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Abstract

In this paper1 we prove some theorems of Abelian and Tauberian type
for power series.

1 Introduction

In the papers [5], [1] etc, J. Karamata and V. Avakumović have founded the
theory of O–regularly varying mappings (functions and sequences), which very
soon became a very developed theory. In particular, this theory has found the
applications in many other areas of mathematics.

Definition 1 A sequence (cn) (n ∈ N0), c0 = 0 and cn > 0 (n ∈ N) is called
O–regularly varying if

kc(λ) = lim
n→+∞

c[λ= n]

cn
< +∞

for every λ > 0. The class of all O–regularly varying sequences is denoted ORV .

The class ORV has many applications in the asymptotic analysis, and in
particular in the Fourier analysis (see e.g. [7], [4], [8], [9]).

Definition 2 A function f : [A,+∞) 7→ (0,+∞) (A > 0) is called O–regularly
varying if it is measurable and

kf (λ) lim
x→+∞

f(λx)
f(x)

< +∞

for all λ > 0. The class of all O–regularly varying functions is also denoted
ORV .

Lemma 1.1 If (cn), c0 = 0, cn > 0 (n ∈ N) is a nondecreasing sequence, then
the next statements are equivalent:

(a) (cn) ∈ ORV ;
(b) f(x) = c[x] ∈ ORV for x ≥ 1.

1Presented at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
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Proof. (a) ⇒ (b): If (cn) ∈ ORV , then f(x) = c[x] (x ≥ 1) is a piecewise
constant function, which is thus measurable on the interval [0,+∞), f(x) > 0
for all x ≥ 1, and f(x) = 0 for all x ∈ [0, 1). Next we have that

lim
n→+∞

sup
λ∈[a,b]

c[λn]

cn
= lim

n→+∞
c[bn]

cn
= kc(b) < +∞

for every fixed interval [a, b] ⊂ (0, +∞). Since (λ x)/[λ [x]] ∈ [1, 2] for every λ
and all sufficiently large x, there is a λ > 0 such that

lim
x→+∞

f(λ x)
f(x)

= limx→+∞
c[λ x]

c[x]
≤

≤ limx→+∞
c[λ [x]]

c[x]
· limx→+∞

c[λ x]

c[λ [x]]
≤

≤ kc(λ) · kc(2) < +∞.

This proves that f ∈ ORV .
(b) ⇒ (a) is trivial since kc(λ) < kf (λ) for every λ > 0.

2 Main result

In this section we shall prove two theorems of Abelian and Tauberian type for
power series, in which a central role have the sequences from the class ORV .

Theorem 2.1 (a) (Abelian statement) For any nondecreasing sequence (cn) ∈
ORV , and the corresponding function

f(t) =
∞∑

n=1

(cn − cn−1) tn, 0 < t < 1,

the function g(x) = f(1− 1/x) (x ≥ 2) belongs to the class ORV .
(b) (Tauberian statement) If (cn) is a nondecreasing sequence of positive

numbers, c0 = 0, f(t) and g(x) are defined as above, and g(x) ∈ ORV , then
(cn) ∈ ORV .

Proof. (a) The function α(x) = c[x] (x ≥ 1) is piecewise constant, nondecreas-
ing, so by Lemma 1.1 α(x) ∈ ORV . Here α(x) = 0 for every x ∈ [0, 1). Consider
the function

α̂(s) =
∫ +∞

0

e−sk dα(k) =
+∞∑
n=1

(cn − cn−1)e−sn.

Since α ∈ ORV , the function α̂(s) is defined for every s > 0, because by a
result from [2] we have that α̂(1/s) ³ α(s) (s → +∞), so α̂(s) is defined for all
s ∈ (0, δ) (δ > 0). It is also defined for all s ∈ [δ,+∞) since it is positive and
decreasing.
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By the same result the function α̂(1/s) (s > 0) belongs to the class ORV .
Taking t = e−s (s > 0) we have that

α̂(−log t) =
∞∑

n=1

= (cn − cn−1) tn (0 < t < 1).

Defining f(t) = α̂(−log t) (0 < t < 1) and g(t) = f(1 − 1/t) (1 < t < +∞),
we have that g(t) is a positive and increasing function on the interval (1, +∞).
Besides, since α̂(1/s) (s > 0) is an ORV function, we find that for every λ > 1

lim
t→+∞

g(λ t)
g(t)

= limt→+∞
f(1−1/λ t)
f(1−1/t) =

= limt→+∞
α̂(−log (1−1/λ t))
α̂(−log (1−1/t)) ≤

≤ limt→+∞
α̂
(

1
2 λ (−log (1−1/t))

)
α̂(−log (1−1/t)) =

= lims→+∞
α̂
(

1
2 λ

1
s

)
α̂(1/s) < +∞.

In this calculations we used that the function α̂(s) is decreasing for s > 0,
and

log (1− 1/λ t)
log (1− 1/t)

∈ [1/2 λ, 1]

for all sufficiently large t and the considered λ. Consequently, the function
g(x) = f(1− 1/x) (x ≥ 2) is ORV .

(b) Since the function g(x) = f(1− 1/x) (x ≥ 2) is ORV , we have that

lim
x→+∞

f(1− 1/λx)
f(1− 1/x)

= lim
x→+∞

g(λx)
g(x)

< +∞

for all λ > 1. Letting s = −(log (1− 1/x))−1 we find

lim
x→+∞

f(1− 1/λx)
f(1− 1/x)

= lims→+∞
f(1− e−1/s−1

λ )

f(e−1/s)
=

= lims→+∞
f

(
1− e1/s−1

λ

e−1/λ s
e−1/λ s=

)

f(e−1/s)
>

> lims→+∞
f(e−1/λ s)
f(e−1/s)

, λ > 1.

