
Derivation of multidimensional superperiodic
symmetry groups by using Mackay groups

Ljiljana Radović

Abstract

The geometrical application of multiple antisymmmetry groups and
Mackay groups for the derivation of multidimensional subperiodic groups
is considered and illustrated by the direct derivation of 4-dimensional
groups of the category G4321 from the category G21 by using Mackay
2-multiple antisymmetry groups. In general, symmetry groups of the cat-
egory G(r+2)(r+1)r... treated as a subcategory of the category G(r+2)r... can
be derived directly by using Mackay 2-multiple antisymmetry groups.1

1 Introduction

The concept of antisymmetry was introduced by H.Heesch [2]. The develop-
ment of the theory of antisymmetry can be followed through the works of A.V.
Shubnikov and V.A. Koptsik [7], A.V. Shubnikov and N.V. Belov et all. [6],
A.M. Zamorzaev [8], A.M. Zamorzaev and A.F. Palistrant [10], and Kishinev
school [9].

Its natural generalization, the idea of multiple antisymmetry was suggested
by A.V. Shubnikov and introduced by A.M. Zamorzaev in 1956 [8]. Few months
later, another concept of multiple antisymmetry was proposed by A.L. Mackay
[5]. After that, mainly by the contribution of Kishinev school (Zamorzaev, Pal-
istrant, Galyarskii...), the theory of multiple antisymmetry was extended to all
categories of isometric symmetry groups of the space En (n ≤ 3), different kinds
of non-isometric symmetry groups (of similarity symmetry, conformal symme-
try, etc.) and P -symmetry groups [8,9,10]. On the other hand, investigation of
the Mackay approach to the multiple antisymmetry [5] was not continued for
many years.

In the case of l-multiple antisymmetry we have a discrete symmetry group
G with a set of generators {S1, . . . , Sr}, given by the presentation

gn(S1, . . . , Sr) = E, n = 1, ..., s
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and the set of anti-identities e1, . . . , el of the first,..., lth kind, that generate the
group Cl

2 = {e1} × . . .× {el} and satisfy the relations

eiej = ejei e2
i = E eiSq = Sqei, i, j = 1, ..., l, q = 1, ..., r.

The group that consists of transformations S′ = e′S, where e′ is the identity,
anti-identity, or some product of anti-identities, is called l-multiple antisymme-
try group [8,10,9]. In particular, for l = i = j = 1 we have simple antisymmetry.

All simple and multiple-antisymmetry groups can be divided into the groups
of Sk (1 ≤ k ≤ l), SkMm (1 ≤ k, m; k + m ≤ l) and Mm (1 ≤ m ≤ l)
type. Because the groups of Sk and SkMm type can be derived directly from
a generating group G and from the groups of Mm-type respectively, the only
non-trivial problem is a derivation of Mm-type groups. Hence, in this paper
we will consider only the junior multiple-antisymmetry groups of Mm-type, i.e.
the multiple-antisymmetry groups isomorphic with their generating symmetry
group G, that possess an independent system of antisymmetries of m different
kinds.

Each junior multiple-antisymmetry group G′ of Mm-type can be defined
by the extended group/subgroup symbol G/(H1, . . . , Hm)/H, where G is a
generating group, Hi are its subgroups of index 2 satisfying the relationships
G/Hi ' C2 = {ei} (1 ≤ i ≤ m), and H is the subgroup of G of index 2m –
the symmetry subgroup of G′ (G/H ' Cm

2 = {e1}× . . .×{em}) [8]. According
to Zamorzaev approach, two junior multiple antisymmetry groups of Mm-type
are equal iff their extended group/subgroup symbols coincide. In this case, the
order of the subgroups Hi in the extended group/subgroup symbol is important,
and the anti-identities ei (i = 1, 2, ..., l) are treated as non-equivalent.

An efficient method for the derivation of multiple antisymmetry groups –
the antisymmetric-characteristic method (AC-method) was introduced in 1984.

