On the permutation products of torus

Kostadin Trenčevski

Abstract

In the present paper¹ it is proved that the *m*-th permutation product of torus $T^{(m)}$ is bundle over the torus T with fibre CP^{m-1} .

1 Introduction

First we give some basic arguments concerning the permutation products on manifolds. We assume everywhere that m > 1.

Let M be an arbitrary set. In the Cartesian product M^m we define a relation \approx as follows

$$(x_1, \cdots, x_m) \approx (y_1, \cdots, y_m) \Leftrightarrow$$

there exists a permutation $\theta: \{1, 2, \dots, m\} \to \{1, 2, \dots, m\}$ such that

$$y_i = x_{\theta(i)} \qquad (1 \le i \le m).$$

This is a relation of equivalence and the class represented by (x_1, \dots, x_m) will be denoted by $(x_1, \dots, x_m) / \approx$ and the set M^m / \approx will be denoted by $M^{(m)}$. The set $M^{(m)}$ is called *permutation product* of M. Note that some authors call it symmetric product of M.

If M is a topological space, then $M^{(m)}$ is also a topological space. The space $M^{(m)}$ is introduced quite early [1], but mainly it was studied in [4]. If M is an arbitrary connected manifold and m > 1, then it is proved in [1] that

$$\pi_1(M^{(m)}) \cong H_1(M, Z).$$

Another important result [4] is that $(R^n)^{(m)}$ is a manifold only for n = 2. Indeed it is proved that if $n \neq 2$ and m > 1, then the tangent space is not homeomorphic to the Euclidean space R^{nm} and hence $(R^n)^{(m)}$ is not a manifold. If n = 2, then $(R^2)^{(m)} = C^{(m)}$ is homeomorphic to C^m . Indeed, using that C is algebraically closed field, it is obvious that the mapping $\varphi : C^{(m)} \to C^m$ defined by

$$\varphi((z_1,\cdots,z_m)/\approx) = (\sigma_1,\sigma_2,\cdots,\sigma_m)$$

¹Presented at the IMC "Filomat 2001", Niš, August 26–30, 2001 2000 Mathematics Subject Classification: 55R10

Keywords: Permutation product, torus, complex projective space

is a bijection, where σ_i $(1 \le i \le m)$ is the *i*-th symmetric function of z_1, \dots, z_m , i.e.

$$\sigma_i(z_1,\cdots,z_m) = \sum_{1 \le j_1 < j_2 < \cdots < j_i \le m} z_{j_1} \cdot z_{j_2} \cdots z_{j_i}$$

The mapping φ is also a homeomorphism. In the paper [2] it is proved that $M^{(m)}$ is a complex manifold if M is 1-dimensional complex manifold. This is essential result for the next section. For example, if M is a sphere, i.e. the complex manifold CP^1 , then $M^{(m)}$ is the projective complex space CP^m . Using the permutation products it is easy to see how $M^{(m)} = CP^m$ decomposes into disjoint cells C^0, C^1, \dots, C^m . Let $\xi \in M$. Then we define $(x_1, \dots, x_m)/\approx M_i$ if exactly i of the elements x_1, \dots, x_m are equal to ξ . Thus

$$M^{(m)} = M_0 \cup M_1 \cup \ldots \cup M_m = (M \setminus \xi)^{(m)} \cup (M \setminus \xi)^{(m-1)} \cup \cdots \cup (M \setminus \xi)^{(0)} =$$
$$= C^{(m)} \cup C^{(m-1)} \cup \cdots \cup C^{(0)} = C^m \cup C^{m-1} \cup \cdots \cup C^0.$$

This theory about permutation products has an important role in the theory of the topological commutative vector valued groups [3].

At the end of his Ph.D. thesis, Wagner [4] has proved the following theorem concerning the permutation product $T^{(2)}$ of the torus $T = S^1 \times S^1$.

Theorem 1.1 The permutation product $T^{(2)}$ is a bundle over T and fibre the sphere S^2 .

In this paper we generalize this theorem, proving that the permutation product $T^{(m)}$ (m > 1) is a bundle over T with fibre CP^{m-1} .

