High order ε -uniform methods for singularly perturbed reaction-diffusion problems with discontinuous coefficients and singular sources

Ivanka Tr. Dimitrova and Lubin G. Vulkov *

Abstract

We consider the reaction-diffusion equation with discontinues coefficients and singular sources in one dimension. In this work¹, we construct ε -uniformly convergent High Order Compact (HOC) monotone finite difference schemes defined on a priori Shishkin meshes, which have order two, three and four except for a logarithmic factor. Numerical experiments are presented and discussed.

1 Introduction

In this paper we are interested in the construction and validation of high order difference approximations to problems of type

$$L_{\varepsilon}u \equiv -\varepsilon^{2}(p(x)u')' + q(x)u = f(x) \text{ on } \Omega = \bigcup_{s=1}^{S+1} \Omega_{s}, \ \Omega_{s} = (\xi_{s-1}, \xi_{s}), \qquad (1)$$
$$s = 1, \dots, S+1, \ -1 = \xi_{0} < \xi_{1} < \dots < \xi_{S} < \xi_{S+1} = 1,$$

where ε is a parameter in (0, 1] and the coefficients p, q satisfy the inequalities

$$p_1 \ge p(x) \ge p_0 > 0, \ q_1 \ge q(x) \ge q_0 > 0 \text{ for } x \in \overline{\Omega}.$$
(2)

On the interfaces the jump (interface) relations hold

$$[u]_{\xi_s} = u(\xi_s + 0) - u(\xi_s - 0) = 0, \ \varepsilon \left[pu' \right]_{\xi_s} = Q_s u(\xi_s) + R_s, \ s = 1, \dots, S$$
(3)

and on the boundary $\{-1, 1\}$ the Dirichlet condition

$$u(-1) = u_{-1}, \ u(1) = u_1. \tag{4}$$

^{*}This work is supported by the University of Rousse under grant 2001-PF-01 $\,$

¹Presented at the IMC "Filomat 2001", Niš, August 26–30, 2001

²⁰⁰⁰ Mathematics Subject Classification: $06\mathrm{M}15$

Keywords: singularly perturbed problems, finite-difference schemes

More in detail we shall study the problem

$$L_{\varepsilon}u = f(x), \ x \in \Omega, \ [u]_{0} = 0, \ [pu']_{0} = Qu(0) + R, \ u(-1) = u_{-1}, u(1) = u_{1}.$$
(5)

i.e. the case of single interface S = 1, $\xi_1 = 0$, $Q_1 = Q$, $R_1 = R$.

Let define the function $\Phi_1(x)$ and the real number $Q(\varepsilon)$ as follows:

$$L_{\varepsilon}\Phi_{1} = 0, \ x \in \Omega, \ \Phi_{1}(-1) = 0, \ \Phi_{1}(0) = 1, \ \Phi_{1}(1) = 0$$
$$Q(\varepsilon) \equiv -\varepsilon \left(p(+0) \Phi_{1}'(+0) - p(-0) \Phi_{1}'(-0) \right).$$

In [4] is shown that $Q(\varepsilon) > 0$ and if $Q \neq -Q(\varepsilon)$ then

$$u(x) = v(x) - \frac{Qv(0) + R}{Q + Q(\varepsilon)} \Phi_1(x), \qquad (6)$$

where y(x) is the solution of the differential problem with only discontinuous coefficients, i.e.

$$L_{\varepsilon}v = f(x), \ x \in \Omega, \ [v]_0 = 0, \ [pv']_0 = 0, \ v(-1) = u_{-1}, \ v(1) = u_1.$$
(7)

Therefore, we can focus on problem (7). Our aim of this paper is to find uniformly convergent finite difference methods of high order on Shiskin meshes [8,9]. Previously finite difference schemes (FDS) of arbitrary order for (7) at $\varepsilon = 1$ was developed in [5]. Now, we follow the idea of Gartland [5], where classical methods are constructed on the base of an integral identity which is attributed to Marchuk. Below, we prove that methods constructed in this way,with k = 2, 3, 4 are uniformly convergent with $O\left(N^{-k}\ln^k N\right)$ if Shiskin meshes is used, cf [3]. ε -uniform methods for singularly perturbed problems with discontinuous coefficients and concentrated factors are studied in [7-10, 12]. The rest of the paper is organized as follows: In the next Section FDS up to fourth order are described. Uniform convergence is discussed in Section 3, and numerical results in Section 4.

