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Abstract

We consider the reaction-diffusion equation with discontinues coeffi-
cients and singular sources in one dimension. In this work1, we construct
ε-uniformly convergent High Order Compact (HOC) monotone finite dif-
ference schemes defined on a priori Shishkin meshes, which have order two,
three and four except for a logarithmic factor. Numerical experiments are
presented and discussed.

1 Introduction

In this paper we are interested in the construction and validation of high order
difference approximations to problems of type

Lεu ≡ −ε2(p(x)u′)′ + q(x)u = f(x) on Ω =
S+1⋃
s=1

Ωs, Ωs = (ξs−1, ξs), (1)

s = 1, . . . , S + 1, −1 = ξ0 < ξ1 < . . . < ξS < ξS+1 = 1,

where ε is a parameter in (0, 1] and the coefficients p, q satisfy the inequalities

p1 ≥ p(x) ≥ p0 > 0, q1 ≥ q(x) ≥ q0 > 0 for x ∈ Ω. (2)

On the interfaces the jump (interface) relations hold

[u]ξs = u(ξs + 0)− u(ξs − 0) = 0, ε [pu′]ξs
= Qsu(ξs) + Rs, s = 1, . . . , S (3)

and on the boundary {−1, 1} the Dirichlet condition

u(−1) = u−1, u(1) = u1. (4)
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More in detail we shall study the problem

Lεu = f (x) , x ∈ Ω, [u]0 = 0, [pu′]0 = Qu (0) + R, u (−1) = u−1, u (1) = u1.
(5)

i.e. the case of single interface S = 1, ξ1 = 0, Q1 = Q, R1 = R.
Let define the function Φ1 (x) and the real number Q (ε) as follows:

LεΦ1 = 0, x ∈ Ω, Φ1(−1) = 0, Φ1(0) = 1, Φ1(1) = 0,

Q (ε) ≡ −ε (p (+0)Φ′1 (+0)− p (−0)Φ′1 (−0)) .

In [4] is shown that Q (ε) > 0 and if Q 6= −Q (ε) then

u (x) = v (x)− Qv (0) + R

Q + Q (ε)
Φ1 (x) , (6)

where y(x) is the solution of the differential problem with only discontinuous
coefficients, i.e.

Lεv = f (x) , x ∈ Ω, [v]0 = 0, [pv′]0 = 0, v(−1) = u−1, v(1) = u1. (7)

Therefore, we can focus on problem (7). Our aim of this paper is to find
uniformly convergent finite difference methods of high order on Shiskin meshes
[8,9]. Previously finite difference schemes (FDS) of arbitrary order for (7) at
ε = 1 was developed in [5]. Now, we follow the idea of Gartland [5], where
classical methods are constructed on the base of an integral identity which
is attributed to Marchuk. Below, we prove that methods constructed in this
way,with k = 2, 3, 4 are uniformly convergent with O

(
N−k lnk N

)
if Shiskin

meshes is used, cf [3]. ε–uniform methods for singularly perturbed problems
with discontinuous coefficients and concentrated factors are studied in [7-10,
12]. The rest of the paper is organized as follows: In the next Section FDS up
to fourth order are described. Uniform convergence is discussed in Section 3,
and numerical results in Section 4.

2 High Order Three-Point Difference Scheme

In this section we discuss a few FDS derived in [5]. All our discretizations are
on an interval about the origin x = 0. Let first assume that there is no interface,
so that p, q and f are sufficiently smooth on [−h−, h+], h∓ > 0 is the mesh
step in the left and in the right of x = 0, respectively. Let define

w(r, s) = (r2 + 2rs− 2s2)/(24r) and w−1 = w(h−, h+), w1 = w(h+, h−),

w0 = (h− + h+)(2h2
− + 7h−h+ + 2h2

+)/(24h−.h+).

Then the three point scheme

Lhvh ≡ α−1v
h
−1 + α0v

h
0 + α1v

h
1 = β−1f−1 + β0f0 + β1f1, (8)
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where

β∓1 = P∓
h∓
48

(
3

p∓1
− 1

p0

)
+ w∓1, P∓ = 6/

(
1

p∓1
+

4
p∓1/2

+
1
p0

)
,

β0 = P−
h−
48

(
1

p−1
− 3

p0

)
+ P+ h+

48

(
1

p+1
− 3

p0

)
+ w0,

α∓1 = −ε2P∓/h∓ + β∓1q∓1, α0 = ε2
(
P−/h− + P+/h+

)
+ β0q0,

has local truncation error (LTE) O(H3), H = max(h−, h+), or LTE = CH2,
but C = C (ε) .

