Matrix representation of BUAR(1)

Biljana Č. Popović and Miroslav M. Ristić

Abstract

We consider the bivariate first order stationary autoregressive process $\left\{\mathbf{W}_{t}\right\}$, $$
\mathbf{W}_{t}=\mathbf{M}_{t} \mathbf{W}_{t-1}+\varepsilon(t)
$$ with uniform marginal distribution defined by Ristić and Popović [8]. We pay our attention onto the proving procedure specified by Nicholls and Quinn [4] ${ }^{1}$.

1 Introduction

Uniform autoregressive time series was defined by Chernik [1] and the idea was developed later on by Chernik and Davis [2] and Lawrance [3]. In recent times Ristić and Popović [5],[6] and [8] contributed new results in this area. Here we consider the time series $\operatorname{BUAR}(1)$ in contexts of the general definition of the random coefficient autoregressive time series with the special attention on the proving procedure developed by Nicholls and Quinn [4] which becomes rather complicated comparing with this specified in Ristić and Popović [8].

Let us start with the definitions:
Definition 1.1 Doubly-infinite vector valued time series $\left\{\mathbf{W}_{t}\right\}$ is BUAR(1) iff

$$
\begin{equation*}
\mathbf{W}_{t}=\mathbf{M}_{t} \mathbf{W}_{t-1}+\varepsilon(t) \tag{1}
\end{equation*}
$$

where $\mathbf{W}_{t}^{\prime}=\left[X_{t}, Y_{t}\right], \mathbf{M}_{t}=\left[\begin{array}{cc}U_{t 1} & V_{t 1} \\ U_{t 2} & V_{t 2}\end{array}\right], \varepsilon^{\prime}(t)=\left[\varepsilon_{1}(t), \varepsilon_{2}(t)\right],\left\{\left(U_{t i}, V_{t i}\right)^{\prime}\right\}$, $i=1,2$, are independent sequences of i.i.d. random vectors distributed as follows

$U_{t i} \backslash V_{t i}$	0	β_{i}
0	0	$\frac{-\beta_{i}}{\alpha_{i}-\beta_{i}}$
α_{i}	$\frac{\alpha_{i}}{\alpha_{i}-\beta_{i}}$	0

[^0]with $-1<\beta_{i} \leq 0 \leq \alpha_{i}<1, \alpha_{i}-\beta_{i}>0,1 /\left(\alpha_{i}-\beta_{i}\right) \in\{1,2,3, \cdots\}, i=1,2$, $\{\varepsilon(t)\}$ is the sequence of i.i.d. random vectors with independent components distributed as
$$
P\left\{\varepsilon_{t i}=j_{i}\left(\alpha_{i}-\beta_{i}\right)-\beta_{i}\right\}=\alpha_{i}-\beta_{i} ; \quad j_{i}=0,1, \ldots, \frac{1}{\alpha_{i}-\beta_{i}}-1, i=1,2
$$
$\left\{X_{t}\right\}$ and $\left\{Y_{t}\right\}$ are the sequences of i.i.d. random variables distributed as $X_{t}: \mathcal{U}(0,1), Y_{t}: \mathcal{U}(0,1), \forall t$.

Here, we shall consider the case of independent vectors $\mathbf{M}_{t i}^{\prime}=\left[U_{t i}, V_{t i}\right]$ and $\varepsilon(t)$ for any t.

The bivariate time series $\left\{\mathbf{W}_{t}\right\}$ satisfies the general definition of $\operatorname{RCA}(n)$ for $n=1$ defined by Nicholls and Quinn [4] but with nonzero mean of the innovation sequence:

