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Abstract

In the present paper1 it is proved that the m-th permutation product
of torus T (m) is bundle over the torus T with fibre CP m−1.

1 Introduction

First we give some basic arguments concerning the permutation products on
manifolds. We assume everywhere that m > 1.

Let M be an arbitrary set. In the Cartesian product Mm we define a relation
≈ as follows

(x1, · · · , xm) ≈ (y1, · · · , ym) ⇔
there exists a permutation θ : {1, 2, · · · ,m} → {1, 2, · · · ,m} such that

yi = xθ(i) (1 ≤ i ≤ m).

This is a relation of equivalence and the class represented by (x1, · · · , xm) will
be denoted by (x1, · · · , xm)/ ≈ and the set Mm/ ≈ will be denoted by M (m).
The set M (m) is called permutation product of M . Note that some authors call
it symmetric product of M .

If M is a topological space, then M (m) is also a topological space. The space
M (m) is introduced quite early [1], but mainly it was studied in [4]. If M is an
arbitrary connected manifold and m > 1, then it is proved in [1] that

π1(M (m)) ∼= H1(M, Z).

Another important result [4] is that (Rn)(m) is a manifold only for n = 2. Indeed
it is proved that if n 6= 2 and m > 1, then the tangent space is not homeomorphic
to the Euclidean space Rnm and hence (Rn)(m) is not a manifold. If n = 2, then
(R2)(m) = C(m) is homeomorphic to Cm. Indeed, using that C is algebraically
closed field, it is obvious that the mapping ϕ : C(m) → Cm defined by

ϕ((z1, · · · , zm)/ ≈) = (σ1, σ2, · · · , σm)
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is a bijection, where σi (1 ≤ i ≤ m) is the i-th symmetric function of z1, · · · , zm,
i.e.

σi(z1, · · · , zm) =
∑

1≤j1<j2<...<ji≤m

zj1 · zj2 · · · zji
.

The mapping ϕ is also a homeomorphism. In the paper [2] it is proved that
M (m) is a complex manifold if M is 1-dimensional complex manifold. This
is essential result for the next section. For example, if M is a sphere, i.e. the
complex manifold CP 1, then M (m) is the projective complex space CPm. Using
the permutation products it is easy to see how M (m) = CPm decomposes into
disjoint cells C0, C1, · · · , Cm. Let ξ ∈ M . Then we define (x1, · · · , xm)/ ≈∈ Mi

if exactly i of the elements x1, · · · , xm are equal to ξ. Thus

M (m) = M0 ∪M1 ∪ . . . ∪Mm = (M \ ξ)(m) ∪ (M \ ξ)(m−1) ∪ · · · ∪ (M \ ξ)(0) =

= C(m) ∪ C(m−1) ∪ · · · ∪ C(0) = Cm ∪ Cm−1 ∪ · · · ∪ C0.

This theory about permutation products has an important role in the theory of
the topological commutative vector valued groups [3].

At the end of his Ph.D. thesis, Wagner [4] has proved the following theorem
concerning the permutation product T (2) of the torus T = S1 × S1.

Theorem 1.1 The permutation product T (2) is a bundle over T and fibre the
sphere S2.

In this paper we generalize this theorem, proving that the permutation prod-
uct T (m) (m > 1) is a bundle over T with fibre CPm−1.

2 Main result

Before we prove the main theorem we give some remarks which naturally yield
to the required theorem.

We will consider the set C of complex numbers as pairs of real numbers and
the complex zero will be denoted simply by 0. Let us consider the torus T as
C/Z ×Z, i.e. T = C/ ∼, where z ∼ w if and only if z−w = (u, v) for u, v ∈ Z.
Then we define a mapping ϕ : T (m) → T by ϕ((z1, · · · , zm)/ ≈) = z1 + · · ·+ zm.
It makes T (m) bundle over T and the fibre we denote by Mm−1. The dimension
of Mm−1 is 2(m − 1). In order to find the fibre, without loss of generality
we assume that ϕ((z1, · · · , zm)/ ≈) = 0. Now the fibre Mm−1 consists of all
m-tuples (z1, · · · , zm)/ ≈ where z1, · · · , zm ∈ C, such that z1 + · · ·+zm ∈ Z×Z.

Before we consider the properties of Mm−1, we consider another two close
examples.

