\mathcal{O}-regular variability and power series

Dragan Djurčić and Aleksandar Torgašev

Abstract

In this paper ${ }^{1}$ we prove some theorems of Abelian and Tauberian type for power series.

1 Introduction

In the papers [5], [1] etc, J. Karamata and V. Avakumović have founded the theory of \mathcal{O}-regularly varying mappings (functions and sequences), which very soon became a very developed theory. In particular, this theory has found the applications in many other areas of mathematics.

Definition 1 A sequence $\left(c_{n}\right)\left(n \in \mathbb{N}_{0}\right), c_{0}=0$ and $c_{n}>0(n \in \mathbb{N})$ is called \mathcal{O}-regularly varying if

$$
k_{c}(\lambda)=\varlimsup_{n \rightarrow+\infty} \frac{c_{[\lambda=n]}}{c_{n}}<+\infty
$$

for every $\lambda>0$. The class of all \mathcal{O}-regularly varying sequences is denoted $O R V$.
The class $O R V$ has many applications in the asymptotic analysis, and in particular in the Fourier analysis (see e.g. [7], [4], [8], [9]).

Definition 2 A function $f:[A,+\infty) \mapsto(0,+\infty)(A>0)$ is called \mathcal{O}-regularly varying if it is measurable and

$$
k_{f}(\lambda) \varlimsup_{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)}<+\infty
$$

for all $\lambda>0$. The class of all \mathcal{O}-regularly varying functions is also denoted ORV .

Lemma 1.1 If $\left(c_{n}\right), c_{0}=0, c_{n}>0(n \in \mathbb{N})$ is a nondecreasing sequence, then the next statements are equivalent:
(a) $\left(c_{n}\right) \in O R V$;
(b) $f(x)=c_{[x]} \in O R V$ for $x \geq 1$.

[^0]Proof. $(a) \Rightarrow(b)$: If $\left(c_{n}\right) \in O R V$, then $f(x)=c_{[x]}(x \geq 1)$ is a piecewise constant function, which is thus measurable on the interval $[0,+\infty), f(x)>0$ for all $x \geq 1$, and $f(x)=0$ for all $x \in[0,1)$. Next we have that

$$
\varlimsup_{n \rightarrow+\infty} \sup _{\lambda \in[a, b]} \frac{c_{[\lambda n]}}{c_{n}}=\varlimsup_{n \rightarrow+\infty} \frac{c_{[b n]}}{c_{n}}=k_{c}(b)<+\infty
$$

for every fixed interval $[a, b] \subset(0,+\infty)$. Since $(\lambda x) /[\lambda[x]] \in[1,2]$ for every λ and all sufficiently large x, there is a $\lambda>0$ such that

$$
\begin{aligned}
& \varlimsup_{x \rightarrow+\infty} \frac{f(\lambda x)}{f(x)} \quad=\varlimsup_{\lim }^{x \rightarrow+\infty}<\frac{c_{[\lambda x]}}{c_{[x]}} \leq \\
& \leq \varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda[x]]}}{c_{[x]}} \cdot \varlimsup_{x \rightarrow+\infty} \frac{c_{[\lambda x]}}{c_{[\lambda[x]]}} \leq \\
& \leq k_{c}(\lambda) \cdot k_{c}(2)<+\infty .
\end{aligned}
$$

This proves that $f \in O R V$.
$(b) \Rightarrow(a)$ is trivial since $k_{c}(\lambda)<k_{f}(\lambda)$ for every $\lambda>0$.

2 Main result

In this section we shall prove two theorems of Abelian and Tauberian type for power series, in which a central role have the sequences from the class $O R V$.

Theorem 2.1 (a) (Abelian statement) For any nondecreasing sequence $\left(c_{n}\right) \in$ ORV, and the corresponding function

$$
f(t)=\sum_{n=1}^{\infty}\left(c_{n}-c_{n-1}\right) t^{n}, \quad 0<t<1
$$

the function $g(x)=f(1-1 / x)(x \geq 2)$ belongs to the class ORV.
(b) (Tauberian statement) If $\left(c_{n}\right)$ is a nondecreasing sequence of positive numbers, $c_{0}=0, f(t)$ and $g(x)$ are defined as above, and $g(x) \in O R V$, then $\left(c_{n}\right) \in O R V$.