Definition 1 Let all products of the generators of G, within which every genera-
tor participates once at the most, be formed and then subsets of transformations
that are equivalent in the sense of symmetry with regard to the symmetry group
G, be separated. The resulting system is called the antisymmetric characteristic
of group G (AC(G)).

As the basic references we will use the list of non-isomorphic ACs with
1 ≤ m ≤ 4 generators and other results about Z-groups published in the paper
[3] and the analogous results for Mackay groups from the paper [4].

2 Mackay groups

In the case of Zamorzaev l-multiple antisymmetry groups (Z-groups) the anti-
identities ei (i = 1, 2, ...l) are treated as mutually different. If we accept the
equality of those anti-identities – their equal physical or geometrical role, as
the result we obtain Mackay l-multiple antisymmetry groups (M -groups). The
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only difference between M - and Z-groups follows from that equality criterion.
Because only junior multiple antisymmetry groups of Mm-type are nontrivial
in the sense of derivation, we will restrict our consideration to the multiple
antisymmetry M -groups of Mm-type. In this case, G/(H1,H2, ...,Hm)/H =
G/(Hi1 ,Hi2 , ..., Him

)/H), where (i1, i2, ..., im) is some permutation of (1, 2, ..., m).
According to that, two M -groups of G′ and G′′ that belong to the same family
(i.e., that have the same generating symmetry group G) are equal iff there ex-
ist a permutation of the anti-identities e1, e2,..., em transforming AC(G′) into
AC(G′′).

Each AC completely defines a series Nm, where by Nm is denoted number
of Z-groups of Mm-type. The same holds for series Mm, where Mm denotes the
number of the corresponding M -groups derived from a symmetry group G for
m fixed. Naturally, N1(G) = M1(G).

In the paper [3] it is given complete list of the non-isomorphic ACs with
1 ≤ m ≤ 4 generators and a comparative list of the numbers Nm and Mm

corresponding to that ACs.
The results from the paper [3] can be used for the calculation of the numbers

of Z- and M -groups for some well known categories of symmetry groups. For
example, in the case of plane symmetry groups G2, with regard to the AC-
isomorphism classes, ACs of symmetry groups cm, p4g and p6m belong to the
equivalence class 2.1, ACs of the groups pg, pgg, p4 to the class 2.2, AC of
the group p1 to the class 2.3, ACs of the groups pm, pmg, cmm, p4m to the
class 3.2, AC of the group p2 to the class 3.9, and AC of the group pmm to
the class 4.16. From the remaining plane symmetry groups p3, p31m, p3m1,
and p6 we cannot derive M - and Z-groups of M2-type. For l = 1 we obtain
46 well known black-white antisymmetry groups, M2(G2) = 94, M3(G2) = 137,
M4(G2) = 122.

By permuting anti-identities in M -groups we obtain the combinatorial con-
nections between the numbers of M - and Z-groups, representing a double check
of the results obtained:

N2(G2) = 73× 2 + 21× 1 = 167
N3(G2) = 97× 6 + 39× 3 + 1× 1 = 700
N4(G2) = 90× 24 + 29× 12 + 1× 6 + 2× 3 = 2520.

3 Derivation of multidimensional subperiodic
groups by using Mackay groups

From its beginning, in the works of H. Heesch [2] and A.V. Shubnikov [6,7],
antisymmetry is used for a dimensional transition from the symmetry groups
of friezes G21 to the symmetry groups of bands G321, or from plane symmetry
groups G2 to the layer symmetry groups G32. In the similar way, A.V. Shubnikov
used antisymmetry groups derived from the plane point symmetry groups G20
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in order to obtain 3-dimensional point groups G320 by identifying the anti-
identity transformation e1 with a point inversion. Trying to generalize the idea
of antisymmetry and apply it to the derivation of multi-dimensional symmetry
groups, H. Heesch proposed the derivation of hyper-layer symmetry groups G43

from 230 space symmetry groups G3 by identifying anti-identity transformation
e1 with a hyper-plane reflection and introducing this way the additional 4th

dimension.
The further development of that concept we can follow in the works of A.F.

