Infinitesimal deformations of a non-symmetric affine connection space *

Svetislav M. Minčić, Ljubica S. Velimirović and Mića S. Stanković

Abstract

In this work ${ }^{1}$ we consider infinitesimal deformation $f: x^{i} \rightarrow x^{i}+$ $\varepsilon z^{i}\left(x^{j}\right)$, where $z^{i}\left(x^{j}\right)$ is infinitesimal deformation field, ε-an infinitesimal real magnitude.

We consider basic facts in connection with infinitesimal deformations and Lie derivative at non-symmetric affine connection space. The Lie derivative is expressed with respect to covariant derivatives of four kinds at a space of non-symmetric affine connection L_{N}, proving tensor character of the Lie derivative.

1 Introduction

The problem of infinitesimal deformations of a space has been treated for years from a lot of authors (for instance see [4] - [7]). We refer to [8], [9] for more details and references.

Let us consider a space L_{N} of non-symmetric affine connection $L_{j k}^{i}$ with the torsion tensor

$$
\begin{equation*}
T_{j k}^{i}=L_{j k}^{i}-L_{k j}^{i} \tag{1.1}
\end{equation*}
$$

at local coordinates $x^{i} \quad(i=1, \ldots, N)$.
Definition 1.1 A transformation $f: L_{N} \rightarrow L_{N}: x=\left(x^{1}, \ldots, x^{N}\right) \equiv\left(x^{i}\right) \rightarrow$ $\bar{x}=\left(\bar{x}^{1}, \ldots, \bar{x}^{N}\right) \equiv\left(\bar{x}^{i}\right)$, where

$$
\begin{equation*}
\bar{x}=x+z(x) \varepsilon \tag{1.2}
\end{equation*}
$$

or in local coordinates

$$
\bar{x}^{i}=x^{i}+z^{i}\left(x^{j}\right) \varepsilon, \quad i, j=1, \ldots, N,
$$

[^0]where ε is an infinitesimal, is called infinitesimal deformation of a space L_{N}, determined by the vector field $z=\left(z^{i}\right)$, which is called infinitesimal deformation field.

We denote with (i) local coordinate system in which the point x is endowed with coordinates x^{i}, and the point \bar{x} with the coordinates \bar{x}^{i}. We will also introduce a new coordinate system $\left(i^{\prime}\right)$, corresponding to the point $x=\left(x^{i}\right)$ new coordinates

$$
\begin{equation*}
x^{i^{\prime}}=\bar{x}^{i} \tag{1.3}
\end{equation*}
$$

i.e. as new coordinates $x^{i^{\prime}}$ of the point $x=\left(x^{i}\right)$ we choose old coordinates (at the system $(i))$ of the point $\bar{x}=\left(\bar{x}^{i}\right)$. Namely, at the system $\left(i^{\prime}\right)$ is $x=\left(x^{i^{\prime}}\right) \underset{(1.3)}{=}$ $\left(\bar{x}^{i}\right)$, where $\underset{(1.3)}{=}$ denotes "equal according to (1.3)".

Definition 1.2 Coordinate transformation which we get based on punctual transformation $f: x \rightarrow \bar{x}$, getting for the new coordinates of the point x the old coordinates of its transform \bar{x}, is called dragging along by point transformation. New coordinates $x^{i^{\prime}}=\bar{x}^{i}$ of the point \bar{x} are called dragged along coordinates.

In the case of infinitesimal deformation $\left(1.2^{\prime}\right)$ coordinate transformation

$$
\begin{equation*}
x^{i^{\prime}}=\bar{x}^{i}=x^{i}+z^{i}\left(x^{1}, \ldots, x^{N}\right) \varepsilon \tag{1.4}
\end{equation*}
$$

is called dragging along by $z^{i} \varepsilon$.
Let us consider a geometric object \mathcal{A} with respect to the system (i) at the point $x=\left(x^{i}\right) \in L_{N}$, denoting this with $\mathcal{A}(i, x)$.