Proof. (a) The function $\alpha(x)=c_{[x]}(x \geq 1)$ is piecewise constant, nondecreasing, so by Lemma $1.1 \alpha(x) \in O R V$. Here $\alpha(x)=0$ for every $x \in[0,1)$. Consider the function

$$
\hat{\alpha}(s)=\int_{0}^{+\infty} e^{-s k} d \alpha(k)=\sum_{n=1}^{+\infty}\left(c_{n}-c_{n-1}\right) e^{-s n}
$$

Since $\alpha \in O R V$, the function $\hat{\alpha}(s)$ is defined for every $s>0$, because by a result from [2] we have that $\hat{\alpha}(1 / s) \asymp \alpha(s)(s \rightarrow+\infty)$, so $\hat{\alpha}(s)$ is defined for all $s \in(0, \delta)(\delta>0)$. It is also defined for all $s \in[\delta,+\infty)$ since it is positive and decreasing.

By the same result the function $\hat{\alpha}(1 / s)(s>0)$ belongs to the class $O R V$. Taking $t=e^{-s}(s>0)$ we have that

$$
\hat{\alpha}(-\log t)=\sum_{n=1}^{\infty}=\left(c_{n}-c_{n-1}\right) t^{n} \quad(0<t<1)
$$

Defining $f(t)=\hat{\alpha}(-\log t)(0<t<1)$ and $g(t)=f(1-1 / t)(1<t<+\infty)$, we have that $g(t)$ is a positive and increasing function on the interval $(1,+\infty)$. Besides, since $\hat{\alpha}(1 / s)(s>0)$ is an $O R V$ function, we find that for every $\lambda>1$

$$
\begin{aligned}
& \varlimsup_{t \rightarrow+\infty} \frac{g(\lambda t)}{g(t)}=\varlimsup_{\lim }^{t \rightarrow+\infty} \\
& \frac{f(1-1 / \lambda t)}{f(1-1 / t)}= \\
&= \varlimsup_{t \rightarrow+\infty} \frac{\hat{\alpha}(-\log (1-1 / \lambda t))}{\hat{\alpha}(-\log (1-1 / t))} \leq \\
& \leq \varlimsup_{t \rightarrow+\infty} \frac{\hat{\alpha}\left(\frac{1}{2 \lambda}(-\log (1-1 / t))\right)}{\hat{\alpha}(-\log (1-1 / t))}= \\
&=\varlimsup_{\lim }^{s \rightarrow+\infty} \\
& \frac{\hat{\alpha}\left(\frac{1}{2 \lambda} \frac{1}{s}\right)}{\hat{\alpha}(1 / s)}<+\infty
\end{aligned}
$$

In this calculations we used that the function $\hat{\alpha}(s)$ is decreasing for $s>0$, and

$$
\frac{\log (1-1 / \lambda t)}{\log (1-1 / t)} \in[1 / 2 \lambda, 1]
$$

for all sufficiently large t and the considered λ. Consequently, the function $g(x)=f(1-1 / x)(x \geq 2)$ is $O R V$.
(b) Since the function $g(x)=f(1-1 / x)(x \geq 2)$ is $O R V$, we have that

$$
\varlimsup_{x \rightarrow+\infty} \frac{f(1-1 / \lambda x)}{f(1-1 / x)}=\varlimsup_{x \rightarrow+\infty} \frac{g(\lambda x)}{g(x)}<+\infty
$$

for all $\lambda>1$. Letting $s=-(\log (1-1 / x))^{-1}$ we find

$$
\begin{aligned}
\varlimsup_{x \rightarrow+\infty} \frac{f(1-1 / \lambda x)}{f(1-1 / x)} & =\varlimsup_{s \rightarrow+\infty} \frac{f\left(1-e^{-1 / s}-1\right.}{f\left(e^{-1 / s}\right)}= \\
= & \varlimsup_{s \rightarrow+\infty} \frac{f\left(\frac{1-e^{1 / s}-1}{e^{-1 / \lambda s}} e^{-1 / \lambda s}=\right.}{f\left(e^{-1 / s}\right)}> \\
& >\varlimsup_{s \rightarrow+\infty} \frac{f\left(e^{-1 / \lambda s}\right)}{f\left(e^{-1 / s}\right)}, \quad \lambda>1
\end{aligned}
$$