1o. The set of all (z1, · · · , zm)/ ≈ where z1, · · · , zm ∈ C and z1 + · · ·+zm = 0
is the space Cm−1. Indeed there is a homeomorphism between such elements
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(z1, · · · , zm)/ ≈ and the (m− 1)-tuple (σ2, σ3, · · · , σm) ∈ Cm−1 where

σi(z1, · · · , zm) =
∑

1≤a1<a2···<ai≤m

za1za2 · · · zai
,

i.e. σi is the i-th symmetric function. We denote this space by Pm−1.
2o. The set of all (z1, · · · , zm)/ ≈ where z1, · · · , zm ∈ C \ {0} and z1 +

· · ·+ zm = 0 is the space Cm−2 × (C \ {0}). Indeed there is a homeomorphism
between such elements (z1, · · · , zm)/ ≈ and the (m−1)-tuple (σ2, σ3, · · · , σm) ∈
Cm−2× (C \{0}) where σi is the i-th symmetric function. We denote this space
by Qm−1. Thus Qm−1

∼= (Cm−2)× (C \ {0}).
Now let us consider some properties of Mm−1.
i) M1 is homeomorphic to the sphere S2 (theorem 1.1).
ii) The Euler characteristic of Mm−1 is m, i.e. χ(Mm−1) = m.
It is not necessary now to prove it because it is contained in the proof of the

main theorem, but we mention a method of its calculation. Mm−1 can be divided
into m2 disjoint subspaces M

(i,j)
m−1 where (0 ≤ i, j ≤ m− 1). Indeed without loss

of generality we can assume that z1, · · · , zm ∈ [0, 1)× [0, 1) and z1 + · · ·+ zm =
0 (mod Z×Z). If 1

m (z1+ · · ·+zm) = ( i
m , j

m ), i.e. if z1+ · · ·+zm = (i, j) where
0 ≤ i, j ≤ m − 1, then we define that (z1, · · · , zm)/ ≈∈ M

(i,j)
m−1. The empirical

calculation show that χ(M (i,j)
m−1) = δij . Hence we obtain

χ(Mm−1) =
m−1∑

i=0

m−1∑

j=0

χ(M (i,j)
m−1) =

m−1∑

i=0

m−1∑

j=0

δij = m.

Note that the decomposition into cells Rk here is very large and hard for com-
putation. For example the number of cells for M2 is much bigger than 100.

iii) Mm−1 is simply connected space.
In order to prove this statement, we consider a closed curve with initial and

endpoint in the space M
(i,j)
m−1 described in ii). Without loss of generality we

assume that i, j > 0. By homotopic transformation this curve is homotopic to a
curve where all the points belong to M

(i,j)
m−1. We note here that the topology of

∪M
(i,j)
m−1 is the following. If one point zi passes through a point (x, 0) (≡ (x, 1)),

then (z1, · · · , zm)/ ≈ passes from M
(p,q)
m−1 into M

(p,q+1)
m−1 or M

(p,q−1)
m−1 . Analogously

if one point zi passes through a point (0, x) (≡ (1, x)), then (z1, · · · , zm)/ ≈
passes from M

(p,q)
m−1 into M

(p+1,q)
m−1 or M

(p−1,q)
m−1 . Note that here p, q are considered

by modulo m. Further it is homotopic to the trivial curve because locally the
space is homeomorphic to Pm−1

∼= Cm−1 which is a simply connected. Hence
Mm−1 is a simply connected.

iv) Mm−1 is a complex manifold.
Note that if z1, z2, · · · are coordinates of M , where M is 1-dimensional com-

plex manifold, then the coordinates of the complex manifold M (m) in [2] were
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introduced to be the symmetric functions

σ1(z1, · · · , zm), σ2(z1, · · · , zm), · · · , σm(z1, · · · , zm).

Thus if the first coordinate is fixed, then

σ2(z1, · · · , zm), · · · , σm(z1, · · · , zm)

will be coordinates of Mm−1 and hence Mm−1 is a complex manifold because
M (m) is a complex manifold.

We verify that the complex projective spaces CPm−1 satisfy all of the pre-
vious properties.

i) S2 is homeomorphic to CP 1.
ii) χ(CPm−1) = m because CPm−1 decomposes into m disjoint cells C0 =

R0, C1 = R2, C2 = R4, · · · , Cm−1 = R2m−2 (see sect.1).
iii) π1(CPm−1) = π1((S2)(m−1)) = H1(S2, Z) = {0}, and hence CPm−1 is

a simply connected manifold.
iv) CPm−1 is a complex manifold.
Now we prove the following theorem.

