followed by the corresponding polynomial knot invariants:
Alexander polynomials, Jones polynomials [1], Laurent polynomials [14], and
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data about some other knot invariants and properties – hyperbolic volumes
[1], signatures [4,15], unknotting numbers [15], chirality and invertibility [4,15],
symmetry groups of knots [15], etc.). Usually, knots are denoted in knot tables
by their ordering numbers as 31, 41, 51, 52, 61, 62, 63, 71 - 77, 81 - 821, 91 - 949,
101 - 10166, without any geometrical or topological ”vertical” ordering principle
connecting knots with n and n + 1 crossings. This classical notation, giving no
information about any knot or link (except its place in knot tables), is preserved
till now in the most of knot theory books. The most of knots are alternating,
and non-alternating knots will appear from n ≥ 8: 818 - 821, 942 - 949, 10124 -
10166, etc. The most complete printed knot tables contain knots with n ≤ 10
crossings. The only tables containing links are given by D. Rolfsen [21].

Today, with the development of computers, the notation and enumeration
of knots and links is very similar with the situation occurring in different un-
ordered structures: prime numbers, polyominoes etc., giving no chance for any
classification. This development made possible to construct all possible permu-
tations of n even numbers, check their realizability as knot projections, and find
the minimal Dowker sequence for every knot [9].

In Dowker notation every knot is given by its (minimal) Dowker sequence
(e.g., 4 6 8 2 describing knot 41) and the signs of crossings (necessary only in
the case of non-alternating knots), from which is possible to reconstruct the
knot. Because Dowker code is dependent from a minimal projection and from
the choice of beginning point, the mapping between knots and their Dowker
sequences is one-to-many, so it is necessary to find a minimal Dowker sequence
for each knot. Hence, Dowker codes are just minimal permutations representing
certain knot projections, without carrying any other geometrical or topological
information about knots, so they are absolutely non-useful in any attempt of
knot classification.

Using computer enumeration and Dowker algorithm, M.B. Thistlethwaite
(by the program ”Knotscape” [18]) and H. Doll & J. Hoste [8], obtained the ta-
bles of knots with n ≤ 16 crossings and non-isomorphic minimal link projections
with n ≤ 9 crossings. Similar program able to recognize all knot projections
with n ≤ 10 crossings was developed by the author and V. Veličković in 1995.

Continuing the ”geometrical” line (Kirkman-Conway-Caudron) [5,7,16] and
the classification of knots and links proposed in [12,13], in this paper we will
introduce new knot tables, based on the notion of knot families. Till now, such
new tables are completed only for prime knots with n ≤ 8 crossings.

2 Notation

In the tables, knots are denoted by Conway notation [21]. This unique symbol-
ical notation for knots and links was introduced by J.Conway in 1967 [7]. From
Conway symbols it is possible to read directly many of important knot or link
properties: their symmetry, to recognize the world [5] to which they belong, to
prove the equality of rational knots or links using very simple calculation, and
even to derive some general conclusions: for example, all rational knots with
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symmetrical Conway symbol are amphicheiral [5].
A prime knot or link with singular digons, expressed by a Conway symbol, is

called generating, and a knot or link without digons is called a basic polyhedron
[7,12,13]. Any other knot or link can be derived from some generating knot
or link, by replacing singular digons by chains of digons. All knots and links
that can be derived from a generating knot or link by such replacement make
a family [12,13]. All knots and links are distributed into disjoint sets, called by
A.Caudron worlds [5].

It is interesting that the term ”family” is very rarely mentioned and used in
knot theory: its description can be found only in [10], where a family of knots
is introduced as an ”informal term used to describe a list of knots where each
successive knot is obtained from the previous one by a simple process. The twist
knots are an example, as are the knots 31, 51, 71,...”. The other recent use of
knot and link families can be found in the CD-R ”Raising Public Awareness of
Mathematics” by R. Brown [3].

