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Abstract

Appropriate assumptions on a family of unbounded linear operators
in a Banach space E ensure that this family forms integrated semigroups
on a suitable net of subspaces of E. The structure of such family analized.
Infinitesimal generator related to this family is analyzed. Hille-Yosida type
theorems are give for an operator determining an integrated semigroup of
unbounded linear operators.

0 Introduction

Arendt invented in [1] and [2] a class of so called integrated semigroups. Since
then a huge number of paper has been devoted to the analysis of this class
(cf. [3], [5], [6], [9], [15], [16], [19]) as well as of some classes of distribution
semigroups ([3], [14], [20]). On the other hand, Huges [8] studied families of
unbounded linear operators on a Banach space E generating C0-semigroups on
a suitable nested family of subspaces of E.

In this paper1 we are interested in a family of unbounded linear operator
(S(t))t≥0 forming integrated semigroups on a nested family of subspaces of E.
The significance of the theory of integrated semigroups lies in the fact that their
infinitesimal generators need not to be densely defined. This is the main mo-
tivation of our investigations. Moreover, the composition low for an integrated
semigroup and the fact S(0)x = 0, x ∈ E make the theory more complex than
in the case of C0-semigroups. The construction of a nested family Eω, ω > 0
demands assumptions on (S(t))t≥0 which enable us to develope in Section 1 and
2 the similar theory as in [8], related to the structure of basic space and infinites-
imal generators Aω, ω > 0. Example 1 illustrates our approach. We emphasize
that (S(t))t≥0 forms integrated semigroups on every Eω, ω > 0 while in the
case of a semigroup of unbounded linear operators forms of C0-semigroups the
domain in every Eω, ω > 0, has to be shrinked.

1Presented at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
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Hille-Yosida theorems reflect the differences between assumptions related
to the infinitesimal generator A generating integrated semigroups on a nested
family of Banach spaces and assumptions on A generating C0-semigroups on a
nested family of Banach spaces ([8]). We characterize in Section 2 operators A
defined families of unbounded linear operators forming integrated semigroups of
bounded linear operators on suitable domains. The fact that operators Aω, ω >
0, need not to be densely defined enable us to formulate conditions in Theorem 7
which are considerably different from assumptions in the corresponding Theorem
2.27 of [8]. It implies that we can develop the theory of integrated semigroup of
unbounded linear operators startings with Banach spaces Eω and thus, without
assumptions (1) and (2) which were the main assumptions of Sections 1-2. But
in order to compare the integrated semigroup determined by A and the most
extended integrated semigroup which can be constructed by the procedure of
Sections 1-2, one has to assume assumptions which can be compared with the
ones in cited theorem in [8]. Moreover, one has to prove a theorem on ”maximal
unicity” similary as in [8]. We note that in Theorem 8 we exclude the condition:
For x ∈ Dω, ‖λR(λ)x − x‖Rω → 0, λ → ∞ appearing in [8] Theorem 2.27,
condition (ii) and which is superflous.

1 Integrated semigroup of unbounded operators

Let (S(t)t≥0 be a family of unbounded linear operators in a Banach space (E, ‖·
‖). Denote by D(S(t)) a domain of S(t) and define a set D to consist of elements
x ∈ ⋂

s,t≥0 D(S(s)S(t)) such that the following condition hold:
(i) S(0)x = 0, t → S(t)x, t ∈ [0,∞) is strongly continuous,

(ii) S(s)S(t)x =
s∫
0

(S(r + t)− S(r))xdr = S(t)S(s)x, for s, t ≥ 0.

If D 6= {0}, then (S(t))t≥0 is said do be an integrated semigroup of unbounded
linear operators in E.

A semigroup of unbounded linear operators (S(t))t≥0 is called non-degenerate
if N = {x ∈ D;S(t)x = 0, t ≥ 0} = {0} and degenerate, otherwise. We will
assume that (S(t))t≥0 is non-degenerate.

Let ω ∈ R+ = (0,∞). Then

Eω := {x ∈ D; ‖x‖ω < ∞}, where ‖x‖ω; = sup
t≥0

e−ωt‖S(t)x‖.

