On the permutation products of torus

Kostadin Trenčevski

Abstract

In the present paper ${ }^{1}$ it is proved that the m-th permutation product of torus $T^{(m)}$ is bundle over the torus T with fibre $C P^{m-1}$.

1 Introduction

First we give some basic arguments concerning the permutation products on manifolds. We assume everywhere that $m>1$.

Let M be an arbitrary set. In the Cartesian product M^{m} we define a relation \approx as follows

$$
\left(x_{1}, \cdots, x_{m}\right) \approx\left(y_{1}, \cdots, y_{m}\right) \Leftrightarrow
$$

there exists a permutation $\theta:\{1,2, \cdots, m\} \rightarrow\{1,2, \cdots, m\}$ such that

$$
y_{i}=x_{\theta(i)} \quad(1 \leq i \leq m)
$$

This is a relation of equivalence and the class represented by $\left(x_{1}, \cdots, x_{m}\right)$ will be denoted by $\left(x_{1}, \cdots, x_{m}\right) / \approx$ and the set M^{m} / \approx will be denoted by $M^{(m)}$. The set $M^{(m)}$ is called permutation product of M. Note that some authors call it symmetric product of M.

If M is a topological space, then $M^{(m)}$ is also a topological space. The space $M^{(m)}$ is introduced quite early [1], but mainly it was studied in [4]. If M is an arbitrary connected manifold and $m>1$, then it is proved in [1] that

$$
\pi_{1}\left(M^{(m)}\right) \cong H_{1}(M, Z)
$$

Another important result [4] is that $\left(R^{n}\right)^{(m)}$ is a manifold only for $n=2$. Indeed it is proved that if $n \neq 2$ and $m>1$, then the tangent space is not homeomorphic to the Euclidean space $R^{n m}$ and hence $\left(R^{n}\right)^{(m)}$ is not a manifold. If $n=2$, then $\left(R^{2}\right)^{(m)}=C^{(m)}$ is homeomorphic to C^{m}. Indeed, using that C is algebraically closed field, it is obvious that the mapping $\varphi: C^{(m)} \rightarrow C^{m}$ defined by

$$
\varphi\left(\left(z_{1}, \cdots, z_{m}\right) / \approx\right)=\left(\sigma_{1}, \sigma_{2}, \cdots, \sigma_{m}\right)
$$

[^0]is a bijection, where $\sigma_{i}(1 \leq i \leq m)$ is the i-th symmetric function of z_{1}, \cdots, z_{m}, i.e.
$$
\sigma_{i}\left(z_{1}, \cdots, z_{m}\right)=\sum_{1 \leq j_{1}<j_{2}<\ldots<j_{i} \leq m} z_{j_{1}} \cdot z_{j_{2}} \cdots z_{j_{i}}
$$

The mapping φ is also a homeomorphism. In the paper [2] it is proved that $M^{(m)}$ is a complex manifold if M is 1-dimensional complex manifold. This is essential result for the next section. For example, if M is a sphere, i.e. the complex manifold $C P^{1}$, then $M^{(m)}$ is the projective complex space $C P^{m}$. Using the permutation products it is easy to see how $M^{(m)}=C P^{m}$ decomposes into disjoint cells $C^{0}, C^{1}, \cdots, C^{m}$. Let $\xi \in M$. Then we define $\left(x_{1}, \cdots, x_{m}\right) / \approx \in M_{i}$ if exactly i of the elements x_{1}, \cdots, x_{m} are equal to ξ. Thus

$$
\begin{gathered}
M^{(m)}=M_{0} \cup M_{1} \cup \ldots \cup M_{m}=(M \backslash \xi)^{(m)} \cup(M \backslash \xi)^{(m-1)} \cup \cdots \cup(M \backslash \xi)^{(0)}= \\
=C^{(m)} \cup C^{(m-1)} \cup \cdots \cup C^{(0)}=C^{m} \cup C^{m-1} \cup \cdots \cup C^{0}
\end{gathered}
$$

This theory about permutation products has an important role in the theory of the topological commutative vector valued groups [3].

At the end of his Ph.D. thesis, Wagner [4] has proved the following theorem concerning the permutation product $T^{(2)}$ of the torus $T=S^{1} \times S^{1}$.

Theorem 1.1 The permutation product $T^{(2)}$ is a bundle over T and fibre the sphere S^{2}.

In this paper we generalize this theorem, proving that the permutation product $T^{(m)}(m>1)$ is a bundle over T with fibre $C P^{m-1}$.

2 Main result

Before we prove the main theorem we give some remarks which naturally yield to the required theorem.