3 New knot tables

In the new knot tables based on knot families, every family is given by its gen-
eral Conway symbol and existential conditions (i.e. conditions necessary that a
given Conway symbol represents a knot, and not a link). In each ”Notation”
subsection it is given a comparative classical notation of knots with n ≤ 10
crossings belonging to certain family and their corresponding Conway symbols.
For each knot with n ≤ 19 crossings, its Dowker sequence is given. After the
list of particular Alexander polynomials for the knots with n ≤ 19 crossings, it
is given a general formula for the Alexander polynomial of a family considered,
and the list of particular Jones polynomials for knots with n ≤ 19 crossings. For
every family they are determined in the general form the symmetry group, sym-
metry type, signatures, and unknotting numbers. All that data are calculated
for the knots with n ≤ 19 crossings first by using program ”Knotplot” [17] and
its tangle calculator for calculating Dowker sequences. After that, Alexander
polynomials given in the form proposed by Rolfsen [21], Jones polynomials, sym-
metry groups, symmetry types and signatures are calculated by putting Dowker
sequences mentioned in the program ”Knotscape” [18]. Unknotting numbers are
calculated for the knots with n ≤ 19 crossings mentioned according to Bernhard-
Jablan Conjecture [11,13,22] by using a program developed by the author and
V. Veličković. Finally, particular results obtained for the knots with n ≤ 19
crossings are extrapolated to whole families in order to derive general formulas
for the Alexander polynomials, symmetry groups, symmetry types, signatures,
and unknotting numbers.

This way, all the general formulas in this paper belong to the experimental
mathematics: they represent the results that are estimated, extrapolated and
conjectured, and need to be proved (or disproved!). The general Alexander
polynomials derived that way coincide with the general Alexander polynomials
for the family p (p = 2k + 1) and subfamilies p2, p12 (p = 2k + 1) proved in [6].
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As an example, complete results are given only for the family p. Because
the complete material is to large for publishing it in printed form, for all the
other families beginning for n ≤ 7, it is given only comparative notation and
the general formulas for Alexander polynomials, symmetry groups, symmetry
type, signature, and unknotting numbers. The complete tables reader can find
at the addresses:

http://www.mi.sanu.ac.yu/vismath/
http://members.tripod.com/vismath7/knotab/

Knot family: p (p = 2k + 1)
3 31

5 51

7 71

9 91

Dowker codes:
3 4 6 2
5 6 8 10 2 4
7 8 10 12 14 2 4 6
9 10 12 14 16 18 2 4 6 8

11 12 14 16 18 20 22 2 4 6 8 10
13 14 16 18 20 22 24 26 2 4 6 8 10 12
15 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14
17 18 20 22 24 26 28 30 32 34 2 4 6 8 10 12 14 16
19 20 22 24 26 28 30 32 34 36 38 2 4 6 8 10 12 14 16 18

Alexander polynomials:
3 [1 −1
5 [1 −1 1
7 [1 −1 1 −1
9 [1 −1 1 −1 1

11 [1 −1 1 −1 1 −1
13 [1 −1 1 −1 1 −1 1
15 [1 −1 1 −1 1 −1 1 −1
17 [1 −1 1 −1 1 −1 1 −1 1
19 [1 −1 1 −1 1 −1 1 −1 1 −1

∆(p) =
2k∑

i=0

(−1)iti

Jones polynomials:
3 1 4 1 0 1 −1
5 2 7 1 0 1 −1 1 −1
7 3 10 1 0 1 −1 1 −1 1 −1
9 4 13 1 0 1 −1 1 −1 1 −1 1 −1

11 5 16 1 0 1 −1 1 −1 1 −1 1 −1 1 −1
13 6 19 1 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
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15 7 22 1 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
17 8 25 1 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
19 9 28 1 0 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

Symmetry groups: D1

Symmetry type: chiral, reversible.

Signatures: 2k

Unknotting numbers: k

Knot family: pq (pq = 0 (mod 2); p ≥ q; pq = qp)

Notation:

22 41

32 52

42 61

52 72 43 73 44 83

62 81 54 94

72 92 63 93 64 103

42 101

Alexander polynomials:

∆((2m)(2n)) = mn− (2mn + 1)t + mnt2

∆((2m + 1)(2n)) = (m + 1) + (2m + 1)
2n−1∑

i=1

(−1)iti + (m + 1)t2n

∆((2m)(2n + 1)) = (n + 1) + (2n + 1)
2m−1∑

i=1

(−1)iti + (n + 1)t2m

Symmetry groups: D2 if p = q; otherwise D1.