In the next discretization p, q and f can have jump discontinuities. The
lowest order FDS, LTE= O(1) in the interface x = 0 is given by the formula

Lhvh = 0, α−1 =
p (−0)

h−
, α1 =

p (+0)
h+

, α0 = α−1 + α1.

The interface discretization is derived by Varga [11]

Lhvh ≡ β−0f−0 + β+0f+0, (9)

where

α±1 = − 2ε2

(h− + h+) h±1
p±1/2, α0 = α−1 + α1 +

h−q−0 + h+q+0

h− + h+
,

β±0 =
h±

h− + h+
.

When (8) is combined with standard central differences away from the interface,
it produces a symmetric discretization matrix, and in this case it gives a global
O(H2) discretization error.

An improvement of formula (9) is the scheme

Lhvh = β−1f−1 + β−0f−0 + β+0f+0 + β1f1, (10)

where

β∓1 = P∓
h∓
24

(
3

p∓1
+

1
p∓0

)
, β∓0 = P∓

h∓
24

(
5

p∓1
+

3
p∓0

)
,

P∓ = 2/

(
1

p∓1
+

1
p∓0

)
,

α∓1 = −ε2P∓/h∓ + β∓1q∓1, α0 = ε2
(
P−/h− + P+/h+

)
+ β−0q−0 + β+0q+0,

which is locally O(H2) and it provides a global O(H3) when is combined with
higher-order scheme like (8) away from the interface. The three-point discretiza-
tion

Lhvh = β−1f−1 + β−1/2f−1/2 + β−0f−0 + β+0f+0 + β1/2f1/2 + β1f1, (11)



250 Ivanka Tr. Dimitrova and Lubin G. Vulkov

where

β∓1 = P∓
h∓
36

(
1

p∓1
− 1

p∓1/2

)
, P∓ = 6/

(
1

p∓1
+

4
p∓1/2

+
1

p∓0

)
,

β∓1/2 = P∓
h∓
9

p∓1/2

p∓1/2 + 1
8h2∓q∓1/2

(
1

p∓1
+

2
p∓1/2

)
,

β∓0 = P∓
h∓
36

(
1

p∓1
+

5
p∓1/2

)
,

α∓1 = −ε2P∓/h∓ + β∓1q∓1 + P̃∓,

α0 = ε2
(
P−/h− + P+/h+

)
+ β−0q−0 + β+0q+0 + P̃− + P̃+

with
P̃∓ =

1
8

p∓1 + 4p∓1/2 − p∓0

p∓1/2
β∓1/2q∓1/2

is locally O(H3), whether or not h− = h+ and is sufficient to obtain global
O(H4) discretization error when combined with the high-order scheme (8) away
from the interface.

It is theoretically possible to compute three-point schemes of any desired
order of accuracy if one uses enough extra evaluations of p, q and f [5].

3 Uniform Convergence

For sufficiently small ε, classical methods in uniform meshes for singularly per-
turbed problems only work for very large number of mesh points [8,9]. Never-
theless if these methods are defined on special fitted meshes, the convergence
to the exact solution is uniform in ε [8,9]. Shishkin meshes [8,9], are simple
piecewise uniform meshes of this kind, frequently used for singularly perturbed
problems. For the reaction diffusion problem (7), the corresponding Shishkin
mesh, is defined as follows.

The interval Ω1 is subdivided into three subintervals

[−1,−1 + σ1] , [−1 + σ1,−σ1] and [−σ1, 0]

for some σ1 that satisfies 0 ≤ σ1 ≤ 1/4. On [−1,−1 + σ1] and [−σ1, 0] a uni-
form mesh with N/8 mesh-points is placed, while [−1 + σ1,−σ1] has a uniform
mesh with N/4 mesh points. The subintervals [0, σ2] , [σ2, 1− σ2] , [1− σ2, 1]
are treated analogously for some σ2 satisfying 0 ≤ σ2 ≤ 1/4. The interior points
of the mesh are denoted by

ΩN = {xi : xi = −1 + h11i, 1 ≤ i ≤ N/8, h11 = 8σ1/N ;
xi = −1 + σ1 + h21i, N/8 ≤ i ≤ 3N/8, h21 = 4(1− 2σ1)/N ;

xi = −σ1 + h11i, 3N/8 ≤ i ≤ N/2;
xi = h12i, N/2 ≤ i ≤ 5N/8, h12 = 8σ2/N ;

xi = σ2 + h22i, 5N/8 ≤ i ≤ 7N/8, h22 = 4(1− 2σ2)/N ;
xi = 1− σ2 + h12i, 7N/8 ≤ i ≤ N − 1}.
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Note that this mesh is a uniform mesh when σ1 = 1/4 end σ2 = 1/4. It is
fitted to the singular perturbation problem (8) by choosing σ1 and σ2 to be the
following functions of N and ε

σi = min
(

1
4
,
σ0ε ln N

γi

)
, i = 1, 2.