Definition 1.3 The point \bar{x} is said to be deformed point of the point x, if (1.2) holds. Geometric object $\overline{\mathcal{A}}(i, x)$ is deformed object $\mathcal{A}(i, x)$ with respect to deformation (1.2), if its value at system $\left(i^{\prime}\right)$, at the point x is equal to the value of the object \mathcal{A} at the system (i) at the point \bar{x}, i.e. if

$$
\begin{equation*}
\overline{\mathcal{A}}\left(i^{\prime}, x\right)=\mathcal{A}(i, \bar{x}) \tag{1.5}
\end{equation*}
$$

Remark 1.1. In this study of infinitesimal deformations according to (1.2') quantities of an order higher then the first with respect to ε are neglected.

We will now define some important notions of the theory of infinitesimal deformations, following from (1.2): Lie differential and Lie derivative, and in further considerations we will find them for some geometric objects.

Definition 1.4 The magnitude $\mathcal{D} \mathcal{A}$, the difference between deformed object $\overline{\mathcal{A}}$ and initial object \mathcal{A} at the same coordinate system and at the same point with respect to $\left(1.2^{\prime}\right)$, i.e.

$$
\begin{equation*}
\mathcal{D} \mathcal{A}=\overline{\mathcal{A}}(i, x)-\mathcal{A}(i, x) \tag{1.6}
\end{equation*}
$$

is called Lie difference (Lie differential), and the magnitude

$$
\mathcal{L}_{z} \mathcal{A}=\lim _{\varepsilon \rightarrow 0} \frac{\mathcal{D} \mathcal{A}}{\varepsilon}=\lim _{\varepsilon \rightarrow 0} \frac{\overline{\mathcal{A}}(i, x)-\mathcal{A}(i, x)}{\varepsilon}
$$

is Lie derivative of geometric object $\mathcal{A}(i, x)$ with respect to the vector field $z=\left(z^{i}\left(x^{j}\right)\right)$.

Using the relation (1.6) for deformed object $\overline{\mathcal{A}}(i, x)$ we have

$$
\overline{\mathcal{A}}(i, x)=\mathcal{A}(i, x)+\mathcal{D} \mathcal{A}
$$

and thus we can express $\overline{\mathcal{A}}$, finding previously $\mathcal{D} \mathcal{A}$. We will consider the main cases.
1.1. According to (1.6) we have $\mathcal{D} x^{i}=\bar{x}^{i}-x^{i}$, i.e. for the coordinates we have

$$
\begin{equation*}
\mathcal{D} x^{i}=z^{i}\left(x^{j}\right) \varepsilon, \tag{1.7}
\end{equation*}
$$

from where

$$
\mathcal{L}_{z} x^{i}=z^{i}\left(x^{j}\right)
$$

Although x^{i} is not a vector, we see that $\mathcal{L}_{z} x^{i}$ is a vector.
The next cases were considered at [4] - [7].
1.2. For the scalar function $\varphi(x) \equiv \varphi\left(x^{1}, \ldots, x^{N}\right)$ we have

$$
\begin{equation*}
\mathcal{D} \varphi(x)=\varphi_{, p} z^{p}(x) \varepsilon=\mathcal{L}_{z} \varphi(x) \varepsilon, \quad\left(\varphi_{, p}=\partial \varphi / \partial x^{p}\right) \tag{1.8}
\end{equation*}
$$

i.e. Lie derivative of the scalar function is derivative of this function in the direction of the vector field z.
1.3. For the covariant vector $v_{i}(x)$ we have

$$
\begin{equation*}
\mathcal{D} v_{i}=\left(v_{i, p} z^{p}+z_{, i}^{p} v_{p}\right) \varepsilon=\mathcal{L}_{z} v_{i} \varepsilon \quad\left(v_{i, p}=\partial v_{i} / \partial x^{p}\right) \tag{1.9}
\end{equation*}
$$