Palistrant, A.M. Zamorzaev and Kishinev school, where is given the following
general result: every r-dimensional antisymmetry group can be derived as a
(r + 1)-dimensional symmetry group with the invariant (hyper)plane. By inter-
preting a color-change ”black-white” (this means, the action of the anti-identity
transformation e1) as a change of the additional coordinate perpendicular to
the invariant hyper-plane, we conclude that to every antisymmetry group of the
category G1

r... corresponds the symmetry group of the category G(r+1)r..., where
to different antisymmetry groups correspond different symmetry groups. The
possibility for dimensional transitions holds not only for simple antisymmetry,
but also in the general case – in the case of multiple antisymmetry. According
to the connections between l- and l +1-multiple antisymmetry and a possibility
to reduce the theory of multiple antisymmetry to the series of such recursive
transitions, i.e. to the multiple use of simple antisymmetry, according to the
relationships Gm

r... = (Gm−1
r... )1 = (G1

r...)
m−1, G1

r... = G(r+1)r..., we conclude that
for Z-groups holds: Gm

r... = G(m+r)(m+r−1)...(r+1)r.... This way, it is possible
to use multiple antisymmetry Z-groups in order to derive multi-dimensional
subperiodic symmetry groups of the higher dimensions, where a dimensional
transition goes directly from r-dimensional to (r + m)-dimensional groups.

From that follows the natural question: what will represent Mackay groups
in such a dimensional transition? In the case of simple antisymmetry, the result
will be the same for Z- and M -groups, because for l = 1 they coincide, but for
l ≥ 2, thanks to the different equality criteria holding for Z- and M -groups, the
results will be different.

This can be illustrated by the example of symmetry groups of the category
G1 used for the direct derivation of the symmetry groups of the category G321 by
applying 2-multiple antisymmetry. For the 2-multiple antisymmetry Z-groups
it holds: G2

1 = G321; this means that the extension of the category G1 by 2-
multiple antisymmetry Z-groups results in the symmetry groups of bands G321.
There is the question: what will represent in the 3-dimensional space 2-multiple
antisymmetry M -groups derived from the category G1? As it is well known, the
category G321 consists of 31 symmetry groups of bands given by the following
crystallographic symbols [7]:

1) p1 2) p121 3) p2122 4) p1m1

5) p1a1 6) p21ma 7) p 21
m 11 8) p11 2

a
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9) pm2m 10) pm2a 11) p211 12) p112

13) p1̄ 14) p2mm 15) p2aa 16) pm11

17) p11 2
m 18) pma2 19) pmmm 20) pmaa

21) pmma 22) p2111 23) p222 24) p11m

25) p11a 26) p21am 27) p 2
m11 28) p1 2

m1

29) pmm2 30) p1 2
a1 31) pmam

In the crystallographic symbols used, p denotes the translation along the in-
variant line, and the remaining three coordinates indicate different positions of
symmetry elements: the first coordinate axis is parallel to the invariant line (to
the translation axis), the second belongs to the invariant plane and it is perpen-
dicular to the axis, and the third is perpendicular to the first and second. If two
symmetry elements: rotation axis and the perpendicular element of symmetry
correspond to the same axis, their symbols appear at the same coordinate, one
over another (e.g., 2

m ).
Some of the bands differ between themselves only by a position of the sym-

metry elements with regard to the coordinate axes. Without distinguishing
different orientations of the invariant plane of a band with regard to the co-
ordinate axes, the number of symmetry groups of bands will be reduced from
31 to 22. Namely, the bands 2 and 12, 4 and 24, 5 and 25, 6 and 26, 10 and
18, 17 and 28, 21 and 31 will coincide, because one of them can be obtained
from the other by replacing the symmetry elements corresponding to the second
and third coordinate in the coordinate crystallographic symbols of bands. The
result obtained – 22 symmetry groups, corresponds to the number of the sym-
metry groups of bands considered inside the category G31, this means, if they
are treated as the symmetry groups of rods.