We will consider the set C of complex numbers as pairs of real numbers and the complex zero will be denoted simply by 0 . Let us consider the torus T as $C / Z \times Z$, i.e. $T=C / \sim$, where $z \sim w$ if and only if $z-w=(u, v)$ for $u, v \in Z$. Then we define a mapping $\varphi: T^{(m)} \rightarrow T$ by $\varphi\left(\left(z_{1}, \cdots, z_{m}\right) / \approx\right)=z_{1}+\cdots+z_{m}$. It makes $T^{(m)}$ bundle over T and the fibre we denote by M_{m-1}. The dimension of M_{m-1} is $2(m-1)$. In order to find the fibre, without loss of generality we assume that $\varphi\left(\left(z_{1}, \cdots, z_{m}\right) / \approx\right)=0$. Now the fibre M_{m-1} consists of all m-tuples $\left(z_{1}, \cdots, z_{m}\right) / \approx$ where $z_{1}, \cdots, z_{m} \in C$, such that $z_{1}+\cdots+z_{m} \in Z \times Z$.

Before we consider the properties of M_{m-1}, we consider another two close examples.
1^{o}. The set of all $\left(z_{1}, \cdots, z_{m}\right) / \approx$ where $z_{1}, \cdots, z_{m} \in C$ and $z_{1}+\cdots+z_{m}=0$ is the space C^{m-1}. Indeed there is a homeomorphism between such elements
$\left(z_{1}, \cdots, z_{m}\right) / \approx$ and the $(m-1)$-tuple $\left(\sigma_{2}, \sigma_{3}, \cdots, \sigma_{m}\right) \in C^{m-1}$ where

$$
\sigma_{i}\left(z_{1}, \cdots, z_{m}\right)=\sum_{1 \leq a_{1}<a_{2} \cdots<a_{i} \leq m} z_{a_{1}} z_{a_{2}} \cdots z_{a_{i}}
$$

i.e. σ_{i} is the i-th symmetric function. We denote this space by P_{m-1}.
2^{o}. The set of all $\left(z_{1}, \cdots, z_{m}\right) / \approx$ where $z_{1}, \cdots, z_{m} \in C \backslash\{0\}$ and $z_{1}+$ $\cdots+z_{m}=0$ is the space $C^{m-2} \times(C \backslash\{0\})$. Indeed there is a homeomorphism between such elements $\left(z_{1}, \cdots, z_{m}\right) / \approx$ and the $(m-1)$-tuple $\left(\sigma_{2}, \sigma_{3}, \cdots, \sigma_{m}\right) \in$ $C^{m-2} \times(C \backslash\{0\})$ where σ_{i} is the i-th symmetric function. We denote this space by Q_{m-1}. Thus $Q_{m-1} \cong\left(C^{m-2}\right) \times(C \backslash\{0\})$.

Now let us consider some properties of M_{m-1}.
i) M_{1} is homeomorphic to the sphere S^{2} (theorem 1.1).
ii) The Euler characteristic of M_{m-1} is m, i.e. $\chi\left(M_{m-1}\right)=m$.

It is not necessary now to prove it because it is contained in the proof of the main theorem, but we mention a method of its calculation. M_{m-1} can be divided into m^{2} disjoint subspaces $M_{m-1}^{(i, j)}$ where $(0 \leq i, j \leq m-1)$. Indeed without loss of generality we can assume that $z_{1}, \cdots, z_{m} \in[0,1) \times[0,1)$ and $z_{1}+\cdots+z_{m}=$ $0(\bmod Z \times Z)$. If $\frac{1}{m}\left(z_{1}+\cdots+z_{m}\right)=\left(\frac{i}{m}, \frac{j}{m}\right)$, i.e. if $z_{1}+\cdots+z_{m}=(i, j)$ where $0 \leq i, j \leq m-1$, then we define that $\left(z_{1}, \cdots, z_{m}\right) / \approx \in M_{m-1}^{(i, j)}$. The empirical calculation show that $\chi\left(M_{m-1}^{(i, j)}\right)=\delta_{i j}$. Hence we obtain

$$
\chi\left(M_{m-1}\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \chi\left(M_{m-1}^{(i, j)}\right)=\sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \delta_{i j}=m
$$

Note that the decomposition into cells R^{k} here is very large and hard for computation. For example the number of cells for M_{2} is much bigger than 100 .
iii) M_{m-1} is simply connected space.