In the previous calculations we used that for any $\lambda>1$

$$
\frac{1-\frac{e^{-1 / s}-1}{\lambda}}{e^{-1 / \lambda s}} \rightarrow 1 \quad(s \rightarrow+\infty)
$$

the function $h(\lambda, s)=\left(1-\frac{e^{-1 / s}-1}{\lambda}\right) e^{1 / \lambda s}(\lambda>1, s \geq 1 / \log 2)$ is nonincreasing in s, and the function

$$
f(t)=\sum_{n=1}^{+\infty}\left(c_{n}-c_{n-1}\right) t^{n}
$$

is nondecreasing on $(0,1)$.
Since f is continuous and positive on $[1 / 2,1)$, we have that the function $p(s)=f\left(e^{-1 / s}\right)(s \geq 1 / \log 2)$ is $O R V$. Defining $\alpha(t)=c_{[t]}(t>0)$, we find that
$f\left(e^{-1 / s}\right)=\sum_{n=1}^{+\infty}\left(c_{n}-c_{n-1}\right) e^{-n / s}=\hat{\alpha}(1 / s)=\int_{0}^{+\infty} e^{-t / s} d \alpha(t) \quad(s \geq 1 / \log 2)$
is $O R V$. Therefore, a result from [2] gives that the function $\alpha(t)$ is $O R V$, and Lemma 1.1 gives that $\left(c_{n}\right) \in O R V$.

As an immediate consequence, we obtain the next theorem.
Theorem 2.2 (a) (Abelian statement) If $\left(c_{n}\right)$ is a nondecreasing $O R V$ sequence, and

$$
\begin{equation*}
f(t)=\sum_{n=1}^{+\infty} c_{n} t^{n} \quad(0<t<1) \tag{1}
\end{equation*}
$$

then $g(x)=f(1-1 / x)(x \geq 2)$ is ORV.
(b) (Tauberian statement) If $\left(c_{n}\right)$ is a nondecreasing sequence of positive numbers, $c_{0}=0, f(t)$ is defined by (1) and $g(x)=f(1-1 / x)(x \geq 2)$ is ORV, then $\left(c_{n}\right)$ is ORV.

Proof. (a) Define the sequence $\left(d_{n}\right)$ such that $d_{0}=0$ and $d_{n}=\sum_{k=1}^{n} c_{k}$. Then $0=d_{0}<d_{1}<d_{2}<\cdots$, and $c_{n}=d_{n}-d_{n-1}(n \in \mathbb{N})$. Besides, the function $f(x)=c_{[x]}(x \geq 1)$ is $O R V$. Since it is positive for $x \geq 1$ and nondecreasing in x, redefining $f(x)$ with $f(x)=0$ for $x \in[0,1)$ by [2] we have

$$
F(x)=\int_{0}^{x} f(x) d x \quad(x \geq 1+\delta, \delta>0)
$$

is $O R V$. Since

$$
F(x)=\sum_{k=1}^{[x]-1} c_{k}+c_{[x]}(x-[x]) \quad(x \geq 1+\delta)
$$

it is easily seen that the sequence $F(n)=\sum_{k=1}^{n-1} c_{k}(n \geq 2)$ is $O R V$ if we redefine $F(0)=0$ and $F(1)=c>0$. Since

$$
\varlimsup_{n \rightarrow+\infty} \frac{F([\lambda n])}{F(n)}<+\infty
$$

for every $\lambda>1$, we have that

$$
\varlimsup_{n \rightarrow \infty} \frac{F([\lambda(n+1)])}{F(n+1)}<+\infty
$$

for all $\lambda>1$. Hence the sequence $\phi_{n}=F(n+1)(n \in \mathbb{N}), \phi_{0}=0$ is $O R V$. Moreover we have that $\phi_{n}=d_{n}(n \geq 0)$. Finally, Theorem 2.1 gives the statement.
(b) Consider the sequence $\left(d_{n}\right)$ such that $d_{0}=0$ and $d_{n}=\sum_{k=1}^{n} c_{k}(n \geq 1)$. Then $0=d_{0}<d_{1}<d_{2}<\cdots$, and $c_{n}=d_{n}-d_{n-1}(n \geq 1)$, and by Theorem 2.1 $\left(d_{n}\right)$ is $O R V$. Consequently, the sequence $\left(\phi_{n}\right)$ defined by $\phi_{0}=0$ and $\phi_{n}=d_{n+1}$ $(n \in N)$ is also $O R V$. Lemma 1.1 gives that the functions

$$
f(x)=\sum_{k=1}^{[x]} c_{k} \quad, \quad g(x)=\sum_{k=1}^{[x+1]} c_{k}, \quad x \geq 1
$$

are $O R V$.
Next consider the function $h(x)=\sum_{k=1}^{[x]} c_{k}+c_{[x]+1}(x-[x]), x \geq 1$. It is obviously nondecreasing, positive and continuous for every $x \geq 1$. Since $f(x) \leq h(x) \leq g(x)$ for every $x \geq 1$, we obtain