2 High Order Three-Point Difference Scheme

In this section we discuss a few FDS derived in [5]. All our discretizations are on an interval about the origin x = 0. Let first assume that there is no interface, so that p, q and f are sufficiently smooth on $[-h_-, h_+]$, $h_{\mp} > 0$ is the mesh step in the left and in the right of x = 0, respectively. Let define

$$w(r,s) = (r^2 + 2rs - 2s^2)/(24r)$$
 and $w_{-1} = w(h_-, h_+), w_1 = w(h_+, h_-),$
 $w_0 = (h_- + h_+)(2h_-^2 + 7h_-h_+ + 2h_+^2)/(24h_-.h_+).$

Then the three point scheme

$$L_h v^h \equiv \alpha_{-1} v^h_{-1} + \alpha_0 v^h_0 + \alpha_1 v^h_1 = \beta_{-1} f_{-1} + \beta_0 f_0 + \beta_1 f_1, \tag{8}$$

where

$$\begin{split} \beta_{\mp 1} &= P^{\mp} \frac{h_{\mp}}{48} \left(\frac{3}{p_{\mp 1}} - \frac{1}{p_0} \right) + w_{\mp 1}, \ P^{\mp} = 6 / \left(\frac{1}{p_{\mp 1}} + \frac{4}{p_{\mp 1/2}} + \frac{1}{p_0} \right), \\ \beta_0 &= P^{-} \frac{h_-}{48} \left(\frac{1}{p_{-1}} - \frac{3}{p_0} \right) + P^{+} \frac{h_+}{48} \left(\frac{1}{p_{+1}} - \frac{3}{p_0} \right) + w_0, \\ \alpha_{\mp 1} &= -\varepsilon^2 P_{\mp} / h_{\mp} + \beta_{\mp 1} q_{\mp 1}, \ \alpha_0 &= \varepsilon^2 \left(P^{-} / h_- + P^{+} / h_+ \right) + \beta_0 q_0, \end{split}$$

has local truncation error (LTE) $O(H^3)$, $H = \max(h_-, h_+)$, or $LTE = CH^2$, but $C = C(\varepsilon)$.

In the next discretization p, q and f can have jump discontinuities. The lowest order FDS, LTE = O(1) in the interface x = 0 is given by the formula

$$L_h v^h = 0, \ \alpha_{-1} = \frac{p(-0)}{h_-}, \ \alpha_1 = \frac{p(+0)}{h_+}, \ \alpha_0 = \alpha_{-1} + \alpha_1.$$

The interface discretization is derived by Varga [11]

$$L_h v^h \equiv \beta_{-0} f_{-0} + \beta_{+0} f_{+0}, \tag{9}$$

where

$$\alpha_{\pm 1} = -\frac{2\varepsilon^2}{(h_- + h_+)h_{\pm 1}} p_{\pm 1/2}, \ \alpha_0 = \alpha_{-1} + \alpha_1 + \frac{h_- q_{-0} + h_+ q_{+0}}{h_- + h_+},$$
$$\beta_{\pm 0} = \frac{h_\pm}{h_- + h_+}.$$

When (8) is combined with standard central differences away from the interface, it produces a symmetric discretization matrix, and in this case it gives a global $O(H^2)$ discretization error.