Eω denoted the closure of the set Eω under the norm ‖·‖ and S(t)|Eω is the part
of S(t) with domain D(S(t)|Eω) = {x ∈ Eω;x ∈ D(S(t)) and S(t)x ∈ Eω}.
Remark 1 One can simply prove

‖S(t)x‖ω ≤ 2eωt

ω
‖x‖ω and ‖S(s)S(t)x‖ ≤ 2eω(s+t)

ω
‖x‖ω, x ∈ Eω.

We assume additionally:
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(1) For every ω > 0 there exists Cω > 0 such that ‖x‖ω ≥ Cω‖x‖, x ∈ Eω;

(2) S(t)|Eω closed in Eω, for t ≥ 0 and ω > 0.

This implies E
‖·‖ω

ω = Eω and Eω is a Banach space (cf. [10]).
For fixed ω > 0 and λ ∈ C,Reλ > ω, define

Rω(λ) = λ

∞∫

0

e−λtS(t)xdt, x ∈ Eω.

In general, Rω(λ) is unbounded in (E, ‖ · ‖). The family (Rω(λ))Reλ>ω on
Eω satisfies the first resolvent equation. Since (S(t))t≥0 is non-degenerate it
follows that Rω(λ) is injective.

Theorem 1 [10] Let ω > 0 and λ ∈ C with Reλ > ω. Then
a) Rω(λ)x ∈ D(S(t)) and S(t)Rω(λ)x = Rω(λ)S(t)x, t > 0, x ∈ Eω.
b) i) Rω(λ)(Eω) ⊂ Eω Moreover,

(3)
ω(Reλ− ω)

2|λ| ‖Rω(λ)x‖ω ≤ ‖x‖ω, x ∈ Eω,

ii) For every x ∈ Eω, ‖x‖Rω < ∞, where ‖ · ‖Rω is the norm

‖x‖Rω :≡ sup
n∈N0

sup
λ>ω

(λ− ω)n+1

n!

∥∥∥
(Rω(λ)

λ

)(n)

x
∥∥∥, λ > ω,

and for every ω > 0,
ωCω

2
‖x‖Rω ≤ ‖x‖ω ≤ ‖x‖Rω ,

c)

‖Rω(λ)x‖Rω ≤ 4λ

ω2Cω(λ− ω)
‖x‖Rω , x ∈ E.

2 Infinitesimal generator

The family (Rω(λ))Reλ>ω is a resolvent of a closed linear operator Aω in (Eω, ‖·
‖ω) and Aω = λI − (Rω(λ))−1 (I is the identity operator ) for λ ∈ C, Reλ >
ω,D(Aω) = Range(Rω(λ)). Note, operators Aω, ω > 0, are not closed in (E, ‖ ·
‖). We have D(Aω1) ⊂ D(Aω2) or D(Aω2) ⊂ D(Aω1), where ω1, ω2 ∈ (0,∞).

Denote D(A) =
⋃

ω>0 D(Aω). For x ∈ D(A), let ω > 0 such that x ∈ D(Aω).
There exists y ∈ Eω such that x = Rω(λ)y for Reλ > ω. We define Ax := λx−y
and we call A the infinitesimal generator of the integrated semigroup (S(t))t>0.
Thus, Ax = Aωx for x ∈ D(Aω) and it is easy to prove that this definition
does not depend on ω with the property x ∈ D(Aω), i. e. if x ∈ D(Aω), then
Ax = Aωx ([10]). Clearly A is a linear operator on D(A). Theorem 1 implies
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Corollary 1 a) For x ∈ Eω, the resolvent equention (λI − A)y = x,Reλ > ω,
has a unique solution belonging to Eω and y = Rω(λ)x.

b) Let ω > 0. Then, for t ≥ 0, S(t)(D(Aω)) ⊂ D(Aω) and S(t)Aωx =
AωS(t)x, x ∈ D(Aω).

c) If x ∈ D(A), then there exists ω′ > 0 such that Rω(λ)Ax = ARω(λ)x,
ω ≥ ω′.