Theorem 2.1 The permutation product T (m) (m > 1) is a bundle over T with
fibre CPm−1.

Proof. First we divide the set Mm−1, i.e. the set of m-tuples (z1, · · · , zm)/ ≈,
such that

∑
zi has integer coordinates, into m disjoint cells C0, C1, · · · , Cm−1,

where Ci consists of those m-tuples (z1, · · · , zm)/ ≈ where there are exactly
m − 1 − i numbers zα1 , zα2 , · · · , zαm−1−i equal to 0. Here Mm−1 is considered
as union of M

(i,j)
m−1. We will prove the following two statements.

10. Ci is simply connected space for any i ∈ {0, 1, · · · ,m− 1}.
20. Ci is homeomorphic to Ci, 0 ≤ i ≤ m− 1.
Without loss of generality we assume in the proofs of 10 and 20 that i = m−1.
The proof of 10 is the same as the proof that Mm−1 is simply connected

space. Here we should note that the homotopic set of curves (if they pass
through different cells M

(i,j)
m−1) should be chosen such that they do not pass

through the point 0.
The second statement will be proved if we show that Cm−1 is a universal

covering of a corresponding space Rm−1, whose universal covering is Cm−1. For
any fixed

(z0
1 , · · · , z0

m)/ ≈∈ Cm−1, z0
1 , · · · , z0

m 6= 0,

we consider the m-tuples (z1, · · · , zm)/ ≈, (z1, · · · , zm ∈ C), such that
a) z1 + · · ·+ zm = 0,
b) there exists a permutation τ such that zi−z0

τ(i) ∈ Z×Z, for i = 1, · · · ,m,
and make identification between (z1, · · · , zm) and (z0

1 , · · · , z0
m).
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Obviously z1, · · · , zm /∈ Z × Z. The space Rm−1 we define as the quotient
space Um−1/ρ under the previous identification, where the space Um−1 is given
by

Um−1 = {(z1, · · · , zm)/ ≈: z1, · · · , zm /∈ Z × Z, z1 + · · ·+ zm = 0},

such that the projection π : Cm−1 → Rm−1 is well defined. In order to prove
that Cm−1 is homeomorphic to Cm−1, it is sufficient to prove that the universal
covering of the above space Um−1 is homeomorphic to Cm−1.

Let
U∗

m = {(z1, · · · , zm)/ ≈: z1, · · · , zm /∈ Z × Z},
and we shall prove that the universal covering of U∗

m is Cm. Indeed, U∗
m is

homeomorphic to the permutation product X(m) where X is complex plane
without points of integer coordinates. Since the universal covering of X is C,
we obtain that the universal covering of U∗

m = X(m) is C(m) = Cm.
Now since Pm−1 (see 1o) is homeomorphic to Cm−1, we obtain that the

universal covering of Um−1 is homeomorphic to Pm−1
∼= Cm−1. Hence, Cm−1

∼=
Cm−1.

Now we are ready to finish the proof of the theorem. Note that the topology
of the union Mm−1 = C0 ∪ C1 ∪ · · · ∪ Cm−1 is the following. Let

(z1, · · · , zi, 0, · · · , 0)/ ≈∈ Ci, (z1, · · · , zi 6= 0).

If s of the nonzero points z1, · · · , zi tend to zero, then (z1, · · · , zi, 0, · · · , 0)/ ≈ is
close to the cell Ci−s. This topology of Mm−1 = C0∪C1∪· · ·∪Cm−1 is just the
same as the topology of the decomposition (S2)(m−1) = C0 ∪ C1 ∪ · · · ∪ Cm−1

from section 1. Since (S2)(m−1) ∼= CPm−1, the proof of the theorem is finished.

Note that the fibre CPm−1 = (S2)(m−1) is also a permutation product. In [4]
Wagner has proved also that T (2) is a non-trivial bundle over T , i.e. that T (2) is
not homeomorphic to T×S2, by proving that these two manifolds have different
cohomology algebras, although they have the same homology and cohomology
modules and the first homotopy groups.
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