1.4. Let us consider contravariant vector $u^{i}(x)$. According to (1.6) we have

$$
\begin{equation*}
\mathcal{D} u^{i}=\bar{u}^{i}(x)-u^{i}(x), \tag{1.10}
\end{equation*}
$$

and we have to find $\bar{u}^{i}(x)$. According to the coordinate transformation low

$$
\begin{equation*}
\bar{u}^{i}(x)=\frac{\partial x^{i}}{\partial x^{j^{\prime}}} u^{j^{\prime}}(x) \tag{1.11}
\end{equation*}
$$

where the right side is to be determined. Based on (1.4) we have

$$
\begin{equation*}
\frac{\partial x^{i}}{\partial x^{j^{\prime}}}=\frac{\partial x^{i^{\prime}}}{\partial x^{j^{\prime}}}-\frac{\partial z^{i}(x)}{\partial x^{j^{\prime}}} \varepsilon=\delta_{j}^{i}-\frac{\partial z^{i}}{\partial x^{j^{\prime}}} \varepsilon \tag{1.12}
\end{equation*}
$$

Taking account of $z^{i}(x)=z^{i}\left(x^{1}, \ldots, x^{N}\right)$, we have

$$
\frac{\partial z^{i}}{\partial x^{j^{\prime}}}=\frac{\partial z^{i}}{\partial x^{k}} \frac{\partial x^{k}}{\partial x^{j^{\prime}}} \underset{(1.12)}{=} \frac{\partial z^{i}}{\partial x^{k}}\left(\delta_{j}^{k}-\frac{\partial z^{k}}{\partial x^{j^{\prime}}} \varepsilon\right)
$$

Substituting at (1.12) we get

$$
\frac{\partial x^{i}}{\partial x^{j^{\prime}}}=\delta_{j}^{i}-\frac{\partial z^{i}}{\partial x^{k}} \varepsilon\left(\delta_{j}^{k}-\frac{\partial z^{k}}{\partial x^{j^{\prime}}} \varepsilon\right)
$$

and neglecting the member with $(\varepsilon)^{2}$:

$$
\begin{equation*}
\frac{\partial x_{i}}{\partial x^{j^{\prime}}}=\delta_{j}^{i}-\frac{\partial z_{i}}{\partial x^{j}} \varepsilon \tag{1.13}
\end{equation*}
$$

For the second member at the right side at (1.11), using Taylor's formula, we have:

$$
\begin{equation*}
\bar{u}^{j^{\prime}}(x) \underset{(1.5)}{=} u^{j}(\bar{x})=u^{j}\left(x^{i}+z^{i} \varepsilon\right)=u^{j}(x)+\frac{\partial u^{j}}{\partial x^{k}} z^{k} \varepsilon+\ldots \tag{1.14}
\end{equation*}
$$

Substituting $(1.13,14)$ into (1.11):

$$
\bar{u}^{i}(x)=u^{i}(x)+\frac{\partial u^{i}}{\partial x^{k}} z^{k} \varepsilon-\frac{\partial z^{i}}{\partial x^{j}} u^{j} \varepsilon
$$

and substituting this value into (1.10) we get:

$$
\begin{equation*}
\mathcal{D} u^{i}=\left(u_{, p}^{i} z^{p}-z_{, p}^{i} u^{p}\right) \varepsilon=\mathcal{L}_{z} u^{i} \varepsilon \tag{1.15}
\end{equation*}
$$