In order to prove this statement, we consider a closed curve with initial and endpoint in the space $M_{m-1}^{(i, j)}$ described in ii). Without loss of generality we assume that $i, j>0$. By homotopic transformation this curve is homotopic to a curve where all the points belong to $M_{m-1}^{(i, j)}$. We note here that the topology of $\cup M_{m-1}^{(i, j)}$ is the following. If one point z_{i} passes through a point $(x, 0)(\equiv(x, 1))$, then $\left(z_{1}, \cdots, z_{m}\right) / \approx$ passes from $M_{m-1}^{(p, q)}$ into $M_{m-1}^{(p, q+1)}$ or $M_{m-1}^{(p, q-1)}$. Analogously if one point z_{i} passes through a point $(0, x)(\equiv(1, x))$, then $\left(z_{1}, \cdots, z_{m}\right) / \approx$ passes from $M_{m-1}^{(p, q)}$ into $M_{m-1}^{(p+1, q)}$ or $M_{m-1}^{(p-1, q)}$. Note that here p, q are considered by modulo m. Further it is homotopic to the trivial curve because locally the space is homeomorphic to $P_{m-1} \cong C^{m-1}$ which is a simply connected. Hence M_{m-1} is a simply connected.
iv) M_{m-1} is a complex manifold.

Note that if z_{1}, z_{2}, \cdots are coordinates of M, where M is 1 -dimensional complex manifold, then the coordinates of the complex manifold $M^{(m)}$ in [2] were
introduced to be the symmetric functions

$$
\sigma_{1}\left(z_{1}, \cdots, z_{m}\right), \sigma_{2}\left(z_{1}, \cdots, z_{m}\right), \cdots, \sigma_{m}\left(z_{1}, \cdots, z_{m}\right) .
$$

Thus if the first coordinate is fixed, then

$$
\sigma_{2}\left(z_{1}, \cdots, z_{m}\right), \cdots, \sigma_{m}\left(z_{1}, \cdots, z_{m}\right)
$$

will be coordinates of M_{m-1} and hence M_{m-1} is a complex manifold because $M^{(m)}$ is a complex manifold.

We verify that the complex projective spaces $C P^{m-1}$ satisfy all of the previous properties.
i) S^{2} is homeomorphic to $C P^{1}$.
ii) $\chi\left(C P^{m-1}\right)=m$ because $C P^{m-1}$ decomposes into m disjoint cells $C^{0}=$ $R^{0}, C^{1}=R^{2}, C^{2}=R^{4}, \cdots, C^{m-1}=R^{2 m-2}$ (see sect.1).
iii) $\pi_{1}\left(C P^{m-1}\right)=\pi_{1}\left(\left(S^{2}\right)^{(m-1)}\right)=H_{1}\left(S^{2}, Z\right)=\{0\}$, and hence $C P^{m-1}$ is a simply connected manifold.
iv) $C P^{m-1}$ is a complex manifold.

Now we prove the following theorem.
Theorem 2.1 The permutation product $T^{(m)}(m>1)$ is a bundle over T with fibre $C P^{m-1}$.

Proof. First we divide the set M_{m-1}, i.e. the set of m-tuples $\left(z_{1}, \cdots, z_{m}\right) / \approx$, such that $\sum z_{i}$ has integer coordinates, into m disjoint cells $C_{0}, C_{1}, \cdots, C_{m-1}$, where C_{i} consists of those m-tuples $\left(z_{1}, \cdots, z_{m}\right) / \approx$ where there are exactly $m-1-i$ numbers $z_{\alpha_{1}}, z_{\alpha_{2}}, \cdots, z_{\alpha_{m-1-i}}$ equal to 0 . Here M_{m-1} is considered as union of $M_{m-1}^{(i, j)}$. We will prove the following two statements.
$1^{0} . C_{i}$ is simply connected space for any $i \in\{0,1, \cdots, m-1\}$.
$2^{0} . C_{i}$ is homeomorphic to $C^{i}, 0 \leq i \leq m-1$.
Without loss of generality we assume in the proofs of 1^{0} and 2^{0} that $i=m-1$.
The proof of 1^{0} is the same as the proof that M_{m-1} is simply connected space. Here we should note that the homotopic set of curves (if they pass through different cells $\left.M_{m-1}^{(i, j)}\right)$ should be chosen such that they do not pass through the point 0 .