An improvement of formula (9) is the scheme

$$L_h v^h = \beta_{-1} f_{-1} + \beta_{-0} f_{-0} + \beta_{+0} f_{+0} + \beta_1 f_1, \tag{10}$$

where

$$\begin{split} \beta_{\mp 1} &= P^{\mp} \frac{h_{\mp}}{24} \left(\frac{3}{p_{\mp 1}} + \frac{1}{p_{\mp 0}} \right), \; \beta_{\mp 0} = P^{\mp} \frac{h_{\mp}}{24} \left(\frac{5}{p_{\mp 1}} + \frac{3}{p_{\mp 0}} \right), \\ P^{\mp} &= 2/\left(\frac{1}{p_{\mp 1}} + \frac{1}{p_{\mp 0}} \right), \\ \alpha_{\mp 1} &= -\varepsilon^2 P^{\mp}/h_{\mp} + \beta_{\mp 1} q_{\mp 1}, \; \alpha_0 = \varepsilon^2 \left(P^-/h_- + P^+/h_+ \right) + \beta_{-0} q_{-0} + \beta_{+0} q_{+0}, \end{split}$$

which is locally $O(H^2)$ and it provides a global $O(H^3)$ when is combined with higher-order scheme like (8) away from the interface. The three-point discretization

$$L_h v^h = \beta_{-1} f_{-1} + \beta_{-1/2} f_{-1/2} + \beta_{-0} f_{-0} + \beta_{+0} f_{+0} + \beta_{1/2} f_{1/2} + \beta_1 f_1, \quad (11)$$

where

$$\begin{split} \beta_{\mp 1} &= P^{\mp} \frac{h_{\mp}}{36} \left(\frac{1}{p_{\mp 1}} - \frac{1}{p_{\mp 1/2}} \right), \ P^{\mp} = 6/\left(\frac{1}{p_{\mp 1}} + \frac{4}{p_{\mp 1/2}} + \frac{1}{p_{\mp 0}} \right) \\ \beta_{\mp 1/2} &= P^{\mp} \frac{h_{\mp}}{9} \frac{p_{\mp 1/2}}{p_{\mp 1/2} + \frac{1}{8}h_{\mp}^2 q_{\mp 1/2}} \left(\frac{1}{p_{\mp 1}} + \frac{2}{p_{\mp 1/2}} \right), \\ \beta_{\mp 0} &= P^{\mp} \frac{h_{\mp}}{36} \left(\frac{1}{p_{\mp 1}} + \frac{5}{p_{\mp 1/2}} \right), \\ \alpha_{\mp 1} &= -\varepsilon^2 P^{\mp}/h_{\mp} + \beta_{\mp 1}q_{\mp 1} + \tilde{P}^{\mp}, \\ \alpha_0 &= \varepsilon^2 \left(P^-/h_- + P^+/h_+ \right) + \beta_{-0}q_{-0} + \beta_{+0}q_{+0} + \tilde{P}^- + \tilde{P}^+ \end{split}$$

with

$$\widetilde{P}^{\mp} = \frac{1}{8} \frac{p_{\mp 1} + 4p_{\mp 1/2} - p_{\mp 0}}{p_{\mp 1/2}} \beta_{\mp 1/2} q_{\mp 1/2}$$

is locally $O(H^3)$, whether or not $h_- = h_+$ and is sufficient to obtain global $O(H^4)$ discretization error when combined with the high-order scheme (8) away from the interface.

It is theoretically possible to compute three-point schemes of any desired order of accuracy if one uses enough extra evaluations of p, q and f [5].

3 Uniform Convergence

For sufficiently small ε , classical methods in uniform meshes for singularly perturbed problems only work for very large number of mesh points [8,9]. Nevertheless if these methods are defined on special fitted meshes, the convergence to the exact solution is uniform in ε [8,9]. Shishkin meshes [8,9], are simple piecewise uniform meshes of this kind, frequently used for singularly perturbed problems. For the reaction diffusion problem (7), the corresponding Shishkin mesh, is defined as follows.