1.5. In the same manner for a tensor of the kind (u, v) we get

$$
\begin{align*}
& \mathcal{D} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=\left[t_{j_{1} \ldots j_{v}, p}^{i_{1} \ldots i_{u}} z^{p}-\sum_{\alpha=1}^{u} z_{, p}^{i_{\alpha}}\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}+\sum_{\beta=1}^{v} z_{, j_{\beta}}^{p}\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}\right] \varepsilon \tag{1.16}\\
& =\mathcal{L}_{z} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}} \varepsilon
\end{align*}
$$

where we denoted

$$
\begin{equation*}
\binom{p}{i_{\alpha}} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{\alpha-1} p i_{\alpha+1} \ldots i_{u}}, \quad\binom{j_{\beta}}{p} t_{j_{1} \ldots j_{v}}^{i_{1} \ldots i_{u}}=t_{j_{1} \ldots j_{\beta-1} p j_{\beta+1} \ldots j_{v}}^{i_{1} \ldots i_{u}} . \tag{1.17}
\end{equation*}
$$

Remark 1.2. We can also see that the equations $(1.8,9,15)$ are the special cases of the equation (1.16).
1.6. For the vector $d x^{i}$ we have

$$
\begin{equation*}
\mathcal{D}\left(d x^{i}\right)=\mathcal{L}_{z}\left(d x^{i}\right)=0 \tag{1.18}
\end{equation*}
$$

1.7. In the same way, as for the tensors, for the connection coefficients we have

$$
\begin{equation*}
\mathcal{D} L_{j k}^{i}=\left(L_{j k, p}^{i} z^{p}+z_{, j k}^{i}-z_{, p}^{i} L_{j k}^{p}+z_{, j}^{p} L_{p k}^{i}+z_{, k}^{p} L_{j p}^{i}\right) \varepsilon=\mathcal{L}_{z} L_{j k}^{i} \varepsilon \tag{1.19}
\end{equation*}
$$

1.8. For Lie differential (derivative) of a sum, product, contraction, composition of geometric objects the same rules hold as in the case of covariant derivative.

2 Tensor character of the Lie derivative

2.1 Tensor character of the Lie derivative of a tensor

In the previous considerations we expressed the Lie derivative with respect to partial derivatives. We will now express it by covariant derivatives and prove that the Lie derivative of a tensor is a tensor too.

Because of non-symmetry of the connection, at L_{N} we can consider two types of covariant derivatives for a vector and four types for general tensor. So, denoting by $\left.\right|_{\theta}(\theta=1, \ldots, 4)$ a derivative of the type θ, we have $([1]-[3])$:

According to (1.16) for the tensor $t_{k}^{i j}$ we have

$$
\begin{equation*}
\mathcal{L}_{z} t_{k}^{i j}=t_{k, p}^{i j} z^{p}-z_{, p}^{i} t_{k}^{p j}-z_{, p}^{j} t_{k}^{i p}+z_{, k}^{p} t_{p}^{i j} . \tag{2.3}
\end{equation*}
$$

Based on $(2.1,2)$, we can express partial derivatives with respect to covariant derivatives, and we get

$$
\mathcal{L}_{z} t_{k}^{i j}=\mathcal{L}_{2} z t_{k}^{i j} \equiv t_{k}^{i j}{ }_{2} z^{p} z^{p}-z_{\mid}^{i} p t_{k}^{p j}-z_{\mid}^{j} p^{j} t_{k}^{i p}
$$

$$
\begin{equation*}
+\underset{2}{p}{ }_{2}^{p} t_{p}^{i j}+T_{s p}^{i} t_{k}^{s j} z^{p}+T_{s p}^{j} t_{k}^{i s} z^{p}+T_{p k}^{s} t_{s}^{i j} z^{p} \tag{2.4b}
\end{equation*}
$$

$$
+z_{3}^{p} k_{p}^{i j}+T_{p s}^{i} t_{k}^{s j} z^{p}+T_{p s}^{j} t_{k}^{i s} z^{p}
$$