Symmetry type: fully amphicheiral for p = q; otherwise cheiral and reversible.

Signatures:
0 if p = q = 0 (mod 2);
p if p = 0 (mod 2) and q = 1 (mod 2);
q if q = 0 (mod 2) and p = 1 (mod 2).

Unknotting numbers:
u((2m)(2n)) = n

u((2m + 1)(2n)) = n

u((2m)(2n + 1)) = m
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Knot family: p1q (p = 1 (mod 2) or q = 1 (mod 2); p ≥ q;
p1q = q1p)

Notation:
312 62

313 74

512 82 413 84

513 95

712 102 613 104 514 108

Alexander polynomials:

∆((2m+1)1(2n+1)) = (m+1)(n+1)−(2mn+2m+2n+1)t+(m+1)(n+1)t2

∆((2m)1(2n + 1)) = m + (2m + 1)
2n+2∑

i=1

(−1)iti + mt2n+3

∆((2m + 1)1(2n)) = n + (2n + 1)
2m+2∑

i=1

(−1)iti + nt2m+3

Symmetry groups: D4 if p = q; otherwise D2.

Symmetry type: chiral and reversible.

Signatures:
2 if p = q = 1 (mod 2);
p− 1 if p = 1 (mod 2) and q = 0 (mod 2);
q − 1 if q = 1 (mod 2) and p = 0 (mod 2);

Unknotting numbers:
u((2m + 1)1(2n + 1)) = n + 1
u((2m + 1)(2n)) = m
u((2m)1(2n + 1)) = n + 1

Knot family: p11q (p = q (mod 2); p ≥ q; p11q = q11p)

Notation:
2112 63

4112 87 3113 89

6112 105 5113 109 4114 1017

Alexander polynomials:

∆(p11q)) =
q−1∑

i=0

(2i + 1)(−1)iti+

(2q + 1)
p∑

i=q

(−1)iti +
p+q∑

i=p+1

(2p + 2q − 2i + 1)(−1)iti
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Symmetry groups: D4 if p = q; otherwise D2.

Symmetry type: fully amphicheiral for p = q; otherwise chiral and reversible.

Signatures: p− q.

Unknotting numbers:
u(p11q) = 1 if p = q;
u(p11q) = p−q

2 if p > q.

Knot family: pqr (p 6= r (mod 2) or p = q = r = 1 (mod 2); p ≥ r;
pqr = rpq)

Notation:
322 75

332 86

522 96 333 910 342 97 423 99

352 1020 433 1011 532 106

Alexander polynomials:

∆(p(2m)r) =
r−1∑

i=0

((2i + 1)m + 1)((−t)i + (−t)p+r−i−1) +
p−1∑

i=r

(2rm + 1)(−t)i

∆((2k + 1)(2m + 1)(2n)) = (m + 1)n(1 + t2k+2)−

−(3mn + 2n + 1)(t + t2k+1) + (4mn + 2n + 1)
2k−1∑

i=1

(−t)i+1

∆((2k + 1)(2m + 1)(2n + 1)) = (k + 1)(n + 1)(1 + t2m+2)−

−(3kn + 2k + 2n + 1)(t + t2m+1) + (2k + 1)(2n + 1)
2m−1∑

i=1

(−t)i+1

Symmetry groups: D4 if p = r; otherwise D2.

Symmetry type: chiral and reversible.

Signatures:
q − 1 if p = q = r = 1 (mod 2);
p− 1 if p = q = 1 (mod 2) and r = 0 (mod 2);
p + r − 1 if p = 1 (mod 2) and q = r = 0 (mod 2).