Definition 1.2 $R C A(n) p$-variate random coefficient autoregression

$$
\begin{equation*}
X(t)=\sum_{i=1}^{n}\left\{\beta_{i}+B_{i}(t)\right\} X(t-1)+\varepsilon(t) \tag{2}
\end{equation*}
$$

where:
(i) $\{\varepsilon(t) ; t=0, \pm 1, \pm 2, \cdots\}$ is an independent sequence of p-variate random variables with mean zero and covariance matrix \mathbf{G}.
(ii) The $p \times p$ matrices $\beta_{i}, i=1,2, \cdots, n$ are constants.
(iii) Letting $B(t)=\left\{B_{n}(t), \cdots, B_{1}(t)\right\}$, then $\{B(t)\}$ is an independent sequence of $p \times n p$ matrices with mean zero and $E[B(t) \otimes B(t)]=C .\{B(t)\}$ is also independent of $\{\varepsilon(t)\}$.
(iv) There is no non-zero $p \times 1$ constant vector z such that $z^{\prime} X(t)$ is purely linearly deterministic.

In this paper we use algebra of well known Kronecker's (tensor) product, defined as

Definition 1.3 Let $A=\left[a_{i j}\right]_{p \times q}$ and $B=\left[b_{i j}\right]_{m \times n}$. Then Kronecker's product is defined as $A \otimes B=\left[a_{i j} B\right]_{p m \times q n}$.

We consider the existence of a solution of the equation (1) and the stationarity of such possible solution under the assumption of the defined uniform distribution.

2 Stationarity

First of all we shall discuss the stationarity (wide sense) of the process $\left\{\mathbf{W}_{t}\right\}$. We shall use the procedure of Nicholls and Quinn to prove the stationarity: the
(necessary and) sufficient conditions for stationarity of $\left\{\mathbf{W}_{t}\right\}$ will be expressed as

$$
\begin{equation*}
\left(\mathbf{I}_{2}-\beta\right) \mu=\tilde{\epsilon} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\mathbf{I}_{4}-\mathbf{M}\right) \operatorname{vec} V=(\tilde{\epsilon} \otimes \beta+\beta \otimes \tilde{\epsilon}) \mu+\operatorname{vec} \tilde{\mathbf{G}}+\operatorname{vec}\left(\tilde{\epsilon} \tilde{\epsilon}^{\prime}\right) \tag{4}
\end{equation*}
$$

where $\beta=E \mathbf{M}_{t}, \mu=E \mathbf{W}_{t}, \mathbf{M}=E\left(\mathbf{M}_{t} \otimes \mathbf{M}_{t}\right), \tilde{\epsilon}=E \varepsilon(t), V=E\left(\mathbf{W}_{t} \mathbf{W}_{t}^{\prime}\right)$, $\tilde{\mathbf{G}}=E\left[(\varepsilon(t)-\tilde{\epsilon})(\varepsilon(t)-\tilde{\epsilon})^{\prime}\right]$.

It is easy to verify that $\beta=\frac{1}{\alpha_{1}-\beta_{1}} A_{1}+\frac{1}{\alpha_{2}-\beta_{2}} A_{2}, A_{1}=\left[\begin{array}{ll}\alpha_{1}^{2} & -\beta_{1}^{2} \\ 0 & 0\end{array}\right]$, $A_{2}=\left[\begin{array}{ll}0 & 0 \\ \alpha_{2}^{2} & -\beta_{2}^{2}\end{array}\right], \mu^{\prime}=[1 / 2,1 / 2], \tilde{\epsilon}=\frac{1}{2}\left[\begin{array}{l}1-\alpha_{1}-\beta_{1} \\ 1-\alpha_{2}-\beta_{2}\end{array}\right]$ and (3) holds. Also,

$$
\mathbf{M}=\left[\begin{array}{cccc}
\alpha_{1} u_{1} & 0 & 0 & \beta_{1} v_{1} \\
u_{1} u_{2} & u_{1} v_{2} & u_{2} v_{1} & v_{1} v_{2} \\
u_{1} u_{2} & u_{2} v_{1} & u_{1} v_{2} & v_{1} v_{2} \\
\alpha_{2} u_{2} & 0 & 0 & \beta v_{2}
\end{array}\right]
$$