$$
\begin{aligned}
\varlimsup_{x \rightarrow+\infty} \frac{h(\lambda x)}{h(x)} & \leq \varlimsup_{x \rightarrow+\infty} \frac{g(\lambda x)}{f(x)}= \\
& =\varlimsup_{x \rightarrow+\infty} \frac{f(\lambda x+1)}{f(x)}= \\
& =\varlimsup_{x \rightarrow+\infty} \frac{f(\lambda+1 / x) x)}{f(x)} .
\end{aligned}
$$

The last limit superior is finite by the Uniform convergence theorem for the ORV functions on some interval $[\lambda-\delta, \lambda+\delta]$, with a fixed $\lambda>0$ and some $\delta \in(0, \lambda)$ (see e.g. [2]).

This proves that h is $O R V$. Since $h(x)=\int_{0}^{x+1} c_{[t]} d t$ and $\varphi(t)=c_{[t]}, t \geq 1$ is positive and monotone nondecreasing, we find that its left Matuszewska index $k_{M}(\varphi) \geq 0$, so its left Karamata index $k_{K}(\varphi)>-\infty$. Since h is $O R V$ we have that the right Karamata index $k^{K}(h)<+\infty$. By [6] we now have that $k_{K}(h) \geq k_{M}(h) \geq 1+k_{M}(\varphi)>0$, what by [2] gives that

$$
\varphi(x+1) \asymp \frac{h(x)}{x+1}, \quad x \rightarrow+\infty,
$$

that is $\varphi(x+1) \asymp h(x) / x, x \rightarrow+\infty$. This gives that $p(x)=\varphi(x+1), x \geq 1$, is $O R V$; thus $\varphi(x)$ is also $O R V$. Finally, since $\left(c_{n}\right)$ is the restriction of the function φ to \mathbb{N}, by Lemma $1.1\left(c_{n}\right)$ is $O R V$.

Remark. It is easy to see that all nondecreasing regularly varying sequences ([2]), all $*$-regularly varying sequences ([8]), and all nondecreasing sequences which are restrictions of functions from the Matuszewska class or the class $C R V$ to the set $\mathbb{N}([2]$ and $[3])$ are $O R V$, so they satisfy the conditions of the Theorems 2.1(a) and 2.2(a).

An open question. Describe all the functions $\varphi(x), x \geq 2$ which can substitute the function $r(x)=1-1 / x, x \geq 2$, in Theorems 2.1 and 2.2 , so that these theorems remain true.

References

[1] V.G. Avakumović, Sur une extension de la condition de convergence des theorems inverses de sommabilite, C.R. Acad. Sci. Paris 200 (1935), 15151517.
[2] N.H. Bingham, C.M. Goldie and J.L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge, 1987.
[3] D. Djurčić, \mathcal{O}-regularly varying functions and strong asymptotic equivalence, J. Math. Anal. Appl. 220 (1998), 451-461.
[4] D. Grow and Č.V. Stanojević, Convergence and the Fourier character of trigonometric transforms with slowly varying convergence moduli, Math. Ann. 302 (1955), 433-472.
[5] J. Karamata, Remark on the preceding paper by V.G. Avakumović, with the study of a class of functions occuring in the inverse theorems of the summability theory, (Serbo-croatian) Rad. JAZU 254 (1936), 187-200.
[6] W. Matuszewska and W. Orlicz, On some classes of functions with regard to their orders of growth, Studia Math. 26 (1965), 11-24.
[7] E. Omey, On the asymptotic behaviour of two sequences related by a convolution equation, Publ. Inst. Math. (Beograd) 58(72) (1995), 143-148.
[8] Č.V. Stanojević, \mathcal{O}-regularly varying convergence moduli of Fourier and Fourier-Stieltjes series, Math. Ann. 279 (1987), 103-115.
[9] Č.V. Stanojević, Structure of Fourier and Fourier-Stieltjes coefficients of series with slowly varying convergence moduli, Bull. Amer. Math. Soc. 19 (1988), 283-286.

Technical Faculty
Svetog Save 65
32000 Čačak
Yugoslavia
Mathematical Faculty
Studentski trg 16a
11000 Beograd
Yugoslavia

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001
 2000 Mathematics Subject Classification: 26A12
 Keywords: Regularly varying sequence, regularly varying function, Karamata index, Matuszewska index

