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Abstract

In this paper1 we report results on stability and convergence of two-
level difference schemes for parabolic interface equations. Energy norms
that rely on spectral problems containing the eigenvalue in boundary con-
ditions or in conditions on conjugation are introduced. Necessary and suf-
ficient stability conditions in these norms for weighted difference schemes
are established. Convergence rate estimates of difference schemes com-
patible with the smoothness of the differential problems solutions are pre-
sented. The introducing of intrinsic discrete norms enable us to precise the
values of the mesh steps that control stability and the rate of convergence
of the difference schemes.

1 Introduction

Mathematically, interface problems lead to differential equations whose input
data and solutions have discontinuities or non-smoothness across one or several
interfaces which have lower dimension than that of the space where the problem
is defined. The numerical methods designed for smooth solutions do not work
efficiently for interface problems.

Interface problems occur in many applications and therefore, various forms
of jump (interface) relations satisfied by the solution and its derivatives are
known.

In [4] a review of results on numerical solutions of elliptic and parabolic
interface problems in the recent three decades is presented.

Also, there, convergence of FEM for elliptic and parabolic problems with
jump conditions of the form

[u] = 0, [k∂u/∂n] = g

is studied. These relations correspond to singular source type right-hand side
in the equation.
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2000 Mathematics Subject Classification:
Keywords:

239
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In the present paper we discuss stability and convergence of difference sche-
mes (DS) for parabolic problems with other type of interfaces, see the next
section.

The rest of this paper is organized as follows. In the next section we provide
an abstract formulation of the problems. In Section 3, we discuss our previously
results and we present new ones concerning stability of DS for 2D problems.
Results on convergence of difference schemes are reported in Section 4.

2 The Differential problems

The problems solved below can be written as an abstract Cauchy problem

B
du

dt
+ Au = f(t), 0 < t < T, u(0) = u0, (2.1)

where A and B are unbounded selfadjoint positive definite linear operators,
with domains dense in Hilbert space H, u0 is given element of energy space HB ,
f(t) ∈ L2((0, T ),HA−1) and u(t) is the unknown function from (0, T ) into HA.
Existence, uniqueness of solution and a priori estimates (2.1) can be found in
[3, 8-10]

2.1 1D problems

Let us consider the initial boundary value problem for the heat equation with
concentrated capacity at the interior point x = ξ [2-4, 7-13]:

[
c(x) + K δ(x− ξ)

] ∂u

∂t
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t), (x, t) ∈ Q = (0, 1)× (0, T ),

(2.2)

u(0, t) = 0, u(1, t) = 0, 0 < t < T ; u(x, 0) = u0(x), x ∈ (0, 1), (2.3)

where K > 0, and δ(x) is the Dirac distribution. If 0 < c3 ≤ c(x) we shall refer
the problem (2.2), (2.3) as Dirichlet concentrated capacity problem (DCCP) It
follows from (2.2), that the solution of this problem satisfies at (x, t) ∈ Q1 =
(0, ξ)× (0, T ) and (x, t) ∈ Q2 = (ξ, 1)× (0, T ) the equation

c(x)
∂u

∂t
− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t) ,

and at x = ξ – the conditions of conjugation

[u]x=ξ ≡ u(ξ + 0, t)− u(ξ − 0, t) = 0 ,

[
a

∂u

∂x

]

x=ξ

= K
∂u(ξ, t)

∂t
. (2.4)

It is easy to see that the DCCP can be reduced in the form (2.1) letting
H = L2(0, 1), Au = − ∂

∂x

(
a(x) ∂u

∂x

)
and Bu =

[
c(x) + K δ(x − ξ)