where $u_{i}=E\left(U_{t i}\right)$ and $v_{j}=E\left(V_{t j}\right), i, j=1,2$,

$$
(\tilde{\epsilon} \otimes \beta)^{\prime}=\frac{1}{2}\left[\frac{1-\alpha_{1}-\beta_{1}}{\alpha_{1}-\beta_{1}} A_{1}^{\prime}+\frac{1-\alpha_{1}-\beta_{1}}{\alpha_{2}-\beta_{2}} A_{2}^{\prime}, \frac{1-\alpha_{2}-\beta_{2}}{\alpha_{1}-\beta_{1}} A_{1}^{\prime}+\frac{1-\alpha_{2}-\beta_{2}}{\alpha_{2}-\beta_{2}} A_{2}^{\prime}\right],
$$

similarly $\beta \otimes \tilde{\epsilon}$.
Further on

$$
\begin{gathered}
\operatorname{vec} \tilde{\mathbf{G}}+\operatorname{vec}\left(\tilde{\epsilon} \tilde{\epsilon}^{\prime}\right)=\operatorname{vecF}, \\
\operatorname{vecF}=\operatorname{vec} E\left(\varepsilon(t) \varepsilon^{\prime}(t)\right)=\left[\begin{array}{l}
\frac{1}{6}\left(2+\alpha_{1}^{2}+4 \alpha_{1} \beta_{1}+\beta_{1}^{2}-3 \alpha_{1}-3 \beta_{1}\right) \\
\frac{1}{4}\left(1-\alpha_{1}-\beta_{1}\right)\left(1-\alpha_{2}-\beta_{2}\right) \\
\frac{1}{4}\left(1-\alpha_{1}-\beta_{1}\right)\left(1-\alpha_{2}-\beta_{2}\right) \\
\frac{1}{6}\left(2+\alpha_{2}^{2}+4 \alpha_{2} \beta_{2}+\beta_{2}^{2}-3 \alpha_{2}-3 \beta_{2}\right)
\end{array}\right]
\end{gathered}
$$

and the result (4) follows. So, $\left\{\mathbf{W}_{t}\right\}$ is a wide sense stationery.

3 Uniqueness and σ_{t}-measurability

In order to prove the existence of the solution of (1), first of all, we shall prove that \mathbf{M} has no unit eigenvalues. This solution will be stationary and σ_{t}-measurable, where σ_{t} is the σ-field generated by $\left\{\left(\mathbf{M}_{s}, \varepsilon(s)\right), s \leq t\right\}$.

The characteristic equation of \mathbf{M} is

$$
\left(\lambda^{2}-\left(\alpha_{1} u_{1}+\beta_{2} v_{2}\right) \lambda+\alpha_{1} \beta_{2} u_{1} v_{2}-\alpha_{2} \beta_{1} u_{2} v_{1}\right)\left(\left(u_{1} v_{2}-\lambda\right)^{2}-u_{2}^{2} v_{1}^{2}\right)=0
$$

So, its eigenvalues are

$$
\begin{aligned}
& \lambda_{1,2}=u_{1} v_{2} \pm u_{2} v_{1} \\
& \lambda_{3,4}=\frac{\alpha_{1} u_{1}+\beta_{2} v_{2} \pm \sqrt{\left(\alpha_{1} u_{1}-\beta_{2} v_{2}\right)^{2}+4 \alpha_{2} \beta_{1} u_{2} v_{1}}}{2}
\end{aligned}
$$

After some cumbersome but simple calculations on these eigenvalues, it follows that \mathbf{M} has no unit eigenvalue at all.

According to the Theorem 2.2 (Nicholls and Quinn [4]), as \mathbf{M} has no eigenvalue on the unit circle, necessary and sufficient condition for existing unique, stationary, σ_{t}-measurable solution of (1) will be positive definiteness of matrix H, in our case, defined as

$$
v e c \mathbf{H}=v e c \mathbf{G}+\mathbf{c} \sum_{j=0}^{\infty} \mathbf{M}^{j} v e c \mathbf{G} .
$$

To reach this term and to prove it, we need the transformation $\mathbf{Q}_{t}=\mathbf{W}_{t}-\mu$. After this, we have $E \mathbf{Q}_{t}=\mathbf{0}, \mathbf{Q}_{t}=\mathbf{M}_{t} \mathbf{Q}_{t-1}+\eta(t), \eta(t)=\varepsilon(t)+\left(\mathbf{M}_{t}-\mathbf{I}\right) \mu$, $E \eta(t)=\mathbf{0}, \mathbf{G}=E\left[\eta(t) \eta^{\prime}(t)\right], \mathbf{C}=E\left(\mathbf{B}_{t} \otimes \mathbf{B}_{t}\right)$, where $\mathbf{B}_{t}=\mathbf{M}_{t}-\beta$.

