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Abstract

In this work1 we consider infinitesimal deformation f : xi → xi +
εzi(xj), where zi(xj) is infinitesimal deformation field, ε-an infinitesimal
real magnitude.

We consider basic facts in connection with infinitesimal deformations
and Lie derivative at non-symmetric affine connection space. The Lie
derivative is expressed with respect to covariant derivatives of four kinds at
a space of non-symmetric affine connection LN , proving tensor character
of the Lie derivative.

1 Introduction

The problem of infinitesimal deformations of a space has been treated for years
from a lot of authors (for instance see [4] − [7]). We refer to [8], [9] for more
details and references.

Let us consider a space LN of non-symmetric affine connection Li
jk with the

torsion tensor

(1.1) T i
jk = Li

jk − Li
kj ,

at local coordinates xi (i = 1, . . . , N).

Definition 1.1 A transformation f : LN → LN : x = (x1, . . . , xN ) ≡ (xi) →
x̄ = (x̄1, . . . , x̄N ) ≡ (x̄i), where

(1.2) x̄ = x + z(x)ε,

or in local coordinates

(1.2′) x̄i = xi + zi(xj)ε, i, j = 1, . . . , N,
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where ε is an infinitesimal, is called infinitesimal deformation of a space
LN , determined by the vector field z = (zi), which is called infinitesimal
deformation field.

We denote with (i) local coordinate system in which the point x is endowed
with coordinates xi, and the point x̄ with the coordinates x̄i. We will also
introduce a new coordinate system (i′), corresponding to the point x = (xi)
new coordinates

(1.3) xi′ = x̄i,

i.e. as new coordinates xi′ of the point x = (xi) we choose old coordinates (at
the system (i)) of the point x̄ = (x̄i). Namely, at the system (i′) is x = (xi′) =

(1.3)

(x̄i), where =
(1.3)

denotes ”equal according to (1.3)”.

Definition 1.2 Coordinate transformation which we get based on punctual
transformation f : x → x̄, getting for the new coordinates of the point x the
old coordinates of its transform x̄, is called dragging along by point trans-
formation. New coordinates xi′ = x̄i of the point x̄ are called dragged along
coordinates.

In the case of infinitesimal deformation (1.2′) coordinate transformation

(1.4) xi′ = x̄i = xi + zi(x1, . . . , xN )ε

is called dragging along by ziε.

Let us consider a geometric object A with respect to the system (i) at the
point x = (xi) ∈ LN , denoting this with A(i, x).

Definition 1.3 The point x̄ is said to be deformed point of the point x, if
(1.2) holds. Geometric object Ā(i, x) is deformed object A(i, x) with respect
to deformation (1.2), if its value at system (i′), at the point x is equal to the
value of the object A at the system (i) at the point x̄, i.e. if

(1.5) Ā(i′, x) = A(i, x̄).

Remark 1.1. In this study of infinitesimal deformations according to (1.2′)
quantities of an order higher then the first with respect to ε are neglected.

We will now define some important notions of the theory of infinitesimal
deformations, following from (1.2): Lie differential and Lie derivative, and in
further considerations we will find them for some geometric objects.

Definition 1.4 The magnitude DA, the difference between deformed object Ā
and initial object A at the same coordinate system and at the same point with
respect to (1.2′), i.e.

(1.6) DA = Ā(i, x)−A(i, x),
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is called Lie difference (Lie differential), and the magnitude

(1.6′) LzA = lim
ε→0

DA
ε

= lim
ε→0

Ā(i, x)−A(i, x)
ε

is Lie derivative of geometric object A(i, x) with respect to the vector field
z = (zi(xj)).

Using the relation (1.6) for deformed object Ā(i, x) we have

(1.6′′) Ā(i, x) = A(i, x) +DA,

and thus we can express Ā, finding previously DA. We will consider the main
cases.

1.1. According to (1.6) we have Dxi = x̄i − xi, i.e. for the coordinates we
have

(1.7) Dxi = zi(xj)ε,

from where

(1.7′) Lzx
i = zi(xj).

Although xi is not a vector, we see that Lzx
i is a vector.

The next cases were considered at [4]− [7].

1.2. For the scalar function ϕ(x) ≡ ϕ(x1, . . . , xN ) we have

(1.8) Dϕ(x) = ϕ,pz
p(x)ε = Lzϕ(x)ε, (ϕ,p = ∂ϕ/∂xp),

i.e. Lie derivative of the scalar function is derivative of this function in the
direction of the vector field z.
1.3. For the covariant vector vi(x) we have

(1.9) Dvi = (vi,pz
p + zp

,ivp)ε = Lzviε (vi,p = ∂vi/∂xp),

1.4. Let us consider contravariant vector ui(x). According to (1.6) we have

(1.10) Dui = ūi(x)− ui(x),

and we have to find ūi(x). According to the coordinate transformation low

(1.11) ūi(x) =
∂xi

∂xj′ u
j′(x),

where the right side is to be determined. Based on (1.4) we have

(1.12)
∂xi

∂xj′ =
∂xi′

∂xj′ −
∂zi(x)
∂xj′ ε = δi

j −
∂zi

∂xj′ ε.
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Taking account of zi(x) = zi(x1, . . . , xN ), we have

∂zi

∂xj′ =
∂zi

∂xk

∂xk

∂xj′ =
(1.12)

∂zi

∂xk
(δk

j −
∂zk

∂xj′ ε).