$$
\begin{align*}
\mathcal{L}_{z} t_{k}^{i j} & =\underset{1}{\mathcal{L}_{z}} t_{k}^{i j} \equiv t_{k}^{i j}{ }_{1} p^{p}-z_{\mid 1}^{i} t_{k}^{p j}-z_{\mid p}^{j} t_{k}^{i p} \tag{2.4a}\\
& +z_{\mid k}^{p} t_{p}^{i j}+T_{p s}^{i} t_{k}^{s j} z^{p}+T_{p s}^{j} t_{k}^{i s} z^{p}+T_{k p}^{s} t_{s}^{i j} z^{p}
\end{align*}
$$

$$
\begin{equation*}
\mathcal{L}_{z} t_{k}^{i j}={\underset{3}{3}} t_{k}^{i j} \equiv t_{k}^{i j}{ }_{3} p^{p} z^{p}-z_{3}^{i} t_{k}^{p j}-z_{\mid}^{j} p t_{k}^{i p} \tag{2.4c}
\end{equation*}
$$

$$
\begin{equation*}
\mathcal{L}_{z} t_{k}^{i j}={\underset{4}{4} z} t_{k}^{i j} \equiv t_{k}^{i j}{ }_{4}{ }^{2} z^{p}-z_{\mid}^{i} p^{i} t_{k}^{p j}-z_{\mid}^{j}{ }_{4} t_{k}^{i p} \tag{2.4d}
\end{equation*}
$$

$$
+z_{4}^{p} k_{p}^{i j}+T_{s p}^{i} t_{k}^{s j} z^{p}+T_{s p}^{j} t_{k}^{i s} z^{p}
$$

$$
\begin{align*}
& \underset{\substack{1 \\
2}}{i}=z_{, m}^{i}+\underset{m p}{i} \underset{\substack{1 \\
i}}{i} z^{p}=\underset{\substack{3 \\
4}}{i} \tag{2.1}
\end{align*}
$$

where \mathcal{L}_{θ} denotes that the Lie derivative \mathcal{L}_{z} is expressed by covariant derivatives

Naturally, as the same magnitude at the right side at (2.3) was expressed in different ways we have

$$
\begin{equation*}
\mathcal{L}_{\theta} z t_{k}^{i j}=\mathcal{L}_{z} t_{k}^{i j}, \quad \theta=1, \ldots, 4 \tag{2.5}
\end{equation*}
$$

We will prove only $(2.4 c)$. The other cases can be proved in similar way. According to (2.1) and (2.2) we have

$$
\begin{gathered}
z_{, p}^{i}=z_{3}^{i}-L_{s p}^{i} z^{s} \\
t_{k, p}^{i j}=\left.t_{k}^{i j}\right|_{3}-L_{s p}^{i} t_{k}^{s j}-L_{s p}^{j} t_{k}^{i s}+L_{p k}^{s} t_{s}^{i j}
\end{gathered}
$$

which we substitute at (2.3) and using, for example,

$$
-L_{s p}^{i}{ }_{k}^{s j} z^{p}+L_{s p}^{i} t_{k}^{p j} z^{s}=-L_{s p}^{i} t_{k}^{s j} z^{p}+L_{p s}^{i} t_{k}^{s j} z^{p}=T_{p s}^{i} t_{k}^{s j} z^{p}
$$

we get (2.4c).

2.2 Lie derivative of the connection as a tensor

On the base of (1.19) for the Lie derivative of the connection we have

$$
\begin{equation*}
\mathcal{L}_{z} L_{j k}^{i}=z_{, j k}^{i}+L_{j k, p}^{i} z^{p}-z_{, p}^{i} L_{j k}^{p}+z_{, j}^{p} L_{p k}^{i}+z_{, k}^{p} L_{j p}^{i} \tag{2.6}
\end{equation*}
$$