We will reach the proof in two steps:

1. Convergence of the series

$$
\sum_{j=0}^{\infty} \mathbf{M}^{j} v e c \mathbf{G}
$$

It is easy to verify that

$$
\mathbf{Q}_{t}=\sum_{j=1}^{r} S_{t, j-1}^{Q} \eta(t-j)+\eta(t)+\mathbf{R}_{t, r}^{Q}
$$

where $S_{t, j}^{Q}=\prod_{k=0}^{j} \mathbf{M}_{t-k}$ and $\mathbf{R}_{t, r}^{Q}=S_{t, r}^{Q} \mathbf{Q}_{t-r-1}$. If we set $\mathbf{W}_{t, r}^{q}=\mathbf{Q}_{t}-\mathbf{R}_{t, r}^{Q}$ and $S_{t,-1}^{Q} \stackrel{\text { def }}{=} \mathbf{I}_{2}$, then

$$
\mathbf{Q}_{t}=\sum_{j=0}^{r} S_{t, j-1}^{Q} \eta(t-j)+\mathbf{R}_{t, r}^{Q}
$$

and

$$
\mathbf{W}_{t, r}^{Q}=\sum_{j=0}^{r} S_{t, j-1}^{Q} \eta(t-j)
$$

After this we obtain

$$
\operatorname{vec} E\left[\mathbf{W}_{t, r}^{Q}\left(\mathbf{W}_{t, r}^{Q}\right)^{\prime}\right]=\operatorname{vec} E\left[\sum_{j=0}^{r} S_{t, j-1}^{Q} \eta(t-j) \eta^{\prime}(t-j)\left(S_{t, j-1}^{Q}\right)^{\prime}\right]
$$

thanks to the fact that $\eta(t-j)$ and $\eta(t-i)$ are uncorrelated for $i \neq j$.
If we use the following properties of Kronecker's product
a) $\operatorname{vec}(A B C)=\left(C^{\prime} \otimes A\right) \operatorname{vec} B$, and
b) $\left(\prod_{i=0}^{j} A_{i}\right) \otimes\left(\prod_{k=0}^{j} B_{k}\right)=\prod_{i=0}^{j}\left(A_{i} \otimes B_{i}\right)$
whenever these products are defined, it will be

$$
\operatorname{vecE}\left[\mathbf{W}_{t, r}^{Q}\left(\mathbf{W}_{t, r}^{Q}\right)^{\prime}\right]=\sum_{j=0}^{r} \mathbf{M}^{j} v e c \mathbf{G} .
$$

Thanks to the no unit eigenvalues of \mathbf{M} in our special case,
$\sum_{j=0}^{r} \mathbf{M}^{j} v e c \mathbf{G}$ converges as $r \rightarrow \infty$.
So, we have proved mean square convergence and, as the consequence, the convergence in probability of $\mathbf{W}_{t, r}^{Q}$.
That implies that the solution of (1) will be of the form

$$
\begin{equation*}
\mathbf{W}_{t}=\sum_{j=1}^{\infty}\left(\prod_{k=0}^{j} \mathbf{M}_{t-k}\right)\left[\varepsilon(t-j)+\left(\mathbf{M}_{t-j}-\mathbf{I}\right) \mu\right]+\varepsilon(t)+\left(\mathbf{M}_{t}-\mathbf{I}_{4}\right) \mu . \tag{5}
\end{equation*}
$$