Substituting at (1.12) we get

∂xi

∂xj′ = δi
j −

∂zi

∂xk
ε(δk

j −
∂zk

∂xj′ ε),

and neglecting the member with (ε)2:

(1.13)
∂xi

∂xj′ = δi
j −

∂zi

∂xj
ε.

For the second member at the right side at (1.11), using Taylor’s formula, we
have:

(1.14) ūj′(x) =
(1.5)

uj(x̄) = uj(xi + ziε) = uj(x) +
∂uj

∂xk
zkε + . . .

Substituting (1.13, 14) into (1.11):

ūi(x) = ui(x) +
∂ui

∂xk
zkε− ∂zi

∂xj
ujε,

and substituting this value into (1.10) we get:

(1.15) Dui = (ui
,pz

p − zi
,pu

p)ε = Lzu
iε.

1.5. In the same manner for a tensor of the kind (u, v) we get

(1.16)
Dti1...iu

j1...jv
= [ti1...iu

j1...jv,pz
p −

u∑
α=1

ziα
,p

(
p

iα

)
ti1...iu
j1...jv

+
v∑

β=1

zp
,jβ

(
jβ

p

)
ti1...iu
j1...jv

]ε

= Lzt
i1...iu
j1...jv

ε,

where we denoted

(1.17)
(

p

iα

)
ti1...iu
j1...jv

= t
i1...iα−1piα+1...iu

j1...jv
,

(
jβ

p

)
ti1...iu
j1...jv

= ti1...iu
j1...jβ−1pjβ+1...jv

.

Remark 1.2. We can also see that the equations (1.8, 9, 15) are the special

cases of the equation (1.16).

1.6. For the vector dxi we have

(1.18) D(dxi) = Lz(dxi) = 0.

1.7. In the same way, as for the tensors, for the connection coefficients we

have

(1.19) DLi
jk = (Li

jk,pz
p + zi

,jk − zi
,pL

p
jk + zp

,jL
i
pk + zp

,kLi
jp)ε = LzL

i
jkε.

1.8. For Lie differential (derivative) of a sum, product, contraction, composition

of geometric objects the same rules hold as in the case of covariant derivative.
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2 Tensor character of the Lie derivative

2.1 Tensor character of the Lie derivative of a tensor

In the previous considerations we expressed the Lie derivative with respect to
partial derivatives. We will now express it by covariant derivatives and prove
that the Lie derivative of a tensor is a tensor too.

Because of non-symmetry of the connection, at LN we can consider two
types of covariant derivatives for a vector and four types for general tensor. So,
denoting by |

θ

(θ = 1, . . . , 4) a derivative of the type θ, we have ([1]-[3]):

(2.1) zi
|
1
2

m = zi
,m + Li

pm
mp

zp = zi
|
3
4

m

(2.2) tijk |
1
2
3
4

m = tijk,m + Li
pm
mp

pm
mp

tpj
k + Lj

pm
mp

pm
mp

tipk − Lp
km
mk
mk
km

tijp .

According to (1.16) for the tensor tijk we have

(2.3) Lzt
ij
k = tijk,pz

p − zi
,pt

pj
k − zj

,pt
ip
k + zp

,ktijp .

Based on (2.1, 2), we can express partial derivatives with respect to covariant
derivatives, and we get

(2.4a)
Lzt

ij
k = L

1
zt

ij
k ≡ tijk |

1
pz

p − zi
|
1
pt

pj
k − zj

|
1

pt
ip
k

+ zp
|
1

ktijp + T i
pst

sj
k zp + T j

pst
is
k zp + T s

kpt
ij
s zp,

(2.4b)
Lzt

ij
k = L

2
zt

ij
k ≡ tijk |

2
pz

p − zi
|
2
pt

pj
k − zj

|
2

pt
ip
k

+ zp
|
2

ktijp + T i
spt

sj
k zp + T j

spt
is
k zp + T s

pktijs zp,

(2.4c)
Lzt

ij
k = L

3
zt

ij
k ≡ tijk |

3
pz

p − zi
|
3
pt

pj
k − zj

|
3

pt
ip
k

+ zp
|
3

ktijp + T i
pst

sj
k zp + T j

pst
is
k zp,

(2.4d)
Lzt

ij
k = L

4
zt

ij
k ≡ tijk |

4
pz

p − zi
|
4
pt

pj
k − zj

|
4

pt
ip
k

+ zp
|
4

ktijp + T i
spt

sj
k zp + T j

spt
is
k zp,
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where L
θ

z denotes that the Lie derivative Lz is expressed by covariant derivatives

of the type θ (|
θ

), θ = 1, . . . , 4.