Theorem 2 a) For x ∈ D(A), t → S(t)x, t ≥ 0, is a differentiable function on
Eω with respect to ‖ · ‖ and S′(t)x− x = S(t)Ax or equivalently

(4) S(t)x− tx =

t∫

0

S(s)Axds.

b) If x ∈ E′ =
⋃

ω>0 Eω, then
t∫
0

S(s)xds ∈ D(A) and A
t∫
0

S(s)xds = S(t)x−
tx.

Proof. a) If x ∈ D(A), then x ∈ D(Aω) and Ax = Aωx for some ω > 0.
Fix ω > 0 and prove (4) for Aω. Let x ∈ D(Aω). Then x = Rω(λ)y for some
y ∈ Eω, Reλ > ω and Aωx = λx− y. We have

(5)
S(t + h)x− S(t)x

h
=

λ

h

(
S(t + h)

∞∫

0

e−λsS(s)yds− S(t)

∞∫

0

e−λsS(s)yds
)

=
λ

h

( ∞∫

0

e−λs

t+h+s∫

t+s

S(v)ydvds− 1
λ

t+h∫

t

S(r)ydr
)

Fubini’s theorem implies

(6)

∞∫

0

e−λs

t+h+s∫

t+s

S(v)ydvds =

= − 1
λ

t+h∫

t

e−λ(v−t)S(v)ydv +
1
λ

t+h∫

t

S(v)ydv

+
eλ(t+h)

λ

∞∫

t+h

e−λvS(v)ydv − eλt

λ

∞∫

t+h

e−λvS(v)ydv.

Then (5) and (6) imply

S(t + h)x− S(t)x
h

=
eλh − 1

h
eλt

∞∫

0

e−λvS(v)ydv
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−eλ(t+h)

h

t+h∫

0

e−λvS(v)ydv +
eλt

h

t∫

0

e−λvS(v)ydv.

Now, by letting h → 0, we obtain

(7) S′(t)x = eλtx− f ′(t),

where f(t) = eλt
t∫
0

e−λvS(v)ydv. Differentating f, it follows

f ′(t) = λeλt

t∫

0

e−λvS(v)ydv + eλte−λtS(t)y

and (7) implies

(8) S′(t)x = eλtx− λeλt

t∫

0

e−λvS(v)ydv − S(t)y.

Therefore

(9) eλtx− λeλt

t∫

0

e−λvS(v)ydv = λeλt
( ∞∫

0

e−λvS(v)ydv−

−
t∫

0

e−λvS(v)ydv
)

= x + λS(t)

∞∫

0

e−λpS′(p)ydp.

Integrating by parts we have

(10)

∞∫

0

e−λpS′(p)ydp = e−λpS(p)y|∞0 + λ

∞∫

0

e−λpS(p)ydp = x

Using (8), (9) and (10), we obtain

S′(t)x = x + λS(t)x− S(t)y and S′(t)x = x + S(t)Aωx.

For x ∈ D(Aω), Ax = Aωx and S′(t)x = x + S(t)Ax. Integrating, we have

S(t)x− tx =

t∫

0

S(s)Axds.
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b) Let x ∈ Eω. Then S(s)x ∈ Eω and

t∫

0

S(s)xds =

t∫

0

S(s)(λI −Aω)Rω(λ)xds

= λRω(λ)

t∫

0

S(s)xds− S(t)Rω(λ)x + tRω(λ)x.

This implies
t∫
0

S(s)xds ∈ D(Aω) and since D(A) =
⋃

ω>0 D(Aω), we have

t∫
0

S(s)xds ∈ D(A). By using

(λI −Aω)

t∫

0

S(s)xds = (λI −Aω)
(
λRω(λ)

t∫

0

S(s)xds−

−Rω(λ)S(t)x + tRω(λ)x
)

= λ

t∫

0

S(s)xds− S(t)x + tx,

it follows Aω
t∫
0

S(s)xds = S(t)x − tx and A
t∫
0

S(s)xds = S(t)x − tx because

A = Aω on D(Aω).
Note that Theorem 2 a) implies if x ∈ D(An) and t ≥ 0, then

S(n)(t)x = An−1x + S(t)Anx, n ∈ N.