The interval Ω_1 is subdivided into three subintervals

$$[-1, -1 + \sigma_1], [-1 + \sigma_1, -\sigma_1] \text{ and } [-\sigma_1, 0]$$

for some σ_1 that satisfies $0 \leq \sigma_1 \leq 1/4$. On $[-1, -1 + \sigma_1]$ and $[-\sigma_1, 0]$ a uniform mesh with N/8 mesh-points is placed, while $[-1 + \sigma_1, -\sigma_1]$ has a uniform mesh with N/4 mesh points. The subintervals $[0, \sigma_2]$, $[\sigma_2, 1 - \sigma_2]$, $[1 - \sigma_2, 1]$ are treated analogously for some σ_2 satisfying $0 \leq \sigma_2 \leq 1/4$. The interior points of the mesh are denoted by

$$\begin{split} \Omega^N &= \{ x_i: \ x_i = -1 + h_{11}i, \ 1 \leq i \leq N/8, \ h_{11} = 8\sigma_1/N; \\ x_i &= -1 + \sigma_1 + h_{21}i, \ N/8 \leq i \leq 3N/8, \ h_{21} = 4(1 - 2\sigma_1)/N; \\ x_i &= -\sigma_1 + h_{11}i, \ 3N/8 \leq i \leq N/2; \\ x_i &= h_{12}i, \ N/2 \leq i \leq 5N/8, \ h_{12} = 8\sigma_2/N; \\ x_i &= \sigma_2 + h_{22}i, \ 5N/8 \leq i \leq 7N/8, \ h_{22} = 4(1 - 2\sigma_2)/N; \\ x_i &= 1 - \sigma_2 + h_{12}i, \ 7N/8 \leq i \leq N-1 \}. \end{split}$$

Note that this mesh is a uniform mesh when $\sigma_1 = 1/4$ end $\sigma_2 = 1/4$. It is fitted to the singular perturbation problem (8) by choosing σ_1 and σ_2 to be the following functions of N and ε

$$\sigma_i = \min\left(\frac{1}{4}, \frac{\sigma_0 \varepsilon \ln N}{\gamma_i}\right), \ i = 1, 2.$$

Here σ_0 is a constant to be chosen which depends on the difference scheme, see Table 1. Clearly $x_{N/2} = 0$ and $\bar{\Omega}^N = \Omega^N \cup \{x_0 = -1, x_{N/2} = 0, x_N = 1\}$.

Under certain smoothness on the data the boundary value problem (8) has classical solution $u \in C(\overline{\Omega}) \cap C^4(\Omega)$ and this solution can be decomposed as

$$y(x) = \begin{cases} y_1(x) = v_1(x) + w_1(x), \ x \in \Omega_1, \\ y_2(x) = v_2(x) + w_2(x), \ x \in \Omega_2, \end{cases}$$
(12)

where, for each integer $k, 0 \le k \le 4$, the smooth $v_i, i = 1, 2$ and singular $w_i, i = 1, 2$ components satisfy the bounds

$$\begin{vmatrix} v_i^{(k)}(x) \end{vmatrix} \leq C \left(1 + \varepsilon^{2-k} e(x, \gamma_i) \right), \ x \in \Omega_i, \ i = 1, 2, \\ \begin{vmatrix} w_i^{(k)}(x) \end{vmatrix} \leq C \varepsilon^{-k} e(x, \gamma_i), \ x \in \Omega_i, \ i = 1, 2, \end{aligned}$$
(13)

$$e(x,\gamma_i) = \exp\left(-\frac{1-|x|}{\varepsilon}\gamma_i\right) + \exp\left(-\frac{|x|}{\varepsilon}\gamma_i\right), \ x \in \Omega_i, \ i = 1, 2,$$

where

$$\gamma_{i} = \beta_{i} - \frac{1}{2} \varepsilon_{0} \delta_{i}, \ \beta_{i} = \inf_{x \in \bar{\Omega}_{i}} \sqrt{\frac{q(x)}{p(x)}}, \ \delta_{i} = \sup_{x \in \bar{\Omega}_{i}} \frac{|p'(x)|}{p(x)},$$
$$i = 1, 2, \ \varepsilon_{0} = \min\left\{1, \frac{2\beta_{1}}{\delta_{1}}, \frac{2\beta_{2}}{\delta_{2}}\right\}$$

and the constant C is independent of ε .