The second statement will be proved if we show that C_{m-1} is a universal covering of a corresponding space R_{m-1}, whose universal covering is C^{m-1}. For any fixed

$$
\left(z_{1}^{0}, \cdots, z_{m}^{0}\right) / \approx \in C_{m-1}, \quad z_{1}^{0}, \cdots, z_{m}^{0} \neq 0,
$$

we consider the m-tuples $\left(z_{1}, \cdots, z_{m}\right) / \approx,\left(z_{1}, \cdots, z_{m} \in C\right)$, such that
a) $z_{1}+\cdots+z_{m}=0$,
b) there exists a permutation τ such that $z_{i}-z_{\tau(i)}^{0} \in Z \times Z$, for $i=1, \cdots, m$, and make identification between $\left(z_{1}, \cdots, z_{m}\right)$ and $\left(z_{1}^{0}, \cdots, z_{m}^{0}\right)$.

Obviously $z_{1}, \cdots, z_{m} \notin Z \times Z$. The space R_{m-1} we define as the quotient space U_{m-1} / ρ under the previous identification, where the space U_{m-1} is given by

$$
U_{m-1}=\left\{\left(z_{1}, \cdots, z_{m}\right) / \approx: z_{1}, \cdots, z_{m} \notin Z \times Z, z_{1}+\cdots+z_{m}=0\right\}
$$

such that the projection $\pi: C_{m-1} \rightarrow R_{m-1}$ is well defined. In order to prove that C_{m-1} is homeomorphic to C^{m-1}, it is sufficient to prove that the universal covering of the above space U_{m-1} is homeomorphic to C^{m-1}.

Let

$$
U_{m}^{*}=\left\{\left(z_{1}, \cdots, z_{m}\right) / \approx: z_{1}, \cdots, z_{m} \notin Z \times Z\right\}
$$

and we shall prove that the universal covering of U_{m}^{*} is C^{m}. Indeed, U_{m}^{*} is homeomorphic to the permutation product $X^{(m)}$ where X is complex plane without points of integer coordinates. Since the universal covering of X is C, we obtain that the universal covering of $U_{m}^{*}=X^{(m)}$ is $C^{(m)}=C^{m}$.

Now since $P_{m-1}\left(\right.$ see $\left.1^{o}\right)$ is homeomorphic to C^{m-1}, we obtain that the universal covering of U_{m-1} is homeomorphic to $P_{m-1} \cong C^{m-1}$. Hence, $C_{m-1} \cong$ C^{m-1}.

Now we are ready to finish the proof of the theorem. Note that the topology of the union $M_{m-1}=C_{0} \cup C_{1} \cup \cdots \cup C_{m-1}$ is the following. Let

$$
\left(z_{1}, \cdots, z_{i}, 0, \cdots, 0\right) / \approx \in C_{i}, \quad\left(z_{1}, \cdots, z_{i} \neq 0\right)
$$

If s of the nonzero points z_{1}, \cdots, z_{i} tend to zero, then $\left(z_{1}, \cdots, z_{i}, 0, \cdots, 0\right) / \approx$ is close to the cell C_{i-s}. This topology of $M_{m-1}=C_{0} \cup C_{1} \cup \cdots \cup C_{m-1}$ is just the same as the topology of the decomposition $\left(S^{2}\right)^{(m-1)}=C^{0} \cup C^{1} \cup \cdots \cup C^{m-1}$ from section 1. Since $\left(S^{2}\right)^{(m-1)} \cong C P^{m-1}$, the proof of the theorem is finished.

Note that the fibre $C P^{m-1}=\left(S^{2}\right)^{(m-1)}$ is also a permutation product. In [4] Wagner has proved also that $T^{(2)}$ is a non-trivial bundle over T, i.e. that $T^{(2)}$ is not homeomorphic to $T \times S^{2}$, by proving that these two manifolds have different cohomology algebras, although they have the same homology and cohomology modules and the first homotopy groups.

References

[1] P.A. Smith, The topology of involutions, Proc. Nat. Acad. Sci., 19 (1933), 612-618.
[2] K. Trenčevski, Permutation products of 1-dimensional complex manifolds, Contributions - Sect. Math. Techn. Sci., MANU XX:1-2 (1999), 29-37.
[3] K. Trenčevski and D. Dimovski, Complex Commutative Vector Valued Groups, Macedonian Academy of Sciences and Arts, 1992.
[4] C.H. Wagner, Symmetric, cyclic and permutation products of manifolds, Dissert. Math. (Rozrawy Math.) 182 (1980), 3-48.

Institute of Mathematics
St. Cyril and Methodius University
P.O.Box 162

1000 Skopje, Macedonia
kostatre@iunona.pmf.ukim.edu.mk

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001 2000 Mathematics Subject Classification: 55R10
 Keywords: Permutation product, torus, complex projective space