In order to express $z_{, j k}^{i}=\partial^{2} z^{i} / \partial x^{j} \partial x^{k}$ with respect to $z_{\mid j k}^{i}=\underset{\substack{|j| k \\ 1 \mid}}{i}$ we find

$$
\begin{align*}
z_{\mid j k}^{i} & =\underset{\substack{|j| k \\
1}}{i}=\left(z_{\mid j}^{i}\right)_{, k}+L_{p k}^{i} z_{\mid j}^{p}-L_{j k}^{p} z_{1 p}^{i} \\
& =\underset{(2.7)}{=}\left(z_{, j}^{i}+L_{p j}^{i} z^{p}\right)_{, k}+L_{p k}^{i}\left(z_{, j}^{p}+L_{s j}^{p} z^{s}\right)-L_{j k}^{p}\left(z_{, p}^{i}+L_{s p}^{i} z^{s}\right) . \tag{2.8}
\end{align*}
$$

Finding from here $z_{, j k}^{i}$ and substituting it at (2.6), we obtain

$$
\mathcal{L}_{z} L_{j k}^{i}=z_{1 j k}^{i}+\underset{1}{R_{j k p}^{i}} z^{p}+T_{j p, k}^{i} z^{p}+L_{j k}^{s} T_{p s}^{i} z^{p}+L_{s k}^{i} T_{j p}^{s} z^{p}+T_{j p}^{i} z_{, k}^{p},
$$

where ([1] - [3])

$$
\begin{equation*}
{\underset{1}{1}}_{R_{j k p}^{i}=L_{j k, p}^{i}-L_{j p, k}^{i}+L_{j k}^{s} L_{s p}^{i}-L_{j p}^{s} L_{s k}^{i}, ~}^{\text {ind }} \tag{2.9}
\end{equation*}
$$

is curvature tensor of the first kind of the space L_{N}. The last four summands at the previous equation for $\mathcal{L}_{z} L_{j k}^{i}$ give $\left(T_{j p}^{i} z^{p}\right)_{\mid k}$, and finally we have

$$
\begin{equation*}
\mathcal{L}_{z} L_{j k}^{i}=\mathcal{L}_{1} L_{j k}^{i} \equiv \underset{1}{i j k} i{ }_{1}^{i}+{\underset{1}{1}}_{i}^{i} z^{p}+\left(T_{j p}^{i} z^{p}\right)_{\mid k} \tag{2.10}
\end{equation*}
$$

Using different types of covariant derivatives, we have

$$
\begin{aligned}
& z_{\mid j}^{i}=z_{, j}^{i}+L_{j p}^{i} z^{p}=\left(z_{, j}^{i}+L_{p j}^{i} z^{p}\right)-L_{p j}^{i} z^{p}+L_{j p}^{i} z^{p}=z_{\mid j}^{i}+T_{j p}^{i} z^{p} \\
& z_{|j| k}^{i}=\left(z_{\mid j}^{i}+T_{j p}^{i} z^{p}\right)_{\mid k}=z_{1 j}^{i}+\left(T_{j p}^{i} z^{p}\right)_{\mid k}^{\mid k} \\
& 1
\end{aligned}
$$

and (2.10) becomes

$$
\mathcal{L}_{z} L_{j k}^{i}=z_{\substack{|j| k}}^{i}+\underset{1}{R_{j k p}^{i}} z^{p}
$$