2 Main result

Before we prove the main theorem we give some remarks which naturally yield to the required theorem.

We will consider the set C of complex numbers as pairs of real numbers and the complex zero will be denoted simply by 0. Let us consider the torus T as $C/Z \times Z$, i.e. $T = C/\sim$, where $z \sim w$ if and only if z - w = (u, v) for $u, v \in Z$. Then we define a mapping $\varphi: T^{(m)} \to T$ by $\varphi((z_1, \dots, z_m)/\approx) = z_1 + \dots + z_m$. It makes $T^{(m)}$ bundle over T and the fibre we denote by M_{m-1} . The dimension of M_{m-1} is 2(m-1). In order to find the fibre, without loss of generality we assume that $\varphi((z_1, \dots, z_m)/\approx) = 0$. Now the fibre M_{m-1} consists of all m-tuples $(z_1, \dots, z_m)/\approx$ where $z_1, \dots, z_m \in C$, such that $z_1 + \dots + z_m \in Z \times Z$.

Before we consider the properties of M_{m-1} , we consider another two close examples.

1°. The set of all $(z_1, \dots, z_m) / \approx$ where $z_1, \dots, z_m \in C$ and $z_1 + \dots + z_m = 0$ is the space C^{m-1} . Indeed there is a homeomorphism between such elements

On the permutation products of torus

 $(z_1, \dots, z_m)/\approx$ and the (m-1)-tuple $(\sigma_2, \sigma_3, \dots, \sigma_m) \in C^{m-1}$ where

$$\sigma_i(z_1,\cdots,z_m) = \sum_{1 \le a_1 < a_2 \cdots < a_i \le m} z_{a_1} z_{a_2} \cdots z_{a_i},$$

i.e. σ_i is the *i*-th symmetric function. We denote this space by P_{m-1} .

2°. The set of all $(z_1, \dots, z_m) \approx$ where $z_1, \dots, z_m \in C \setminus \{0\}$ and $z_1 + \dots + z_m = 0$ is the space $C^{m-2} \times (C \setminus \{0\})$. Indeed there is a homeomorphism between such elements $(z_1, \dots, z_m) \approx$ and the (m-1)-tuple $(\sigma_2, \sigma_3, \dots, \sigma_m) \in C^{m-2} \times (C \setminus \{0\})$ where σ_i is the *i*-th symmetric function. We denote this space by Q_{m-1} . Thus $Q_{m-1} \cong (C^{m-2}) \times (C \setminus \{0\})$.

Now let us consider some properties of M_{m-1} .

- i) M_1 is homeomorphic to the sphere S^2 (theorem 1.1).
- ii) The Euler characteristic of M_{m-1} is m, i.e. $\chi(M_{m-1}) = m$.

It is not necessary now to prove it because it is contained in the proof of the main theorem, but we mention a method of its calculation. M_{m-1} can be divided into m^2 disjoint subspaces $M_{m-1}^{(i,j)}$ where $(0 \le i, j \le m-1)$. Indeed without loss of generality we can assume that $z_1, \dots, z_m \in [0, 1) \times [0, 1)$ and $z_1 + \dots + z_m = 0 \pmod{Z \times Z}$. If $\frac{1}{m}(z_1 + \dots + z_m) = (\frac{i}{m}, \frac{j}{m})$, i.e. if $z_1 + \dots + z_m = (i, j)$ where $0 \le i, j \le m-1$, then we define that $(z_1, \dots, z_m) / \approx M_{m-1}^{(i,j)}$. The empirical calculation show that $\chi(M_{m-1}^{(i,j)}) = \delta_{ij}$. Hence we obtain

$$\chi(M_{m-1}) = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \chi(M_{m-1}^{(i,j)}) = \sum_{i=0}^{m-1} \sum_{j=0}^{m-1} \delta_{ij} = m.$$

Note that the decomposition into cells R^k here is very large and hard for computation. For example the number of cells for M_2 is much bigger than 100.

iii) M_{m-1} is simply connected space.