Unknotting numbers:
u((2k + 1)(2m + 1)(2n + 1)) = m + n + 1
u(p(2m)r) = p+r−1

2
u((2k)(2m + 1)(2n + 1)) = min(k, m + 1) + n

Knot family: p111q (pq = 0 (mod 2); p ≥ q; p111q = q111p)

Notation:
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21112 77

31112 813

41112 914

51112 1010 41113 1019

Alexander polynomials:

∆((2m)111(2n)) = mn− (3mn + m + n)t+

+(2m + 1)(2n + 1)t2 − (3mn + m + n)t3 + mnt4

∆((2m + 1)111(2n)) = m + 1− (4m + 3)t+

+(6m + 5)
2n∑

i=2

(−1)iti − (4m− 3)t2n+1 + (m + 1)t2n+2

∆((2m)111(2n + 1)) = n + 1− (4n + 3)t

+(6n + 5)
2m∑

i=2

(−1)iti − (4n− 3)t2m+1 + (n + 1)t2m+2

Symmetry groups: D4 if p = q; otherwise D2.

Symmetry type: reversible.

Signatures:
0 if p = q = 0 (mod 2);
q − 2 if p = 1 (mod 2) and q = 0 (mod 2);
p− 2 if q = 1 (mod 2) and p = 0 (mod 2);

Unknotting numbers:
u((2m)111(2n)) = n
u((2m)111(2n + 1)) = m
u((2m + 1)111(2n)) = n

Knot family: pq1r (r = 0 (mod 2) or p = r = 1 (mod 2); pq1r = r1pq)

Notation:
2212 76

3212 811 2312 88

4212 912 2412 98 2214 911

5212 107 2512 1034

4312 1012 3412 1021

3213 913

3214 1016 2314 1015

3313 1022
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Alexander polynomials:

∆((2k)(2l)1(2m)) = kl − (3kl + k + 1)t+

+(4kl + 2k + 1)
2m∑

i=2

(−t)i − (3kl + k + 1)t2m+1 + klt2m+2

∆((2k + 1)(2l)1(2m)) = (km + m)− (6km− 2k −m + 4)t+

+(2k + 1)(2m + 1)
2m∑

i=2

(−t)i − (6km− 2k −m + 4)t2m+1 + (km + m)t2m+2

∆((2k)(2l + 1)1(2m)) = (l + 1)
2k−1∑

i=0

(2i + 1)(−t)i+

+(4kl + 4k + 1)
2m∑

i=2k

(−t)i + (l + 1)
2k−1∑

i=0

(2i + 1)(−t)2k+2m−i, k ≤ m

∆((2k)(2l + 1)1(2m)) = (l + 1)
2m∑

i=0

(2i + 1)(−t)i+

+(2ml + 2m + 2l + 1)
2k−1∑

i=2m+1

(−t)i + (l + 1)
2m∑

i=0

(2i + 1)(−t)2k+2m−i, k > m

∆((2k + 1)(2l)1(2m + 1)) = (l + 1)(m + 1)− (3lm + 3l + 2m + 1)t+

+(4lm + 4l + 2m + 1)
2k∑

i=2

(−t)i− (3lm + 3l + 2m + 1)t2k+1 + (l + 1)(m + 1)t2k+2

∆((2k + 1)(2l + 1)1(2m + 1)) = (l + 1)
2k∑

i=0

(2i + 1)(−t)i+

+(4kl + 4k + 2l + 3)
2m+1∑

i=2k+1

(−t)i + (l + 1)
2k∑

i=0

(2i + 1)(−t)2k+2m+1−i, k ≤ m

∆((2k + 1)(2l + 1)1(2m + 1)) = (l + 1)
2m+1∑

i=0

(2i + 1)(−t)i+

+(4lm + 4l + 4m + 3)
2k∑

i=2m+2

(−t)i + (l + 1)
2k∑

i=0

(2i + 1)(−t)2k+2m+1−i, k > m

Symmetry group: D2.

Symmetry type: reversible.
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Signatures:
|p− r| if q = 1 (mod 2);
p + 1 if p = r = 1 (mod 2) and q = 0 (mod 2);
q if q = r = 0 (mod 2) and p = 1 (mod 2);
r if p = q = r = 0 (mod 2).