]
u(x, t).
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Then HA =
◦

W 1
2 (0, 1), ‖w‖2A =

∫ 1

0
a(x) [w′(x)]2 dx, ‖w‖2B =

∫ 1

0
c(x) w2(x) dx +

K w2(ξ).
When ξ = 0 in (2.2) we come to initial–boundary value problem for the

heat equation with dynamical boundary condition (DBCP) at x = 0 (cf. [3]):
Let suppose now in (2.2) c(x) ≡ 0. Then the solution for (x, t) ∈ Q1 and

(x, t) ∈ Q2 satisfies the equation

− ∂

∂x

(
a(x)

∂u

∂x

)
= f(x, t) ,

and for x = ξ – the conjugation conditions (2.4)
Therefore, at fixed t, the equation is elliptic on (0, ξ) and (ξ, 1), it is parabolic

in the point x = ξ and we will refer it as weakly parabolic problem (WPP).

This problem also has the form (2.1), where Au = − ∂
∂x

(
a(x) ∂u

∂x

)
and Bu =

K δ(x− ξ)u(x, t).

The operator A is positively definite in the space HA =
◦

W 1
2 (0, 1). The

operator B is nonnegative in HA and ‖w‖B =
√

K |w(ξ)| .

2.2 2D problems

We consider the following linear model problem :

[
c(x) + δΓ(x)K(x)

]∂u

∂t
− Lu = f(x, T ), x = (x1, x2), (x, t) ∈ QT , (2.5)

Lu =
∂

∂x1

(
k1(x)

∂u

∂x1

)
+

∂

∂x1

(
k2(x)

∂u

∂x2

)

with initial and boundary condition, respectively

u(x, 0) = u0(x), x ∈ Ω; u = 0, x ∈ ∂Ω, 0 < t < T. (2.6)

Here Ω ⊂ R2 is an open domain with C1-piecewise smooth boundary Ω1 ⊂ Ω
is an open domain with C1-piecewise smooth boundary ∂Ω1 = Γ , Ω2 = Ω \
Ω1, ∂Ω2 = ∂Ω Next, QT = Ω × (0, T ) , ∂u/∂nk =

∑2
i=1 ki(x) ∂u

∂xi
cos (n, xi) is

the normal derivative and δΓ is the Dirac-delta function concentrated on Γ.
Physically [3], two cases of the equation (2.5) are important. In the first one

we suppose that c(x) ≥ c0 > 0, x ∈ Ω, K(x) ≥ K0 > 0, x ∈ Γ and we come
to 2D DCCP. Under certain smoothness and compatibility conditions on the
data (initial condition, coefficients, right-hand side, the boundaries ∂Ω1, ∂Ω2 ),
it follows from (2.5) that the 2D-DCCP is equivalent to the following one:

∂u

∂t
−Lu = f(x, t) in QT \ΓT ; u = 0, (x, t) ∈ ∂QT ; u(x, 0) = u0(x), x ∈ Ω

(2.7)
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and on the interface ΓT = Γ× [0, T ], the jump conditions hold

[u]ΓT
= 0,

[
∂u

∂nk

]

ΓT

= K(x)
∂u

∂t

∣∣∣∣
ΓT

. (2.8)

The second important case is when c(x) ≡ 0, K(x) ≥ K0 > 0. Then we
come to 2D-WPP, which is equivalent to the following one:

−Lu = f(x, t) in QT \ΓT ; u(x, t) = 0, (x, t) ∈ ∂QT ; u(x, 0) = u0(x), x ∈ Γ
(2.9)

and on the interface ΓT , the jump conditions (2.8) hold. The problems 2D-
DCCP, 2D-WPP also can be written in the abstract form (2.1).

3 Stability of difference schemes

3.1 Preliminary results

Consider the variational problems

1
λ

= sup
w∈HA

‖w‖2B
‖w‖2A

,
1
µ

= sup
v∈HA

‖v‖2
‖v‖2A

. (3.1)

The solutions of (3.1) satisfy the spectral problems

Aw = λBw and Av = µv (3.2)

respectively. Suppose that the the operator T = A−1B is compact. Then the
spectra of (3.2) are discrete, all eigenvalues are positive: 0 < λ1 < λ2 < ...; 0 <
µ1 < µ2 < . . . . Here we present a simple estimate for stability of the solution of
problem (2.1), which will be a landmark at investigation of the corresponding
DS for stability with respect to initial data and right–hand side.