We now study the local truncation error of (9). If we are away from the interface and p, q and f are sufficiently smooth, then we directly use Taylor formula.

Let consider the solution u of (7) on $[-h_-, h_+]$, where p, q and f are smooth to the left and right of x = 0 but can have jump discontinuous at the origin. We introduce left and right truncated power function s_k and t_k by [2]

$$s_{k}(x) = \begin{cases} x^{k}, & x < 0, \\ 0, & x > 0, \end{cases} \quad t_{k}(x) = \begin{cases} 0, & x < 0, \\ x^{k}, & x > 0. \end{cases}$$

Let m be a given positive integer, and assume that

$$p \in C^{m}[-1,0] \cup C^{m}[0,1], \quad q, \ f \in C^{m-1}[-1,0] \cup C^{m-1}[0,1].$$

Then the solution u of (7) admits a local representation of the form [5]

$$u(x) = a_0 + a_1 \left[p_{+0} s_1(x) + p_{-0} t_1(x) \right] + a_2 s_2(x) + \dots$$

$$+a_{m}s_{m}(x)+b_{2}t_{2}(x)+...+b_{m}t_{m}(x)+E_{m+1}(x),$$

where

$$a_{0} = u(0), \quad a_{1} = u'(-0)/p_{+0} = u'(+0)/p_{-0},$$

$$a_{k} = u^{(k)}(-0)/k!, \quad b_{k} = u^{(k)}(+0)/k!, \quad k = 2, ..., m,$$

$$E_{m+1}(x) = \int_{0}^{x} \frac{(x-t)^{m}}{m!} u^{(m+1)}(t) dt.$$

Proposition 1 Assume that the functions p, q and f satisfy (2) and (8) with $m \geq 2$. Then the following estimates of the local truncation error of (9) are valid:

$$LTE = \begin{cases} C\sigma_0^2 \varepsilon^2 N^{-2} \ln^2 N, \ kN/8 < i < (k+1) N/8, \ k = 0, 3, 4, 7; \\ CN^{-\sigma_0}, \ kN/8 \le i \le (k+2) N/8; \ k = 1, 5; \\ CN^{-1} \ln N, \ i = N/2. \end{cases}$$

where C is a constant which doesn't depend on ε and N.

 $\langle \alpha \rangle$

On the base of Shishkin decomposition (12), (13) and Proposition 1 the following theorem can be proved.

Theorem 3.1 Let $u(x,\varepsilon)$ be the solution of (7) and $\{v_i^h; 0 \le i \le N\}$ the solution of the scheme (9). Then

$$\left| u\left(x_{i}\right) - v_{i}^{h} \right| \leq C\left(\sigma_{0}^{2}\varepsilon^{2}N^{-2}\ln^{2}N + \varepsilon N^{-1} + N^{-1}\ln N\right), \ 0 \leq i \leq N,$$

where C is a constant independent of ε and N.

In a similar way can be studied for ε -uniform convergence the following two combined FDS (CFDS) of order higher than two on the Shishkin mesh Ω^N :

- CFDS of order three uses formula (8) away from the interface and (10) in the interface;

- CFDS of order four uses formula (8) away from the interface and (11) in the interface.

Numerical Experiments 4

Numerical experiments are discussed in this section for the example, S = 1, R =0 and

$$-\varepsilon^2 p_i u'' + q_i u = f_i \text{ in } \Omega_i, \ i = 1, 2, \ u(-1) = 0, \ u(1) = 0,$$

check the theoretical results established in the previous section. The error of scheme (9) is measured in the discrete maximum norm. It depends on the perturbation parameter ε and the discretization parameter N:

$$e^{\varepsilon,N} = \max_{\bar{\Omega}^{N}} \left| u\left(x_{i}\right) - U^{N}\left(x_{i}\right) \right|,$$

where u is the exact solution of the differential problem and U^N is the discrete solution. In our tests the maximal error e^N (it is highlighted in each column of Table.1) and the corresponding convergence rates are estimated by

$$e^{N} = \max_{r=0,\dots,8} e^{2^{-r},N}$$
 and $p^{N} = \frac{\ln e^{N} - \ln e^{2N}}{\ln 2}$.