Let ω > 0 and set

D(Aω
1 ) =

{
x ∈ Eω

∣∣∣∣
(i) S(t)x is differentiable for t ≥ 0 with respect to ‖ · ‖,
(ii) ∃y ∈ Eω such that S′(t)x− x = S(t)y

}
.

For x ∈ D(Aω
1 ) define Aω

1 x := y, where y satisfies (ii).
Let D(A1) =

⋃
ω>0 D(Aω

1 ) and for x ∈ D(Aω
1 ) we define A1x := Aω

1 x. Then
A1 is well defined because S is nondegenerate on Eω. Moreover, Aω

1 = A1|Eω

where A1|Eω is defined by D(A1|Eω) = {x ∈ Eω : x ∈ D(A1) and A1x ∈ Eω}.

Theorem 3 Let A be the infinitesimal generator of the integrated semigroup of
unbounded linear operators (S(t))t≥0. Then A = A1.

Proof. We show that for ω > 0, Aω = Aω
1 . For this it sufficies to prove that

Rω(λ) = R(λ,Aω) is also the resolvent of Aω
1 .
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Theorem 2 implies that D(Aω) ⊂ D(Aω
1 ) for if x ∈ D(Aω) and y = Aωx,

we have S′(t)x− x = S(t)Aωx, y ∈ Eω and S(t)x is differentable. This implies
Aωx = Aω

1 x and Aω ⊂ Aω
1 . Now, if x ∈ Eω, then Rω(λ)x ∈ D(Aω) ⊂ D(Aω

1 ),
and for Reλ > ω.

(λI −Aω
1 )Rω(λ)x = (λI −Aω)Rω(λ)x = x.

We claim that Rω(λ)x is a unique of the resolvent equation (λI−Aω
1 )y = x,

where x ∈ Eω, Reλ > ω. Thus Rω(λ) will be the resolvent of Aω
1 . Indeed,

suppose λy −Aω
1 y = 0 for some y ∈ D(Aω

1 ) and y 6= 0. Then, for t ≥ 0.

(11) λS(t)y − S(t)Aω
1 y = 0

where S(t)Aω
1 y exists since Aω

1 y ∈ Eω. But y ∈ D(Aω
1 ), so that S(t)y is differ-

entiable for t ≥ 0 and

(12) S′(t)y − y = S(t)Aω
1 y.

From (11) and (12) we have S′(t)y − y = λS(t)y for fixed λ ∈ C with
Reλ > ω. This implies S(t)y + 1

λy = keλty. Since y 6= 0 and S(0) = 0 we have
k = 1

λ and S(t)y = 1
λ (eλt − 1)y is the unique solution (for fixed λ ∈ C and

Reλ > ω). Then

‖y‖ω = sup
t≥0

e−ωt‖S(t)y‖ = sup
t≥0

e−ωt‖ 1
λ

(eλt − 1)y‖ ≥

≥ 1
|λ| sup

t≥0
e−ωt(eReλt − 1)‖y‖ = ∞

and this is in contradiction with y ∈ Eω. Thus y = 0 is a unique solution of (11)
and Rω(λ) = R(λ, Aω

1 ). This implies Aω = Aω
1 and A = A1.

Example 1 Let E = L2(Rn) with the usual L2 norm ‖ · ‖2 and p(D) =
m∑

α=0
aαDα, aα ∈ C, |α| ≤ m, where

Dα =
1

i|α|
∂|α|

∂xα1
1 ...∂xαn

n
.

Not p(̂D)f(x) = p(x)f̂(x), x ∈ R, where f̂ is the Fourier transform of f.

Define a family of operators (Tt)t≥0 on D(Tt) = {f ; etp(x)f̂ ∈ L2(Rn), t ≥ 0}
by T̂tf(x) = etp(x)f̂(x). Define D = {f ; etp(x)f̂ ∈ L2(Rn) for every t ≥ 0}. We
have.