Lemma 1 Let H, HA,HB and u0, f are as above. Then (1.1) has a unique
solution u ∈ L2((0, T ); HA) ∩ H1((0, T ); HA−1) (In fact u ∈ C((0, T ); H), cf.
[13]. If u0 ∈ HB, then u satisfies the estimate

E(t) ≤ e−2λ1ct

(
E(0) +

1
2ε

∫ t

0

‖f(ρ)‖2e2λ1cρdρ

)
, 0 < t < T, (3.3)

where ε > 0, 0 < c < 1 and

E(t) =
1
2
(Bu, u), E(0) =

1
2
(Bu0, u0).

We shall make use of abstract results in [5,11]. The interval [0, T ] is replaced
by the grid ω̄τ = {tn = nτ, n = 0, 1, ...M, Mτ = T}. Let us set ωτ = ω̄τ ∩
(0, T ), ω−τ = ωτ ∪{0} and ω+

τ = ωτ ∪{T}. A two–level scheme in operator form
is given by

Bvt + Av = ϕ, (3.4)
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where ϕ = ϕh,τ (tn) is a given function of tn ∈ ω−τ with values in a finite–
dimensional Hilbert space H, v = vhτ (tn) = vn is unknown function from ω̄τ

into H and A, B are linear operators, defined on H. Let D : H → H is a
selfadjoint linear positive definite operator. The linear space H equipped with
the inner product (v, w)D = (Dv, w) and the norm ‖w‖D =

√
(w, w)D is called

the energy space HD.

Theorem 1 Let A be a selfadjoint positive operator independent of n and let
B−1 exist. The scheme (3.4) is stable in the space HA if and only if

B ≥ 0.5τA or at least B ≥ εE + 0.5τA for some ε > 0, (3.5)

where E : H → H is identity operator.

Theorem 2 Let B = E+τσA, σ∗ = σ, A∗ = A, and let B−1 exist and operator
A is represented in the form A = L∗L, where L : H → H̄D, L∗ : H̄D → H, H̄D

is Euclid space with inner product (., .)H̄ . If the FDS (3.4) is stable in some
space HD, then the operator inequality

E + τLµL∗ ≥ 0 in H̄, where µ = σ − 0.5E (3.6)

is valid. Conversely, if condition (3.6) is satisfied, then the scheme (3.4) is
stable in HB∗B. But if in addition, A−1 exists, then the scheme (3.4) is stable
in HA2 as well.

3.2 Difference schemes with constant and variable weights

For simplicity we shall take Ω = (0, 1) × (0, 1). Let introduce on Ω the non-
uniform grid ω̄ = ω̄1 × ω̄2, ω̄1 = {x1,i = x1,i−1 + h1,i, i = 1, ..., N1, x1,0 =
0, x1,N1 = 1}, ω̄2 = {x2,k = x2,k−1+h2,k, k = 1, ..., N2, x2,0 = 0, x2,N2 = 1},
ω̄ = ω ∪ ∂ω, where ω is the set of the internal nodes of the mesh, ∂ω – the set
of boundary nodes. Together with the basic mesh, we introduce the flow mesh
ω̃ = ω̃1 × ω̃2, ω̃1 = {x̃1,i = 0.5(x1,i−1 + x1,i), i = 1, ..., N1}, ω̃2 = {x̃2,k =
0.5(x2,k−1 + x2,k), k = 1, ..., N2}. To each node x = (x1,i, x2,k) we attach the
rectangle e(x) = {ξ = (ξ1, ξ2) | x̃1,i < ξ1 < x̃1,i+1, x̃2,k < ξ2 < x̃2,k+1}. A
node x ∈ ω for which Γ ∩ e(x) 6= ∅ we shall call irregular (or interface) node.
We approximate the 2D DCCP by the scheme [11]

yn+1
ik − yn

ik

τ
=

σik

pik
Λhyn+1

ik +
1− σik

pik
Λhyn

ik + ϕ, x ∈ ω, (3.7)