On the other hand, the possibility to not distinguish the orientation of the
plane of the figure with regard to the coordinate axes results in the new ap-
proach: we can derive the 22 symmetry groups mentioned as 2-multiple antisym-
metry Mackay groups from the symmetry groups of the category G1, this means,
as M -groups of the category G2

1. According to the equality criterion formulated
for M -groups, the anti-identities e1 and e2 are equivalent among themselves. In
the geometrical sense, this simply means that of reflection planes perpendicular
to the second and third coordinate in this case play the equal geometrical role,
so they can be mutually identified. This can be concluded from the following
comparative list of 2-multiple antisymmetry M -groups derived from the symme-
try groups of the category G1: p1 generated by translation X and pm generated
by two parallel reflections R1 and R2, and the symmetry groups of bands G321
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corresponding to them:

G p1 {X} = p1 (1)
pm {R1,R2} = pm11 (16)

S1 {X} × {e1} = p1m1 (4) (24)
{R1, R2} × {e1} = pm2m (9) (29)

S12 {X}× {e1e2} = p211 (11)
{R1, R2} × {e1e2} =p 2

m11 (27)

S1S2 {X} × {e1}×{e2} = p2mm (14)
{R1, R2} × {e1}×{e2} = pmmm (19)

M1 {e1X} = p1a1 (5) (25)
{e1R1, R2} = pm2a (10) (18)
{e1R1, e1R2} = p121 (2) (12)

M12 {e1e2X} = p2111 (22)
{e1e2R1, R2} = p 21

m (7)
{e1e2R1, e1e2R2} = p1̄ (13)

M1M2 {e1R1, e2R2} = p2122 (3)
{e1e2R1, e1R2} = p11 2

a (8) (30)

M1S2 {e1X}×{e2} = p21ma (6) (26)
{e1R1, R2}×{e2} = pmma (21) (31)
{e1R1, e1R2}×{e1e2} = p11 2

m (17) (28)

M1S12 {e1X}×{e1e2} = p2aa (15)
{e1R1, R2}×{e1e2} = pmaa (20)
{e1R1, e1R2}×{e1e2} = p222 (23)

This means that for the direct derivation of G321 ⊂ G31 from the category
G1 by the use of 2-multiple antisymmetry Mackay groups are necessary the
following types of groups: G, S1, S12, S1S2, M1, M12, M1M2, M1S2, M1S12.
For the direct derivation of the symmetry groups of the category G321 by the
use of 2-multiple antisymmetry Z-groups from the category G1 are necessary
also the additional groups of the types S2, M2, M2S1, M2M1, where we need
to take a care about the intersection of the types M1M2 and M2M1.

From that follows that the 22 groups mentioned we obtain as 2-multiple
antisymmetry M -groups, and their number is 4G + 4M1 + M2. The number
of the corresponding 2-multiple antisymmetry Z-groups is 5G + 6M1 + 2M2 −
(M1M2,M2M1), where by (M1M2,M2M1) is denoted the number of the groups
belonging to the intersection of the types M1M2 and M2M1, this means, the
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number of Z-groups that by permuting anti-identities e1 and e2 are transformed
into themselves, without giving new Z-groups. That will be M -groups remaining
invariant when e1 and e2 change their places, so they will not give new Z-
groups. They can be very easily recognized from the form of the AC. In our
case, there is only one such group (3). Its AC is {e1R1, e2R2} and by the
permutation of anti-identities e1 and e2 it remains unchanged, so we obtain:
5× 2+6× 3+2× 2− 1 = 31. Certainly, this indicates the possibility of a direct
derivation of symmetry groups of the category G(r+m)(r+m−1)...(r+1)r... from the
groups of the category Gr... by using m-multiple antisymmetry Mackay groups.