(i) T0f = f. (ii)TtTsf = Tt+sf, t, s ≥ 0, f ∈ D.
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Since (etp(x) − 1)f̂(x) → 0 as t → 0 (a.e.) in Rn and |(etp(x) − 1)f̂(x)| ≤
|ep(x)f̂(x) + 2| (a.e) t ∈ (0, 1) we have that [0,∞) 3 t → Ttf is strongly contin-
uous on D.

Let
Σω = {f ∈ D; sup

t≥0
e−ωt‖Ttf‖L2 < ∞},

Σω = Σ
‖·‖
ω = {f ∈ L2; f L2

= lim
n→∞

fn; fn ∈ Σω},

D(Tt|Σω) = {f ∈ Σω; f ∈ D(Tt) and Ttf ∈ Σω}, Tt|Σω : D(Tt|Σω) → Σω,

we have that (Tt)t≥0 satisfies all the assumptions of a semigroup of unbounded
linear operators considered in [8].

Now we consider an integrated semigroup generated by p(D) with additional
assumptions.

Let p(D) be an elliptic operator. It is well known that the set of zero
V = {x; p(x) = 0} is a compact set K ⊂⊂ Rn. We well assume that

Re|p(x)| → ∞ as |x| → ∞.

Let φt(x) =
t∫
0

ep(x)sds, x ∈ Rn. A family of operators defined by

Stf(x) = φtf̂(x) =





etp(x) − 1
p(x)

f̂(x), p(x) 6= 0

tf̂(x), p(x) = 0,





.

f ∈ D(St) = {f ∈ L2;Stf ∈ L2}, constitutes an integrated semigroup of
unbounded operators on L2(Rn).

Theorem 4 [12] Let ω > 0 be fixed. Then (Sω(t))t≥0 = (S(t)|Eω)t≥0 is an
exponentially bounded integrated semigroup on (Eω, ‖ · ‖ω) with the infinitesimal
generator Aω.

Let ω > 0. Put Dω := D(Aω)
‖·‖ω i.e. the closure in the ‖ · ‖ω norm; Aω|Dω

denotes the part of Aω in Dω with the domain

D(Aω|Dω) = {x ∈ Dω;x ∈ D(Aω) and Aωx ∈ Dω}.
Theorem 5 [12] a) For all x ∈ Dω, lim

λ→∞
‖λRω(λ)x− x‖ω = 0.

b) D((Aω)n)
‖·‖ω = Dω, D((Aω)n) = Eω, n ∈ N and D(A) = E′, where

E′ =
⋃

ω>0 Eω.
c) Let ω > 0 be fixed. Then, for t ≥ 0, S(t)(Dω) ⊂ Dω and (Sω(t))t≥0 =

(S(t)|Dω)t≥0 is an exponentially bounded integrated semigroup on (Dω, ‖ · ‖ω)
with the densely defined infinitesimal generator equals Aω|Dω.
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3 Hille-Yosida type theorems

Let A be the infinitesimal generator of an integrated semigroup of unbounded
linear operators (S(t))t≥0 with assumptions given in Section 1. We need the
following result.

Theorem 6 Let ω > 0, t ≥ 0, and γ > ω. Then

a) For x ∈ D((A)2)

Sω(t)x =
1

2πi

γ+i∞∫

γ−i∞

eλtRω(λ)x
dλ

λ

and the integral converges in the ‖ · ‖ω norm.
b) Let x ∈ D((Aω)3) and

Iω,t(x) =
1

2πi

t∫

0

γ+i∞∫

γ−i∞

eλsRω(λ)Aωx
dλ

λ
ds, t ≥ 0.

Then the operator Iω,t is well defined and closable (in the norm ‖ · ‖).
c) Let D̃ω = {x ∈ Eω; ‖S′(t)x− x‖ω → 0 as t → 0+}. Then D̃ω = Dω.

d) Let (S(t))t≥0 be a nondegenerate exponentially bounded integrated semigroup
with the densely defined infinitesimal generator A. Then lim

λ→∞
‖λR(λ)x − x‖ =

0, x ∈ E where

R(λ)x = λ

∞∫

0

e−λtS(t)xdx.