(Λhy)ik = [(a1yx̄1)x̂1 ]ik + [(a2yx̄2)x̂2 ]ik,
yn

ik = 0, x ∈ ∂ω, n ≥ 0; y0
ik = u0(x), x ∈ ω̄.

Here yn
ik is the difference solution in the space mesh node (i, k) and

pik = p(x) = c(x), x = (x1,i, x2,k) ∈ ω̂ (regular node),

pik = p(x) = c(x) +
K(x)

h̄1,ih̄2,k
l(Γ ∩ e(x)), x = (x1,i, x2,k) ∈ ω̂ (irregular node),
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where l(Γ ∩ e(x)) is the length of the part of the curve Γ closed into the cell
e(x).

Stability of DS with constant weights for the 1D DCCP, 1D DBCP and
1, 2D WPP have been investigated on the base of Theorem 2 in [2,10,13]. In [10],
following inequality (3.3), energy norms, that rely on spectral problems of type
(3.2), containing the eigenvalues in the boundary conditions on conjugation are
introduced. This enable us to precise the values of the mesh steps that control
the stability of DS. Here, we shall show how this methodology works on 2D
CCP. First, let consider the problem of type (3.2)

Lv + λ
[
c(x) + K(x)δΓ(x)

]
v = 0, x ∈ Ω; v|∂Ω = 0

and its discretization ∧z + λhp(x)z = 0, x ∈ ω, z|∂ω = 0. This problem has
finite number of eigenvalues and we denote by λh

max the greatest eigenvalue. The
following theorem for DS with constant weights holds.

Theorem 3 Suppose that

σ ≥ 1
2
− 1

τλh
max

.

Then (3.7) is stable with respect to initial data. Suppose that

σ ≥ σ0 =
1
2
− 1− ε

τλh
max

, ε > 0.

Then the scheme (3.7) is stable with respect to right hand side.

The scheme (3.7) is written in the operator form (3.4), where (Ayn)ik =
(Λnyn)ik

pik
, and B = E + τσA. Then, the operator A is selfadjoint in the linear

space H equipped with the inner product and the corresponding norm

(u, v)Γ =
N1−1∑

i=1

N1−1∑

k=1

pikuikvikh̄1,ih̄2,k, ‖u‖Γ =
√

(u, v)Γ

Now, on the base of Theorem 3, we discuss (3.7) in the case of variable weights.
Operator Q = E +τLµL∗ is self-adjoint. Therefore condition (3.6) is equivalent
to the requirement of nonnegative eigenvalue of operator Q. For our problem we
involve H1 and H2 – Euclidian spaces with dimension: dimH1 = N1(N2 − 1),
dim H2 = (N2 − 1)N1 and usual inner products [11]. Next, we introduce the
following operators: L1 : H → H1, L2 : H → H2,

(L1y)ik = (
√

a1yx̄1)ik, y0k = yN1k = 0, i = 1, ..., N1; k = 1, ..., N2− 1, (3.8)

(L2y)ik = (
√

a2yx̄2)ik, yi0 = yiN2 = 0, i = 1, ..., N1 − 1; k = 1, ..., N2; (3.9)

and L∗1 : H → H1, L∗2 : H → H2,

(L∗1v)ik = − 1
pik

(
√

a1vx̂1)ik, i = 1, ..., N1 − 1; k = 1, ..., N2 − 1, (3.10)
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(L2v)ik = − 1
pik

(
√

a2vx̂2)ik, i = 1, ..., N1 − 1; k = 1, ..., N2 − 1. (3.11)

From (3.8), (3.9) and (3.10, 3.11) we obtain L∗1L1 : H → H, L∗2L2 : H → H and
therefore A = L∗1L1 + L∗2L2, A = L∗L, where L = (L1, L2)T , L∗ = (L∗1, L

∗
2)

T ,
L∗ : H̄ → H, H̄ = H1 ⊕ H2. Further analysis of (3.7) will be given in a
forthcoming paper of the authors.