Unknotting numbers:
u((2k)(2l)1(2m)) = min(k, l −m) + m if l ≥ m
u((2k)(2l)1(2m)) = m if l < m
u((2k + 1)(2l)1(2m)) = l if l ≥ m
u((2k + 1)(2l)1(2m)) = min(k + 1, m− l) + l if l < m
u((2k)(2l + 1)1(2m)) = l + 1 if l = m, k = 1
u((2k)(2l + 1)1(2m)) = k + l − 1 if l = m, k 6= 1
u((2k)(2l + 1)1(2m)) = k + m if l > m
u((2k)(2l + 1)1(2m)) = l + 1 if k = m, l < m
u((2k)(2l + 1)1(2m)) = k + l −m if l < m < k, k + l 6= m
u((2k)(2l + 1)1(2m)) = l + 1 if k + l = m
u((2k)(2l + 1)1(2m)) = |k + l −m|+ l if k + l 6= m, l < m
u((2k + 1)(2l)1(2m + 1)) = min(k + l + 1, k + m + 1)
u((2k + 1)(2l + 1)1(2m + 1)) = l + 1 if m = k + l
u((2k + 1)(2l + 1)1(2m + 1)) = k + l if l ≥ m
u((2k + 1)(2l + 1)1(2m + 1)) = |m− k − l|+ l if m 6= k + l, l < m

4 Conclusions

The concept of new knot tables based on knot families can be naturally extended
to links, in the spirit of [5,12,13]. For that, it is necessary to develop programs
able to work with links and calculate polynomial invariants, and other data
already calculated for knots.

Because the complete concept of new knot tables is based on the notion
of generating knots and links and families originating from them, one of the
possible future aims can be a search for new knot and link invariants that will
be the invariants of families. If we will be able for a given knot to recognize a
family to which it belongs, even Alexander polynomial maybe can be sufficient
for the recognition of particular knots.

From the results obtained, it looks that all properties of knots or links be-
longing to some family are well-ordered, so it is possible to extend them to some
general form. It works for Alexander polynomials, Jones polynomials, symmetry
properties, unknotting numbers, and even for Dowker sequences.

Next interesting question is a possibility to try to establish connections be-
tween coefficients of polynomial invariants and other knot or link invariants and
understand the topological meaning of certain coefficients.

One of main open questions is Bernhard-Jablan Conjecture on unknotting
number. According to that Conjecture, a number u(k) is defined in the following
way:
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(a) u(1) = 0, where 1 is the unknot;
(b) u(k) = min(u(k′) + 1), where the minimum is taken over all the knots

k′ obtained from a minimal projection of k by a crossing change.
It is conjectured that the number u(k) will be the unknotting number of the

knot k.
For all alternating knots with n ≤ 10 crossings, the obtained numbers u(k)

coincide with the unknotting numbers of those knots [2], calculated (or even es-
timated by giving two or more expected values for the unknotting number [15])
by other methods. Because the unknotting number of every knot is greater or
equal to the half of signature σ(k), for a lot of knots with n ≤ 19 crossings used
in the experimental work we namely proved that the numbers u(k) obtained
from their minimal projections by recursive unknotting process are really the
unknotting numbers of those knots, because they are equal to σ(k)

2 . This prop-
erty holds as well for the general formulas for σ(k) and u(k), extrapolated for
several families of knots, where u(k) = σ(k)

2 , so we strongly believe that at least
for such families we succeeded to find the correct unknotting number, even in its
general form. Certainly, the results obtained in experimenting with all knots of
the families discussed with n ≤ 19 crossings are out of the question, so for those
knots with u(k) = σ(k)

2 we are sure that the unknotting numbers are determined
correctly.

The present work was restricted to a very small part of knots: only to sev-
eral families of rational knots, because for n ≤ 7 there are no other generating
knots except rational ones. Thanks to that, out of consideration remained non-
alternating knots, so it is possible that some of the conjectures or estimations
need to be restricted to alternating knots or even only to rational knots. For
example, till now it is proved that Bernhard-Jablan Conjecture holds for ra-
tional knots with the unknotting number one [22], so all the general formulas
presented in this work expect very serious proving (or disproving) procedure
and verification.
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