The first part of Table 1 illustrates the "almost" second-order estimate of Theorem 3.1.

Table 1: $p_1 = 1, p_2 = 100, q_1 = 1, q_2 = 1, f_1 = .7, f_2 = -.6, Q = 0, R = 0, \sigma_0 = 2.$

ε, N	32	64	128	256	512	1024	2048
2^{-1}	2.194E-4	5.493E-5	1.374E-5	3.436E-6	8.589E-7	2.147E-7	5.368E-8
	1.998	1.999	2.000	2.000	2.000	2.000	
2^{-2}	9.199E-4	2.308E-4	5.775E-5	1.444E-5	3.611E-6	9.027E-7	2.257E-7
	1.995	1.999	2.000	2.000	2.000	2.000	
2^{-3}	2.666E-3	6.775E-4	1.701E-4	4.256E-5	1.065E-5	2.662E-6	6.654E-7
	1.976	1.994	1.998	1.999	2.000	2.000	
2^{-5}	3.196E-2	1.196E-2	3.176E-3	8.262E-4	2.076E-4	5.195E-5	1.299E-5
	1.418	1.913	1.943	1.993	1.998	1.999	
2^{-6}	3.114E-2	1.310E-2	4.909E-3	1.633E-3	5.213E-4	1.618E-4	4.897E-5
	1.250	1.416	1.588	1.647	1.688	1.724	
2^{-7}	3.256E-2	1.376E-2	5.043E-3	1.661E-3	5.295E-4	1.638E-4	4.951E-5
	1.243	1.448	1.602	1.650	1.693	1.726	
p^N	1.198	1.416	1.588	1.647	1.688	1.724	

ε, N	32	128	512	1024	2048
$\varepsilon = 2^{-4},$					
$1 \le i < N/8$	9.861E-3	6.668E-4	4.190E-5	1.048E-5	2.620E-6
,	1.911	1.994	1.999	2.000	
7N/8 < i < N	1.289E-3	1.076E-4	7.102E-6	1.790E-6	4.495E-7
	1.703	1.946	1.988	1.994	
$3N/8 \le i \le 5N/8$	2.700E-3	1.743E-4	1.092E-5	2.730E-6	6.826E-7
	1.963	1.997	2.000	2.000	
$5N/8 \le i \le 7N/8$	6.184E-3	4.116E-4	2.584E-5	6.461E-6	1.615E-6
	1.928	1.994	2.000	2.000	
3N/8 < i < N/2	1.008E-2	7.218E-4	4.538E-5	1.135E-5	2.838E-6
	1.866	1.993	1.999	2.000	
N/2 < i < 5N/8	8.662E-3	6.255E-4	4.006E-5	1.005E-5	2.517E-6
	1.850	1.976	1.995	1.997	
N/2	9.644E-3	2.535E-3	6.424E-4	1.612E-4	4.033E-5
	1.928	1.995	2.000	1.999	1.999
$\varepsilon = 2^{-8}$					
1 < i < N/8	2.225E-2	3.751E-3	4.062E-4	1.257 E-4	3.806E-5
	1.198	1.641	1.712	1.738	
7N/8 < i < N	1.746E-2	1.426E-3	9.189E-5	2.299E-5	5.748E-6
	1.071	1.558	1.692	1.724	
$3N/8 \le i \le 5N/8$	7.962E-4	3.654E-5	5.809E-7	4.303E-8	2.654E-9
	1.686	1.960	1.999	2.000	
$5N/8 \le i \le 7N/8$	7.115E-4	4.268E-5	2.659E-6	6.647E-7	1.662E-7
	2.113	2.716	3.755	4.019	
N/2 < i < 5N/8	3.683E-2	5.532E-3	5.609E-4	1.712E-4	5.131E-5
	2.046	2.004	2.000	2.000	
N/2 < i < 5N/8	4.261E-3	1.986E-3	3.432E-4	1.183E-4	3.835E-5
	1.198	1.641	1.712	1.738	
N/2	3.557E-3	2.645E-3	3.744E-4	1.238E-4	3.924E-5
	1.198	1.588	1.688	1.724	