Proof. a) The proof follows by using Theorem 6.3.1 in [7].
b) Let x ∈ D((Aω)3). Then Aωx ∈ D((Aω)2) and by a)

S(t)Aωx =
1

2πi

γ+i∞∫

γ−i∞

eλtRω(λ)Aωx
dλ

λ
, t ≥ 0, γ > ω.

The integral
t∫
0

S(s)Aωxds exists because Aωx ∈ Eω and t → S(t)Aωx, t ≥ 0,

is a continuous function. Thus Iω,t is well defined on D((Aω)3). Let {xn} ⊂
D((Aω)3) such that ‖xn‖ → 0 and ‖Iω,t(xn) − y‖ → 0 as n → ∞ for some
y ∈ E. By a) we have

S(t)xn − txn =
1

2πi

t∫

0

γ+i∞∫

γ−i∞

eλsRω(λ)Aωxn
dλ

λ
ds = Iω,t(xn).
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Observe that Iω,t is independent of the choice of γ. Then ‖S(t)xn−txn−y‖ →
0 as n → ∞ and since S(t)|Eω is a closed linear operator in Eω (in the norm
‖ · ‖) it follows y = 0. Thus Iω,t is closable.

c) For x ∈ D̃ω it is sufficient to prove ‖λRω(λ)x−x‖ω → 0 as λ →∞. From

e−ωt‖S(t)(λRω(λ)x−x)‖ = e−ωt‖S(t)AωRω(λ)x‖ = e−ωt‖S′(t)Rω(λ)x−Rω(λ)x‖

≤ 1
Cω

‖Rω(λ)‖ω‖S′(t)x− x‖ω <
1

Cω
‖Rω(λ)‖ωε for 0 ≤ t < δ.

Then limλ→∞‖λRω(λ)x − x‖ω ≤ ε1 and ‖λRω(λ)x − x‖ω → 0 as λ → ∞.
This implies D̃ω ⊂ Dω.

Conversely, for x ∈ D(Aω) we have S′(t)x − x = Sω(t)Aωx and such that
t → Sω(t)x, t ≥ 0 is strongly continuous under the norm ‖ · ‖ω, it follows

(13) ‖S′ω(t)x− x‖ω → 0, t → 0+.

By D(Aω)
‖·‖ω = Dω, (13) holds for every x ∈ Dω Moreover S(t)|Dω = Sω(t)

and this implies
‖S(t)x− x‖ω → 0, t → 0+

for every x ∈ Dω.
Then D̃ω = Dω.
d) For x ∈ D(A) and λ > ω we have

‖λR(λ)x− x‖ = ‖R(λ)Ax‖ =
∥∥∥λ

∞∫

0

e−λtS(t)Axdt
∥∥∥

≤ λ

∞∫

0

e−λt‖S(t)Ax‖dt = λ

∞∫

0

e−λt‖S′(t)x− x‖dt

= λ

δ∫

0

e−λt‖S′(t)x− x‖dt +

∞∫

δ

e−λt‖S(t)Ax‖dt < λε

δ∫

0

e−λtdt

+λM

∞∫

δ

e(ω−λ)t‖Ax‖dt = (1− e−λδ)ε +
λM

λ− ω
e(ω−λ)δ‖Ax‖ → 0

as λ →∞ because for ε > 0 exists δ > 0 such that ‖S′(t)x−x‖ < ε for 0 ≤ t < δ.
Since D(A) = E, it holds for x ∈ E.

The question is, when a linear operator in E is an infinitesimal generator of
an integrated semigroup of unbounded linear operators?
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Theorem 7 Let E be a Banach space and (Eω)ω>0 be a nested family of non
- trival subspaces of E such that ω1 ≤ ω2 implies Eω1 ⊂ Eω2 . Let A be a linear
operator with the domain and range in

⋃
ω>0 Eω and Aω denote the part of A

in Eω. Assume:
(i) For every x ∈ Eω, the resolvent equation (λI − A)y = x, λ > ω has a

unique solution y = Rω(λ)x ∈ Eω.