In the similar way we obtain

$$
\begin{gather*}
\mathcal{L}_{z} L_{j k}^{i}=\underset{2}{\mathcal{L}_{z}} L_{j k}^{i} \equiv \underset{2}{z_{\mid j k}^{i}}+\underset{2}{R_{j k p}^{i}} z^{p}+T_{p j \mid k}^{i} z^{p}+T_{p k}^{i} z_{\mid,}^{p} \\
+T_{k j}^{p} z_{\mid p}^{i}+T_{j k \mid p}^{i} z^{p}+\left(T_{s j}^{i} T_{k p}^{s}+T_{s k}^{i} T_{p j}^{s}+T_{s p}^{i} T_{j k}^{s}\right) z^{p} . \tag{2.11}\\
\mathcal{L}_{z} L_{j k}^{i}=\underset{3}{\mathcal{L}_{z}} L_{j k}^{i} \equiv \underset{3}{z_{\mid j k}^{i}}+\underset{3}{R_{j k p}^{i} z^{p}-T_{j k}^{p} z_{\mid p}^{i}+T_{j p}^{i} z_{\mid k}^{p},} \tag{2.12}\\
\mathcal{L}_{z} L_{j k}^{i}=\underset{4}{\mathcal{L}_{2}} L_{j k}^{i} \equiv \underset{4}{i} \underset{\mid j k}{i}+\underset{4}{i}{ }_{j k p}^{i} z^{p}+\left(T_{p j \mid k}^{i}+T_{s j}^{i} T_{p k}^{s}+T_{s k}^{i} T_{p j}^{s}\right) z^{p}+T_{p k}^{i} z_{\mid j}^{p}, \tag{2.13}
\end{gather*}
$$

where

$$
\begin{gather*}
{\underset{2}{2}}_{R_{j k p}^{i}}^{i} L_{k j, p}^{i}-L_{p j, k}^{i}+L_{k j}^{s} L_{p s}^{i}-L_{p j}^{s} L_{k s}^{i} \tag{2.14}\\
\underset{3}{R_{j k p}^{i}}=L_{j k, p}^{i}-L_{p j, k}^{i}+L_{j k}^{s} L_{p s}^{i}-L_{p j}^{s} L_{s k}^{i}+L_{p k}^{s} T_{s j}^{i} \tag{2.15}\\
\underset{4}{R_{j k p}^{i}}=L_{j k, p}^{i}-L_{p j, k}^{i}+L_{j k}^{s} L_{p s}^{i}-L_{p j}^{s} L_{s k}^{i}+L_{k p}^{s} T_{s j}^{i} \tag{2.16}
\end{gather*}
$$

are curvature tensors of the second, the third and the fourth kind of the space L_{N} respectively (see [1]-[3]).

References

[1] S.M. Minčić, Ricci identities in the space of non-symmetric affine connexion, Matematički vesnik, 10(25)Sv. 2,(1973), 161-172.
[2] S.M. Minčić, New commutation formulas in the non-symetric affine connexion space, Publ. Inst. Math. (Beograd)(N.S), 22(36) (1977), 189-199.
[3] S.M. Minčić, Independent curvature tensors and pseudotensors of spaces with non-symmetric affine connexion, Coll. math. soc. János Bolyai, 31. Dif. geom., Budapest (Hungary), (1979), 445-460.
[4] R. Stojanović, Osnovi diferencijalne geometrije, Gradjevinska knjiga, Beograd, (1963),
[5] J.A. Schouten, Ricci calculus, Springer Verlag, Berlin-Gotingen-Heildelberg, (1954).
[6] K. Yano, Sur la theorie des deformations infinitesimales, Journal of Fac. of Sci. Univ. of Tokyo, 6, (1949), 1-75.
[7] K. Yano, The theory of Lie derivatives and its applications, N-Holland Publ.Co.Amsterdam, (1957).
[8] I. Ivanova-Karatopraklieva, Sabitov, I. Kh., Surface deformation, J. Math. Sci., New York 70, $\mathrm{N}^{\circ} 2$, (1994), 1685-1716.
[9] I. Ivanova-Karatopraklieva, I. Kh. Sabitov, Bending of surfaces II , J. Math. Sci., New York 74, $\mathrm{N}^{\circ} 3$ (1995), 997-1043.

Faculty of Science and Mathematics
Višegradska 33, 18000 Niš
smica@pmf.pmf.ni.ac.yu,
vljubica@pmf.pmf.ni.ac.yu

[^0]: *Supported by Grant 04M03C of RFNS trough Math. Inst. SANU.
 ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001
 2000 Mathematics Subject Classification: 53C25, 53A45, 53B05
 Keywords: Infinitesimal deformation, non-symmetric affine connection, Lie derivative.