As a next example of we can consider direct derivation of 4-dimensional
groups of the category G4321 from the symmetry groups of friezes G21 by using
2-multiple antisymmetry groups. For the category G21 we have: G = 7 and
M1 = 17. In order to find M2 we know that two symmetry groups of friezes
p2, pm have the AC: {A, B}. From each of them we derive two groups of the
type M2 (this means, M1M2); two symmetry groups of the friezes p1m, pmg
have the AC: {A}{B} and each of them generate three groups of the type M2;
one symmetry group of friezes pmm has the AC: {A}{B,C} and generates 13
Mackay 2-multiple antisymmetry groups of the type M2.

Hence, M2 = 2 × 2 + 2 × 3 + 13 = 23. The intersection (M1M2,M2M1)
contains four groups: two groups with the AC {e1, e2} (derived from p1m and
pmg) and two groups with the ACs {E}{e1, e2} and {e1, e2}{e1, e2} derived
from pmm, so (M1M2,M2M1) = 4. From that follows:

G4321 = 5G+6M1 +2M2− (M1M2,M2M1) = 5× 7+6× 17+2× 23− 4 = 179.

On the other hand, the groups of the category G4321 we obtain from the
category G321 by using simple antisymmetry, where G = 31, M1 = 117, and
G4321 = 2G + M1 = 2× 31 + 117 = 179, that confirms the first result.

Analogously, it is possible to consider direct derivation of the symmetry
groups of the category G432 from the category G2

2. All the results obtained
can be generalized: the number of the groups of the category G(r+2)(r+1)r...

derived directly from the category Gr... by the use of 2-multiple antisymmetry
is given by the formula: 5G + 6N1 + N2, where we are dealing with Z-groups
(M1 = N1, N2 = 2M2 − (M1M2,M2M1)). On the other hand, by the formula
4G+4M1 +M2 is given the number of the groups of the category G(r+2)(r+1)r...

derived by the use of 2-multiple antisymmetry Mackay groups and treated inside
the category G(r+2)r....

In the general case, we can calculate the number of Z-groups of the category
G(r+m)(r+m−1)...(r+1)r... by the formula:

a1G + a2N1 + ... + am−1Nm−1 + Nm,

where G is the number of generating groups, and the coefficients ai (i =
1, m− 1) are, respectively:
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m = 2 (5, 6) 5G + 6N1 + N2

m = 3 (16, 35, 14) 16G + 35N1 + 14N2 + N3

m = 4 (67, 240, 175, 30) ...
m = 5 (374, 2077, 2480, 775, 62) ...
m = 6 (2825, 2356, 4361, 22320, 3255, 126) ...

The original results from Section 3 are at the same time a comment to [1].
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[2] H. Heesch, Über die vierdimensionalen Gruppen der dreidimensionalen
Raumes, Z. Kristallogr. 73 (1930), 325–345.

[3] S.V. Jablan, Algebra of antisymmetric characteristics, Publ. Inst. Math.
47(61) (1990), 39–55.

[4] S.V. Jablan, Mackay groups, extensions of space-group theory, Acta Cryst.
A49 (1993), 132–137.

[5] A.L. Mackay, Acta Cryst. 10 (1957), 543–548.

[6] A.V. Shubnikov, N.V. Belov et all., Colored Symmetry, Pergamon, Oxford-
London-New York-Paris, 1964.

[7] A.V. Shubnikov and V.A. Koptsik, Symmetry in Science and Art, Plenum
Press, New York, London, 1974.

[8] A.M. Zamorzaev, Teoriya prostoi i kratnoi antisimmetrii, Shtiintsa,
Kishinev, 1976.

[9] A.M. Zamorzaev, Y.S. Karpova, A.P. Lungu and A.F. Palistrant, P -
simmetriya i yeyo dalneishee razvitie, Shtiintsa, Kishinev, 1986.

[10] A.M. Zamorzaev and A.F. Palistrant, Antisymmetry, its generalizations
and geometrical applications, Z. Kristallogr. 151 (1980), 231–248.

Faculty of Mechanical Engineering, University of Nǐs
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