2. Positive definiteness of \mathbf{H} is equivalent to the fact that for any nonzero vector $z_{2 \times 1}, \operatorname{vec}\left(z^{\prime} \mathbf{H} z\right)$ is a nonzero vector. So, we shall discuss the last one. As the $v e c \mathbf{G}$ is

$$
\begin{aligned}
\operatorname{vec} \mathbf{G} & =v e c \mathbf{F}+\left(\beta \otimes \tilde{\varepsilon}-\mathbf{I}_{2} \otimes \tilde{\varepsilon}+\tilde{\varepsilon} \otimes \beta-\tilde{\varepsilon} \otimes \mathbf{I}_{2}\right) \mu+ \\
& +\left(\mathbf{M}-\mathbf{I}_{2} \otimes \beta-\beta \otimes \mathbf{I}_{2}+\mathbf{I}_{4}\right) \operatorname{vec}\left(\mu \mu^{\prime}\right) .
\end{aligned}
$$

it will be

$$
\begin{aligned}
\operatorname{vec}\left(z^{\prime} \mathbf{H} z\right) & =v e c z^{\prime} \mathbf{F} z+z^{\prime} \beta \mu \beta^{\prime} z+z^{\prime} \beta \mu \tilde{\epsilon}^{\prime} z+\left(z^{\prime} \beta \mu\right)\left(z^{\prime} \beta \mu\right)^{\prime}- \\
& -z^{\prime} \beta \mu \mu^{\prime} z-\left(z^{\prime} \beta \mu \mu^{\prime} z\right)^{\prime}+z^{\prime} E\left[\mathbf{B}_{t} \mu\left(\mathbf{B}_{t} \mu\right)^{\prime}\right] z+ \\
& +\left(z^{\prime} \mu\right)\left(z^{\prime} \mu\right)^{\prime}+\sum_{j=0}^{\infty} E\left[z^{\prime} \mathbf{B}_{t} \beta^{j} \mathbf{G}\left(\beta^{j}\right)^{\prime} \mathbf{B}_{t}^{\prime} z\right]- \\
& -\left(z^{\prime} \otimes(\beta z)^{\prime}\right) \text { vec } \mu .
\end{aligned}
$$

Using the Sylvester's theorem for the positive definiteness of symmetric quadratic matrices and direct solving for the rest, it follows that \mathbf{H} is positive definite.
So, (1) has the unique stationary σ_{t}-measurable solution (5).

References

[1] M. R. Chernick, A limit theorem for the maximum of autoregressive processes with uniform marginal distributions, Ann. Probab. (9) 1 (1981), 145149.
[2] M. R.Chernick and R. A. Davis, Extremes in autoregressive processes with uniform marginal distributions, Statistics and Probability Letters 1 (1982), 85-88.
[3] A. J. Lawrance, Uniformly distributed first-order autoregressive time series models and multiplicative congruential random number generators, J. Appl. Prob. 29 (1992), 896-903.
[4] D. Nicholls and B. Quinn, Random Coefficient Autoregressive Models: An Introduction, Springer, New York-Berlin, Lecture Notes in Statistics, (1982)
[5] M. M. Ristić and B. Č. Popović, A new uniform $A R(1)$ time series model ($N U A R(1))$, Publications de L' Institut Mathématique - Beograd 68 (82) (2000), 145-152.
[6] M. M. Ristić and B. Č. Popović, Parameter estimation for uniform autoregressive processes, Novi Sad Journal of Mathematics, 30 (1) (2000), 89-95.
[7] M. M. Ristić and B. Č. Popović, The uniform autoregressive process of the second order (UAR(2)), Statistics and Probability Letters, accepted for publication
[8] M. M. Ristić and B. Č. Popović, A bivariate uniform autoregressive process of the first-order (BUAR(1)), submitted for publication

Faculty of Sciences and Mathematics
Department of Mathematics
University of Niš
Višegradska 33, 18000 Niš
PO.Box 224, Yugoslavia
biljanap@ban.junis.ni.ac.yu, miristic@ptt.yu

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001 2000 Mathematics Subject Classification: 62M10
 Keywords: Uniform autoregressive process, first-order, bivariate uniform autoregressive process, tensor product, stationarity.