Naturally, as the same magnitude at the right side at (2.3) was expressed in
different ways we have

(2.5) L
θ

zt
ij
k = Lzt

ij
k , θ = 1, . . . , 4.

We will prove only (2.4c). The other cases can be proved in similar way. Ac-
cording to (2.1) and (2.2) we have

zi
,p = zi

|
3
p − Li

spz
s,

tijk,p = tijk |
3
p − Li

spt
sj
k − Lj

spt
is
k + Ls

pktijs ,

which we substitute at (2.3) and using, for example,

−Li
spt

sj
k zp + Li

spt
pj
k zs = −Li

spt
sj
k zp + Li

pst
sj
k zp = T i

pst
sj
k zp,

we get (2.4c).

2.2 Lie derivative of the connection as a tensor

On the base of (1.19) for the Lie derivative of the connection we have

(2.6) LzL
i
jk = zi

,jk + Li
jk,pz

p − zi
,pL

p
jk + zp

,jL
i
pk + zp

,kLi
jp.

In order to express zi
,jk = ∂2zi/∂xj∂xk with respect to zi

|
1
jk = zi

|
1
j |
1
k we find

(2.7) zi
|
1
j = zi

,j + Li
pjz

p

(2.8)
zi
|
1
jk = zi

|
1
j |
1
k = (zi

|
1
j),k + Li

pkzp
|
1
j − Lp

jkzi
|
1
p

=
(2.7)

(zi
,j + Li

pjz
p),k + Li

pk(zp
,j + Lp

sjz
s)− Lp

jk(zi
,p + Li

spz
s).

Finding from here zi
,jk and substituting it at (2.6), we obtain

LzL
i
jk = zi

|
1
jk + R

1

i
jkpz

p + T i
jp,kzp + Ls

jkT i
psz

p + Li
skT s

jpz
p + T i

jpz
p
,k,

where ([1]− [3])

(2.9) R
1

i
jkp = Li

jk,p − Li
jp,k + Ls

jkLi
sp − Ls

jpL
i
sk
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is curvature tensor of the first kind of the space LN . The last four
summands at the previous equation for LzL

i
jk give (T i

jpz
p)|

1
k, and finally we

have

(2.10) LzL
i
jk = L

1
zL

i
jk ≡ zi

|
1
jk + R

1

i
jkpz

p + (T i
jpz

p)|
1
k.

Using different types of covariant derivatives, we have

zi
|
2
j = zi

,j + Li
jpz

p = (zi
,j + Li

pjz
p)− Li

pjz
p + Li

jpz
p = zi

|
1
j + T i

jpz
p,

zi
|
2
j |
1
k = (zi

|
1
j + T i

jpz
p)|

1
k = zi

|
1
jk + (T i

jpz
p)|

1
k,

and (2.10) becomes

(2.10′) LzL
i
jk = zi

|
2
j |
1
k + R

1

i
jkpz

p.

In the similar way we obtain

(2.11)
LzL

i
jk = L

2
zL

i
jk ≡ zi

|
2
jk + R

2

i
jkpz

p + T i
pj |

2
kzp + T i

pkzp
|
2
j

+ T p
kjz

i
|
2
p + T i

jk|
2
pz

p + (T i
sjT

s
kp + T i

skT s
pj + T i

spT
s
jk)zp.

(2.12) LzL
i
jk = L

3
zL

i
jk ≡ zi

|
3
jk + R

3

i
jkpz

p − T p
jkzi

|
3
p + T i

jpz
p
|
3
k,

(2.13) LzL
i
jk = L

4
zL

i
jk ≡ zi

|
4
jk+R

4

i
jkpz

p+(T i
pj |

4
k+T i

sjT
s
pk+T i

skT s
pj)z

p+T i
pkzp

|
4
j ,

where

(2.14) R
2

i
jkp = Li

kj,p − Li
pj,k + Ls

kjL
i
ps − Ls

pjL
i
ks

(2.15) R
3

i
jkp = Li

jk,p − Li
pj,k + Ls

jkLi
ps − Ls

pjL
i
sk + Ls

pkT i
sj

(2.16) R
4

i
jkp = Li

jk,p − Li
pj,k + Ls

jkLi
ps − Ls

pjL
i
sk + Ls

kpT
i
sj

are curvature tensors of the second, the third and the fourth kind of
the space LN respectively (see [1]-[3]).
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