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Abstract

In this paper! we prove some theorems of Abelian and Tauberian type
for power series.

1 Introduction

In the papers [5], [1] etc, J. Karamata and V. Avakumovi¢ have founded the
theory of O-regularly varying mappings (functions and sequences), which very
soon became a very developed theory. In particular, this theory has found the
applications in many other areas of mathematics.

Definition 1 A sequence (¢,,) (n € Ng), ¢ = 0 and ¢, > 0 (n € N) is called
O-regularly varying if

ko(\) = Im 2=nl o

n— 400 Cp,

+00

for every A > 0. The class of all O-regularly varying sequences is denoted ORV.
The class ORV has many applications in the asymptotic analysis, and in

particular in the Fourier analysis (see e.g. [7], [4], [8], [9])-

Definition 2 A function f : [A,400) — (0,+00) (A > 0) is called O—regularly
varying if it is measurable and

< +00

for all A > 0. The class of all O-regularly varying functions is also denoted
ORV.

Lemma 1.1 If (¢,), co =0, ¢, > 0 (n € N) is a nondecreasing sequence, then
the next statements are equivalent:

(a) (cn) € ORV;

(b) f(x)=cm € ORV for x> 1.

IPresented at the IMC “Filomat 2001”, Nis, August 26-30, 2001
2000 Mathematics Subject Classification: 26A12
Keywords: Regularly varying sequence, regularly varying function, Karamata index, Ma-
tuszewska index

215



216 Dragan Djurci¢ and Aleksandar Torgasev

Proof. (a) = (b): If (c,) € ORV, then f(x) = cfp) (z > 1) is a piecewise
constant function, which is thus measurable on the interval [0, +00), f(z) > 0
for all x > 1, and f(x) =0 for all z € [0,1). Next we have that

Clxn] = Clbn)

lim sup =2 = lim —% = k.(b) < +o0
”_"""X’)\E[a,b] Cn, n—+o0o Cp,

for every fixed interval [a,b] C (0,400). Since (Axz)/[A[z]] € [1,2] for every A
and all sufficiently large z, there is a A > 0 such that

— f(Az) T c
lim = lim, [ 2]
r— 400 f({L‘) T—+o0 Clz]

< k(M) - ko(2) < +o0.

This proves that f € ORV.
(b) = (a) is trivial since k() < kg(A) for every A > 0. [

2 Main result

In this section we shall prove two theorems of Abelian and Tauberian type for
power series, in which a central role have the sequences from the class ORV.

Theorem 2.1 (a) (Abelian statement) For any nondecreasing sequence (c,,) €
ORYV, and the corresponding function

o0

F&) =Y (en—cam)t",  0<t<1,

n=1

the function g(x) = f(1 —1/z) (x > 2) belongs to the class ORV .

(b) (Tauberian statement) If (c,,) is a nondecreasing sequence of positive
numbers, co = 0, f(t) and g(x) are defined as above, and g(x) € ORV, then
(cn) € ORV.

Proof. (a) The function a(z) = c[5] (x > 1) is piecewise constant, nondecreas-
ing, so by Lemma 1.1 a(z) € ORV. Here a(x) = 0 for every = € [0,1). Consider
the function

+oo

+oo
a(s) = /0 e ** da(k) = Z(C” —cp_1)e” "

n=1

Since « € ORV, the function &(s) is defined for every s > 0, because by a
result from [2] we have that &(1/s) < a(s) (s — +00), so &(s) is defined for all
s € (0,0) (6 > 0). It is also defined for all s € [, +00) since it is positive and
decreasing.
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By the same result the function &(1/s) (s > 0) belongs to the class ORV.
Taking t = e~ ® (s > 0) we have that

(=log t) = Z n — Cn—1)t" (0<t<1).

Defining f(t) = &(—logt) (0 <t < 1) and g(t) = f(1—1/t) (1 <t < 400),
we have that ¢(t) is a positive and increasing function on the interval (1, +00).
Besides, since &(1/s) (s > 0) is an ORV function, we find that for every A > 1

— g(At) T FA=1/A1) _
Ay T et T

lo 1-1/Xt

= hmt—>+oo W -

a((5 (~1og (1-1/17)
&(—=log (1-1/t))

< 1imt—>+oo

11

= lim,_ 400 Aog(@;)) < +00.

In this calculations we used that the function &(s) is decreasing for s > 0,

and
log (1 —1/\t)
log (1 -1/t)
for all sufficiently large ¢t and the considered A. Consequently, the function
gx)=f(1—-1/x) (x> 2)is ORV.
(b) Since the function g(x) = f(1 —1/x) (z > 2) is ORV, we have that

= f0-1A8) o g0a)
emioe f(L-1/7)  a—ioe g(a)

for all A > 1. Letting s = —(log (1 — 1/z))~! we find

e [1/2\1]

< +o00

— f(l—l/)\w) o fa L)
N (N A (O
L_el/s 1
(o)
=lims_ 400 Fe= 17 >
e—1/35)

> thHJ’,OO W’ )\ > 1.