5 Remarks on Extension to two Dimensions

Some of the results obtained in sections 2,3,4 can be extended to two dimensions. Consider the following singularly perturbed elliptic interface problem

$$-\varepsilon^{2}\frac{\partial}{\partial x_{1}}\left(p_{1}\left(x\right)\frac{\partial u}{\partial x_{1}}\right)-\varepsilon^{2}\frac{\partial}{\partial x_{2}}\left(p_{2}\left(x\right)\frac{\partial u}{\partial x_{2}}\right)+q\left(x\right)u=f\left(x\right),$$
$$x\in\Omega\backslash\Gamma,\ \Omega=\left(0,1\right)^{2}$$

with Dirichlet boundary condition u = 0 on $\partial \Omega$ and jump conditions on the interface Γ

$$[u] = 0, \ \varepsilon \left[\frac{\partial u}{\partial n_p}\right] = Q(x) u + R(x) \ \text{across } \Gamma.$$

Up to now, we have not found in the literature any generalization of the compact high-order FDS constructed in [5] for 2D problems. This seems possible for the case when Γ is a line parallel to one of the axis Ox_1 , Ox_2 . The other difficulty is the obtaining asymptotic expansion of the derivatives of u, [6], at the interface layers and corner points.

References

- I. A. Braianov and L. G. Vulkov, Grid approximation for the solution of the singularly perturbed heat equation with concentrated capacity, J. Math. Anal. Appl. 237 (1999), 672–697.
- [2] I. A. Braianov and L. G. Vulkov, Uniform in a small parameter convergence of Samarskii's monotone scheme and its modification for the convection-diffusion equation with concentrated source, Comp. Math. and Math. Physics, 40 (2000), 534–550.
- [3] J. L. Garcia, F. Lisbona F. and C. Clavero, High-order ε-uniform methods for singularly perturbed reaction-diffusion problems, Lect. Notes in Comp. Sci. 1988 (2001), 350–358.
- [4] I. Tr. Dimitrova and L. G. Vulkov, Singularly perturbed differential equations with discontinuous coefficients and concentrated factors (submitted).
- [5] E. C. Gartland, Compact high-order finite differences for interface problems in one dimension, IMA J. Numer. Anal 9 (1989), 243–360.
- [6] H. Han and R. B. Kellog, Differentiability of solutions of the equation -ε²Δu + ru = f (x, y) in a square, SIAM J. Math. Anal. 21 (1990), 394– 408.
- [7] J. D. Kandilarov, L. G. Vulkov and A. I. Zadirin, A method of lines approach to the numerical solution of singularly perturbed elliptic problems, Lect. Notes in Comp. Sci. 1988 (2001), 451–458.
- [8] J. J. H. Miller, E. O'Riordan and G. I. Shishkin, *Fitted numerical method for singularly perturbation problems*, World Sci, Singapore, (1996).
- [9] H. G. Roos, M. Stynes and L. Tobiska, Numerical methods for singularly perturbed differential equations, Springer-Verlag, Berlin, (1998).
- [10] G. I. Shishkin, Singularly perturbed boundary value problems with concentrated sources and discontinuous initial data, Comp. Math. and Math Physics 37 (1997), 429–446.
- [11] R. S. Varga, *Matrix iterative analysis*, Prentice Hall, Engelwood cliffs, NJ, (1962).

[12] L. G. Vulkov, J. J. H. Miller and G. I. Shishkin, Analytical and numerical methods for convection-dominated and singularly perturbed problems, Nova Sci. Publ., USA, (2000).

Center of Applied Mathematics and Informatics, University of Rousse, Rousse 7017, Bulgaria. ita@ami.ru.acad.bg vulkov@ami.ru.acad.bg