In order to prove this statement, we consider a closed curve with initial and endpoint in the space $M_{m-1}^{(i,j)}$ described in ii). Without loss of generality we assume that i, j > 0. By homotopic transformation this curve is homotopic to a curve where all the points belong to $M_{m-1}^{(i,j)}$. We note here that the topology of $\cup M_{m-1}^{(i,j)}$ is the following. If one point z_i passes through a point $(x, 0) \ (\equiv (x, 1))$, then $(z_1, \dots, z_m) / \approx$ passes from $M_{m-1}^{(p,q)}$ into $M_{m-1}^{(p,q+1)}$ or $M_{m-1}^{(p,q-1)}$. Analogously if one point z_i passes through a point $(0, x) \ (\equiv (1, x))$, then $(z_1, \dots, z_m) / \approx$ passes from $M_{m-1}^{(p,q)}$ into $M_{m-1}^{(p+1,q)}$ or $M_{m-1}^{(p-1,q)}$. Note that here p, q are considered by modulo m. Further it is homotopic to the trivial curve because locally the space is homeomorphic to $P_{m-1} \cong C^{m-1}$ which is a simply connected. Hence M_{m-1} is a simply connected.

iv) M_{m-1} is a complex manifold.

Note that if z_1, z_2, \cdots are coordinates of M, where M is 1-dimensional complex manifold, then the coordinates of the complex manifold $M^{(m)}$ in [2] were

introduced to be the symmetric functions

 $\sigma_1(z_1,\cdots,z_m), \sigma_2(z_1,\cdots,z_m),\cdots,\sigma_m(z_1,\cdots,z_m).$

Thus if the first coordinate is fixed, then

 $\sigma_2(z_1,\cdots,z_m),\cdots,\sigma_m(z_1,\cdots,z_m)$

will be coordinates of M_{m-1} and hence M_{m-1} is a complex manifold because $M^{(m)}$ is a complex manifold.

We verify that the complex projective spaces CP^{m-1} satisfy all of the previous properties.

i) S^2 is homeomorphic to CP^1 .

ii) $\chi(CP^{m-1}) = m$ because CP^{m-1} decomposes into m disjoint cells $C^0 = R^0, C^1 = R^2, C^2 = R^4, \cdots, C^{m-1} = R^{2m-2}$ (see sect.1).

iii) $\pi_1(CP^{m-1}) = \pi_1((S^2)^{(m-1)}) = H_1(S^2, Z) = \{0\}$, and hence CP^{m-1} is a simply connected manifold.

iv) CP^{m-1} is a complex manifold.

Now we prove the following theorem.

Theorem 2.1 The permutation product $T^{(m)}$ (m > 1) is a bundle over T with fibre CP^{m-1} .

Proof. First we divide the set M_{m-1} , i.e. the set of *m*-tuples $(z_1, \dots, z_m) / \approx$, such that $\sum z_i$ has integer coordinates, into *m* disjoint cells C_0, C_1, \dots, C_{m-1} , where C_i consists of those *m*-tuples $(z_1, \dots, z_m) / \approx$ where there are exactly m-1-i numbers $z_{\alpha_1}, z_{\alpha_2}, \dots, z_{\alpha_{m-1-i}}$ equal to 0. Here M_{m-1} is considered as union of $M_{m-1}^{(i,j)}$. We will prove the following two statements.

1⁰. C_i is simply connected space for any $i \in \{0, 1, \dots, m-1\}$.

2⁰. C_i is homeomorphic to C^i , $0 \le i \le m - 1$.

Without loss of generality we assume in the proofs of 1^0 and 2^0 that i = m-1.

The proof of 1^0 is the same as the proof that M_{m-1} is simply connected space. Here we should note that the homotopic set of curves (if they pass through different cells $M_{m-1}^{(i,j)}$) should be chosen such that they do not pass through the point 0.