In the previous calculations we used that for any A > 1

—1/s_1

1-—
e—1/As

—1 (s — +00),

the function h(\,s) = (1 — *)el/)‘s (A > 1,8 > 1/log 2) is nonincreasing

in s, and the function
+oo

ft) = Z(Cn —cp-1)t"

n=1
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is nondecreasing on (0, 1).
Since f is continuous and positive on [1/2,1), we have that the function
p(s) = f(e='/*) (s > 1/log2) is ORV. Defining a(t) = cry (t > 0), we find that

+00 too
f(efl/s) _ Z(C" 7Cn_1)efn/s _ 6&(1/8) _ /0 eft/s da(t) (8 > 1/log 2)

is ORV. Therefore, a result from [2] gives that the function «(¢) is ORV, and
Lemma 1.1 gives that (¢,) € ORV. [

As an immediate consequence, we obtain the next theorem.

Theorem 2.2 (a) (Abelian statement) If (c,) is a nondecreasing ORV se-
quence, and

+oo
fO) =) ent™  (0<t<1), (1)
n=1

then g(x) = f(1 —1/x) (z > 2) is ORV.

(b) (Tauberian statement) If (c,) is a nondecreasing sequence of positive
numbers, co =0, f(t) is defined by (1) and g(x) = f(1 —1/z) (x > 2) is ORV,
then (cn) is ORV.

Proof. (a) Define the sequence (d,,) such that dy = 0 and d,, = >, _; ¢x. Then
0=dy<dy <dy <+, and ¢, = d,, — d—1 (n € N). Besides, the function
f(x) = ¢y (x > 1) is ORV. Since it is positive for > 1 and nondecreasing in
z, redefining f(x) with f(z) =0 for x € [0,1) by [2] we have

F(x):/owf(;v)dm (x>1+46,0>0)

is ORV . Since

z]—1

[
F@)= Y ctem@—la)  (@>1+0)
k=1

it is easily seen that the sequence F(n) = Z;ll ¢k (n > 2) is ORV if we redefine
F(0) =0 and F(1) = ¢ > 0. Since

— F(A

lim (An]) < 400

n—+oo  F(n)
for every A > 1, we have that

w F(A(n+ 1))
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for all A > 1. Hence the sequence ¢, = F(n+ 1) (n € N), ¢g = 0 is ORV.
Moreover we have that ¢, = d, (n > 0). Finally, Theorem 2.1 gives the
statement.

(b) Consider the sequence (d,,) such that dy = 0 and d,, = Y _, ¢ (n > 1).
Then 0 =dy < dy <dy <---,and ¢, =d,, —dp—1 (n > 1), and by Theorem 2.1
(d,) is ORV. Consequently, the sequence (¢,,) defined by ¢ = 0 and ¢, = d, 41
(n € N) is also ORV. Lemma 1.1 gives that the functions

[=] [z+1]

@)=Y e , gl@)y=>Y e w=>1
k=1

are ORV.

Next consider the function h(z) = Zfil Ck + Clajr( — [2]), @ > 1. Tt
is obviously nondecreasing, positive and continuous for every z > 1. Since
f(x) < h(z) < g(z) for every x > 1, we obtain

= hAz) o 9rz) _
N e et (Ol
_ mz_)m f(?agl) _
= Timy oo f((A;r&/)r)z)_

The last limit superior is finite by the Uniform convergence theorem for the
ORYV functions on some interval [A — §, A\ + §], with a fixed A > 0 and some
5 € (0,)) (see e.g. [2]).

This proves that h is ORV. Since h(z) = 0$+1 cyy dt and o(t) = cp, t > 1is
positive and monotone nondecreasing, we find that its left Matuszewska index
kam(p) > 0, so its left Karamata index kg () > —oo. Since h is ORV we
have that the right Karamata index k% (h) < +o0o. By [6] we now have that
kx(h) > kar(h) > 1+ kar(p) > 0, what by [2] gives that

h(z)
x+1’

that is ¢(z + 1) < h(x)/x, x — 4o00. This gives that p(z) = p(z + 1), > 1,
is ORV; thus o(z) is also ORV. Finally, since (c,) is the restriction of the
function ¢ to N, by Lemma 1.1 (¢, ) is ORV. [

ple+1) =< T — +00,

Remark. It is easy to see that all nondecreasing regularly varying sequences
(12]), all x—regularly varying sequences ([8]), and all nondecreasing sequences
which are restrictions of functions from the Matuszewska class or the class CRV
to the set N ([2] and [3]) are ORV, so they satisfy the conditions of the Theorems
2.1(a) and 2.2(a).

An open question. Describe all the functions ¢(x), > 2 which can substitute
the function r(z) = 1 — 1/, £ > 2, in Theorems 2.1 and 2.2, so that these
theorems remain true.
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