In the previous calculations we used that for any λ > 1

1− e−1/s−1
λ

e−1/λ s
→ 1 (s → +∞),

the function h(λ, s) = (1 − e−1/s−1
λ )e1/λ s (λ > 1, s ≥ 1/log 2) is nonincreasing

in s, and the function

f(t) =
+∞∑
n=1

(cn − cn−1) tn
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is nondecreasing on (0, 1).
Since f is continuous and positive on [1/2, 1), we have that the function

p(s) = f(e−1/s) (s ≥ 1/log 2) is ORV . Defining α(t) = c[t] (t > 0), we find that

f(e−1/s) =
+∞∑
n=1

(cn − cn−1)e−n/s = α̂(1/s) =
∫ +∞

0

e−t/s dα(t) (s ≥ 1/log 2)

is ORV . Therefore, a result from [2] gives that the function α(t) is ORV , and
Lemma 1.1 gives that (cn) ∈ ORV .

As an immediate consequence, we obtain the next theorem.

Theorem 2.2 (a) (Abelian statement) If (cn) is a nondecreasing ORV se-
quence, and

f(t) =
+∞∑
n=1

cn tn (0 < t < 1), (1)

then g(x) = f(1− 1/x) (x ≥ 2) is ORV .
(b) (Tauberian statement) If (cn) is a nondecreasing sequence of positive

numbers, c0 = 0, f(t) is defined by (1) and g(x) = f(1− 1/x) (x ≥ 2) is ORV ,
then (cn) is ORV .

Proof. (a) Define the sequence (dn) such that d0 = 0 and dn =
∑n

k=1 ck. Then
0 = d0 < d1 < d2 < · · · , and cn = dn − dn−1 (n ∈ N). Besides, the function
f(x) = c[x] (x ≥ 1) is ORV . Since it is positive for x ≥ 1 and nondecreasing in
x, redefining f(x) with f(x) = 0 for x ∈ [0, 1) by [2] we have

F (x) =
∫ x

0

f(x) dx (x ≥ 1 + δ, δ > 0)

is ORV . Since

F (x) =
[x]−1∑

k=1

ck + c[x](x− [x]) (x ≥ 1 + δ)

it is easily seen that the sequence F (n) =
∑n−1

k=1 ck (n ≥ 2) is ORV if we redefine
F (0) = 0 and F (1) = c > 0. Since

lim
n→+∞

F ([λn])
F (n)

< +∞

for every λ > 1, we have that

lim
n→∞

F ([λ(n + 1)])
F (n + 1)

< +∞
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for all λ > 1. Hence the sequence φn = F (n + 1) (n ∈ N), φ0 = 0 is ORV .
Moreover we have that φn = dn (n ≥ 0). Finally, Theorem 2.1 gives the
statement.

(b) Consider the sequence (dn) such that d0 = 0 and dn =
∑n

k=1 ck (n ≥ 1).
Then 0 = d0 < d1 < d2 < · · · , and cn = dn−dn−1 (n ≥ 1), and by Theorem 2.1
(dn) is ORV . Consequently, the sequence (φn) defined by φ0 = 0 and φn = dn+1

(n ∈ N) is also ORV . Lemma 1.1 gives that the functions

f(x) =
[x]∑

k=1

ck , g(x) =
[x+1]∑

k=1

ck, x ≥ 1

are ORV .
Next consider the function h(x) =

∑[x]
k=1 ck + c[x]+1(x − [x]), x ≥ 1. It

is obviously nondecreasing, positive and continuous for every x ≥ 1. Since
f(x) ≤ h(x) ≤ g(x) for every x ≥ 1, we obtain

lim
x→+∞

h(λx)
h(x)

≤ limx→+∞
g(λ x)
f(x) =

= limx→+∞
f(λx+1)

f(x) =

= limx→+∞
f((λ+1/x)x)

f(x) .

The last limit superior is finite by the Uniform convergence theorem for the
ORV functions on some interval [λ − δ, λ + δ], with a fixed λ > 0 and some
δ ∈ (0, λ) (see e.g. [2]).

This proves that h is ORV . Since h(x) =
∫ x+1

0
c[t] dt and ϕ(t) = c[t], t ≥ 1 is

positive and monotone nondecreasing, we find that its left Matuszewska index
kM (ϕ) ≥ 0, so its left Karamata index kK(ϕ) > −∞. Since h is ORV we
have that the right Karamata index kK(h) < +∞. By [6] we now have that
kK(h) ≥ kM (h) ≥ 1 + kM (ϕ) > 0, what by [2] gives that

ϕ(x + 1) ³ h(x)
x + 1

, x → +∞,

that is ϕ(x + 1) ³ h(x)/x, x → +∞. This gives that p(x) = ϕ(x + 1), x ≥ 1,
is ORV ; thus ϕ(x) is also ORV . Finally, since (cn) is the restriction of the
function ϕ to N, by Lemma 1.1 (cn) is ORV .

Remark. It is easy to see that all nondecreasing regularly varying sequences
([2]), all ∗–regularly varying sequences ([8]), and all nondecreasing sequences
which are restrictions of functions from the Matuszewska class or the class CRV
to the set N ([2] and [3]) are ORV , so they satisfy the conditions of the Theorems
2.1(a) and 2.2(a).

An open question. Describe all the functions ϕ(x), x ≥ 2 which can substitute
the function r(x) = 1 − 1/x, x ≥ 2, in Theorems 2.1 and 2.2, so that these
theorems remain true.
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