(ii) ‖x‖Rω < ∞, x ∈ Eω, where ‖x‖Rω = sup
n≥0

sup
λ>ω

∥∥∥ (λ−ω)n+1

n!

(
Rω(λ)

λ

)(n)

x
∥∥∥,

and (Eω, ‖ · ‖Rω ) is a Banach space.
(iii) There exists Kω > 0 such that ‖x‖Rω ≥ Kω‖x‖, x ∈ Eω.
(iv) There exists M > 0 such that

∥∥∥ (λ− ω)n+1

n!
(Rω(λ))(n)

∥∥∥
Rω

≤ M,n ∈ N0, λ > ω.

Then there exists a family (S(t))t≥0 of linear operators in E, in general
unbounded, with the domain containing

⋃
ω>0 Eω such that all the assertion of

Sections 1-2 hold true (except the second part of Theorem 5.b)).

Proof. Let ω > 0. Then Rω(λ), λ > ω is the resolvent of Aω. By assumption
(iv) Rω(λ) is bounded on the Banach space (Eω, ‖ · ‖Rω ). This implies that Aω

is the closed operator in the ‖ · ‖Rω norm topology.
Let ω1 ≤ ω2, x ∈ Eω1 and λ > ω2. Then Rω1(λ)x = Rω2(λ)x because both

are solutions of the resolvent equation (λI − A)y = x belonging to Eω2 . Thus
Rω1(λ) ⊂ Rω2(λ) whenever λ > ω2 and this implies Aω1 ⊂ Aω2 .

If ω1 ≤ ω2 and x ∈ Eω1 , then ‖ · ‖Rω2 ≤ ‖ · ‖Rω1 since Rω2(λ)x = Rω1(λ)x
for λ > ω2.

Condition (iv), Theorem 2.4. and Corollary 2.3 in [9] imply that Aω is
the generator of a locally Lipschitz continuous integrated semigroup (Sω(t))t≥0

on Eω and ‖Sω(t)‖Rω on Eω and ‖Sω(t)‖Rω ≤ Meωt, ω > 0. Condition (iii)
implies that ‖x‖ω := sup

t≥0
e−ωt‖Sω(t)x‖ < ∞, x ∈ Eω and that the norms ‖ · ‖Rω

and ‖ · ‖ω, x ∈ Eω are equivalent. In fact we have to use that (λI − A)−1 =

λ
∞∫
0

e−λtS(t)xdt ([2] Corollary 1.2) and the arguments as in the proof of Theorem

1 b) (ii) (cf.[4]).
We define for x ∈ ⋃

ω>0 Eω, t ≥ 0, S(t)x := Sω(t)x, if x ∈ Eω. It follows that
S(t) is well defined for t ≥ 0, bacause ω1 ≤ ω2 implies Eω1 ⊂ Eω2 . Since for
λ > ω2, both Rω1(λ) and Rω2(λ) are defined and equal, it follows

Rω1(λ)
λ

x =

∞∫

0

e−λtSω1(t)xdt =
Rω2(λ)

λ
x =

∞∫

0

e−λtSω2(t)xdt.

By the uniquenes theorem for the Laplace transform, it follows Sω1(t)x =
Sω2(t)x. Thus Sω1(t) ⊂ Sω2(t) and S(t) is well defined.
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The family of operators (S(t))t≥0 on
⋃

ω>0 Eω satisfies; S(0) = 0, t →
S(t)x, x ∈ ⋃

ω>0 Eω, is strongly continuous (t ≥ 0) and S(s)S(t)x =
s∫
0

(S(r +

t)− S(r))xdr = S(t)S(s)x for s, t ≥ 0.
Now by inspecting the proofs of assertions in Sections 1-2 one can show that

these assertions hold true.
Remark 2 The closedness of S(t)|Eω in Eω is not considered in the given
theorem. It is used in order to prove the completeness of Eω in the norm ‖ · ‖ω.
Here this is a consequence of equivalence of norms ‖ · ‖Rω and ‖ · ‖ω.