The second statement will be proved if we show that C_{m-1} is a universal covering of a corresponding space R_{m-1} , whose universal covering is C^{m-1} . For any fixed

 $(z_1^0, \cdots, z_m^0) / \approx \in C_{m-1}, \qquad z_1^0, \cdots, z_m^0 \neq 0,$

we consider the *m*-tuples $(z_1, \dots, z_m) / \approx, (z_1, \dots, z_m \in C)$, such that

a) $z_1 + \dots + z_m = 0$,

b) there exists a permutation τ such that $z_i - z_{\tau(i)}^0 \in Z \times Z$, for $i = 1, \dots, m$, and make identification between (z_1, \dots, z_m) and (z_1^0, \dots, z_m^0) .

194

On the permutation products of torus

Obviously $z_1, \dots, z_m \notin Z \times Z$. The space R_{m-1} we define as the quotient space U_{m-1}/ρ under the previous identification, where the space U_{m-1} is given by

$$U_{m-1} = \{ (z_1, \cdots, z_m) / \approx: z_1, \cdots, z_m \notin Z \times Z, \ z_1 + \cdots + z_m = 0 \},\$$

such that the projection $\pi: C_{m-1} \to R_{m-1}$ is well defined. In order to prove that C_{m-1} is homeomorphic to C^{m-1} , it is sufficient to prove that the universal covering of the above space U_{m-1} is homeomorphic to C^{m-1} .

Let

$$U_m^* = \{(z_1, \cdots, z_m) / \approx: z_1, \cdots, z_m \notin Z \times Z\},\$$

and we shall prove that the universal covering of U_m^* is C^m . Indeed, U_m^* is homeomorphic to the permutation product $X^{(m)}$ where X is complex plane without points of integer coordinates. Since the universal covering of X is C, we obtain that the universal covering of $U_m^* = X^{(m)}$ is $C^{(m)} = C^m$. Now since P_{m-1} (see 1°) is homeomorphic to C^{m-1} , we obtain that the

Now since P_{m-1} (see 1°) is homeomorphic to C^{m-1} , we obtain that the universal covering of U_{m-1} is homeomorphic to $P_{m-1} \cong C^{m-1}$. Hence, $C_{m-1} \cong C^{m-1}$.

Now we are ready to finish the proof of the theorem. Note that the topology of the union $M_{m-1} = C_0 \cup C_1 \cup \cdots \cup C_{m-1}$ is the following. Let

$$(z_1, \cdots, z_i, 0, \cdots, 0) / \approx \in C_i, \qquad (z_1, \cdots, z_i \neq 0).$$

If s of the nonzero points z_1, \dots, z_i tend to zero, then $(z_1, \dots, z_i, 0, \dots, 0)/\approx$ is close to the cell C_{i-s} . This topology of $M_{m-1} = C_0 \cup C_1 \cup \dots \cup C_{m-1}$ is just the same as the topology of the decomposition $(S^2)^{(m-1)} = C^0 \cup C^1 \cup \dots \cup C^{m-1}$ from section 1. Since $(S^2)^{(m-1)} \cong CP^{m-1}$, the proof of the theorem is finished.

Note that the fibre $CP^{m-1} = (S^2)^{(m-1)}$ is also a permutation product. In [4] Wagner has proved also that $T^{(2)}$ is a non-trivial bundle over T, i.e. that $T^{(2)}$ is not homeomorphic to $T \times S^2$, by proving that these two manifolds have different cohomology algebras, although they have the same homology and cohomology modules and the first homotopy groups.

References

- P.A. Smith, The topology of involutions, Proc. Nat. Acad. Sci., 19 (1933), 612–618.
- [2] K. Trenčevski, Permutation products of 1-dimensional complex manifolds, Contributions - Sect. Math. Techn. Sci., MANU XX:1-2 (1999), 29–37.

- [3] K. Trenčevski and D. Dimovski, *Complex Commutative Vector Valued Groups*, Macedonian Academy of Sciences and Arts, 1992.
- [4] C.H. Wagner, Symmetric, cyclic and permutation products of manifolds, Dissert. Math. (Rozrawy Math.) 182 (1980), 3–48.

Institute of Mathematics St. Cyril and Methodius University P.O.Box 162 1000 Skopje, Macedonia kostatre@iunona.pmf.ukim.edu.mk