4 Convergence of difference schemes on gener-
alized solutions

Convergence on classical solutions for 1D-DCC, DBC, WPP is studied in [1],
[2], [12]. More difficult is this question on generalized (weak) solutions. Then,
rate of convergence estimates of the form

‖u− v‖
W

k,k/2
2,h,τ

≤ C(h +
√

τ)s−k‖u‖
W

s,s/2
2

, s > k

where τ is time step and h - space mesh step are of great interest. Such estimates
for 1D DCCP, 1D DBCP, 1D WPP are established in [7-9].

The conception of studying in [7-9] is as follows. The problems considered
are treated as a first order abstract evolution (2.1), with selfadjoint operators
A (positive), B (positive or nonnegative), defined in Hilbert space H and then
to use energy methods from the theory of Hilbert spaces. Discrete analog of
appropriate subspaces of the Sobolev spaces are used and yet that allow the dis-
crete operators to be selfadjoint. In this first stage we obtain a priori estimates
for the discrete solutions. The second important idea of this method consists
in constructing the special integral representations of the error of the difference
scheme. This allows us by applying imbedding Sobolev’s theorems to obtain
more accurate estimates. We do not make use of the accurate Bramble-Hilbert
lemma. Here, we present a result of this type for 2D WPP.

We approximate the 2D WPP with constant coefficients and line interface
Γ =

{
x = (x1, x2) | x2 = x0

2, 0 ≤ x1 ≤ 1
}

on the mesh Q̄hτ = ω̄1 × ω̄2 × ω̄τ by
the implicit difference scheme with averaged right hand side

δγ vt̄ −∆hv = T 2
1 T 2

2 T−t ϕ, (x, t) ∈ ω × ω+
τ

v(x, t) = 0, (x, t) ∈ ∂ω × ω+
τ ; v(x, 0) = u0(x), x ∈ γ = ω ∩ Γ,

where ∆hv = vx̄1x1 + vx̄2x2 δγ(x) = δh2(x2 − x0
2) =

{
0, x ∈ ω \ γ
1/h2, x ∈ γ

and

T 2
1 , T 2

2 , T−1 are the Steklov averaging operators [6].

Theorem 4 Let f ∈ L2(QT ), u0 ∈
◦

W 1
2 (Γ) and the solution of 2D WPP with

constant coefficients belongs to

L2(0, T ; W 2
2 (Ω1)) ∩ L2(0, T ; W 2

2 (Ω2)) ∩W 1
2 (0, T ;L2(Γ)).
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Then, the error z = u− v satisfies the estimate
{

τ
∑

t∈ω+
τ

‖z(·, t)‖2W 1
2 (ω) + τ2

∑
t∈ω̄τ

∑

t′∈ω̄τ , t′ 6=t

‖z(·, t)− z(·, t′)‖2L2(γ)

|t− t′|2 +

+ max
t∈ω+

τ

‖z(·, t)‖2L2(γ)

}1/2

≤ C (h2
1 + h2

2 + τ)
√

ln 1/τ
(
‖u0‖W 2

2 (Γ)+

+‖f(·, 0)‖L2(Ω) + ‖f‖L2(0,T ;W 1
2 (Ω)) + ‖f‖W 1

2 (0,T ;W−1
2 (Ω))

)
.
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[10] B. S. Jovanović and L. G. Vulkov, Stability of difference schemes for parabolic
equations with dynamical boundary conditions and conditions on conjugation
(submitted).
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