Theorem 8 [12] Assume the same conditions (i), (ii),(iii) as in Theorem 7
and the following ones:

(iv) There exists M > 0 such that
∥∥∥ (λ− ω)n+1

n!

(R(λ)
λ

)(n)∥∥∥
Rω

≤ M , n ∈ N0,
λ > ω.

(v) For ω > 0, t ≥ 0, the operator

Iω,t(x) =
1

2πi

t∫

0

γ+i∞∫

γ−i∞

eλsRω(λ)Aωx
dλ

λ
ds, γ > ω,

defined on D((Aω)3) is closable with respect to ‖ · ‖. Then there exists a
family (S(t))t≥0 of linear operators in E, in general unbounded, on

⋃
ω>0Dω

where Dω := D(Aω)
‖·‖Rω

, such that, ω > 0,
1.

⋃
ω>0Dω ⊂ D(D is defined in first section).

2. S(t)|Eω is closed operator in Eω for every t ≥ 0(ω > 0),

3. If (Ẽω, ‖ · ‖ω), R̃ω(λ), λ > ω, Ãω and D̃ω = D(Ãω)
‖·‖ω

(ω > 0) are defined
as in Sections 1,2 for (S(t))t≥0 and if conditions (2) and (3) hold for (Ẽω, ‖·‖ω),
then

Dω ⊂ D̃ω and Aω|D̃ω = Ãω|D̃ω for every ω > 0.

Theorem 9 [12] Let A be the infinitesimal generator of an integrated semigroup
of unbounded linear operators (S(t))t≥0. Then A is ”maximal unique” in the
following sense:

Assume
(
E′

ω

)
ω>0

is a nested family of subspaces on E and A′ is a linear

operator with domain and range in
⋃

ω>0 E′
ω = E′, Let A

′ω denote the part of
A′ to E′

ω.Assume
(i) for every x ∈ E′

ω, the resolvent equation (λI − A′)y = x, λ > ω, has a
unique solution in E′

ω equals R
′ω(λ)x;

(ii) E′
ω is a Banach space with the norm

‖x‖R′ω = sup
n≥0

sup
λ>ω

∥∥∥ (λ− ω)n+1

n!

(R
′ω(λ)
λ

)(n)

x
∥∥∥, λ > ω
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and there exists Kω > 0, such that ‖x‖R′ω ≥ Kω‖x‖, x ∈ E′
ω;

(iii) if D′ω = D(A′ω)
‖·‖

R
′ω , then D′ω ⊂ D,S(t)(D′ω) ⊂ D′ω for t ≥ 0 and

(S(t)|D′ω)t≥0 is an integrated semigroup of exponentially bounded linear oper-
ators in a Banach space (D′ω, ‖ · ‖R′ω ) with an infinitesimal generator A

′ω|D′ω
which is densely defined.

Then D′ω ⊂ Dω and Aω|D′ω = A
′ω|D′ω.
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(α ∈ R+), J. Math. Anal. Appl. 210 (1997), 790–803.

[16] F. Neubrander, Integrated semigroups and their applications to the abstract
Cauchy problem, Pac. J. Math. 135 (1988), 111–155.

[17] S. Oharu, Semigroups of linear operators in Banach spaces, Publ. Res. Inst.
Math. Sci. 204 (1973), 189–198.

[18] N. Tanaka and N. Okazawa, Local C-semigroups and local integrated semi-
groups, Proc. London Math. Soc. (1990), 63–90.

[19] H.R. Thieme, Integrated semigroups and integrated solutions to abstract
Cauchy problems, J. Math. Anal. Appl. 152 (1990), 416–447.

[20] S. Wang, Quasi-distribution semigroups and integrated semigroups, J. Func.
Anal. 146 (1997), 325–381.

Institute of Mathematics
University of Novi Sad
Trg Dositeja Obradovića 4
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