Here σ0 is a constant to be chosen which depends on the difference scheme, see
Table 1. Clearly xN/2 = 0 and Ω̄N = ΩN ∪ {

x0 = −1, xN/2 = 0, xN = 1
}

.
Under certain smoothness on the data the boundary value problem (8) has

classical solution u ∈ C
(
Ω̄

) ∩ C4 (Ω) and this solution can be decomposed as

y (x) =
{

y1 (x) = v1 (x) + w1 (x) , x ∈ Ω1,
y2 (x) = v2 (x) + w2 (x) , x ∈ Ω2,

(12)

where, for each integer k, 0 ≤ k ≤ 4, the smooth vi, i = 1, 2 and singular
wi, i = 1, 2 components satisfy the bounds

∣∣∣v(k)
i (x)

∣∣∣ ≤ C
(
1 + ε2−ke (x, γi)

)
, x ∈ Ωi, i = 1, 2,∣∣∣w(k)

i (x)
∣∣∣ ≤ Cε−ke (x, γi) , x ∈ Ωi, i = 1, 2,

(13)

e (x, γi) = exp
(
−1− |x|

ε
γi

)
+ exp

(
−|x|

ε
γi

)
, x ∈ Ωi, i = 1, 2,

where

γi =βi − 1
2
ε0δi, βi = inf

x∈Ω̄i

√
q (x)
p (x)

, δi = sup
x∈Ω̄i

|p′ (x)|
p (x)

,

i=1, 2, ε0 =min
{

1,
2β1

δ1
,
2β2

δ2

}

and the constant C is independent of ε.
We now study the local truncation error of (9). If we are away from the

interface and p, q and f are sufficiently smooth, then we directly use Taylor
formula.

Let consider the solution u of (7) on [−h−, h+], where p, q and f are smooth
to the left and right of x = 0 but can have jump discontinuous at the origin.
We introduce left and right truncated power function sk and tk by [2]

sk (x) =
{

xk, x < 0,
0, x > 0,

tk (x) =
{

0, x < 0,
xk, x > 0.

Let m be a given positive integer, and assume that

p ∈ Cm[−1, 0] ∪ Cm[0, 1], q, f ∈ Cm−1[−1, 0] ∪ Cm−1[0, 1].

Then the solution u of (7) admits a local representation of the form [5]

u (x) = a0 + a1 [p+0s1 (x) + p−0t1 (x)] + a2s2 (x) + ...
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+amsm (x) + b2t2 (x) + ... + bmtm (x) + Em+1 (x) ,

where
a0 = u (0) , a1 = u′ (−0) /p+0 = u′ (+0) /p−0,

ak = u(k) (−0) /k!, bk = u(k) (+0) /k!, k = 2, ..., m,

Em+1 (x) =

x∫

0

(x− t)m

m!
u(m+1) (t) dt.

Proposition 1 Assume that the functions p, q and f satisfy (2) and (8) with
m ≥ 2. Then the following estimates of the local truncation error of (9) are
valid:

LTE =





Cσ2
0ε2N−2 ln2 N, kN/8 < i < (k + 1) N/8, k = 0, 3, 4, 7;

CN−σ0 , kN/8 ≤ i ≤ (k + 2) N/8; k = 1, 5;
CN−1 ln N, i = N/2.

where C is a constant which doesn’t depend on ε and N .
On the base of Shishkin decomposition (12), (13) and Proposition 1 the

following theorem can be proved.

Theorem 3.1 Let u (x, ε) be the solution of (7) and
{
vh

i ; 0 ≤ i ≤ N
}

the so-
lution of the scheme (9). Then

∣∣u (xi)− vh
i

∣∣ ≤ C
(
σ2

0ε2N−2 ln2 N + εN−1 + N−1 ln N
)
, 0 ≤ i ≤ N,

where C is a constant independent of ε and N .

In a similar way can be studied for ε-uniform convergence the following two
combined FDS (CFDS) of order higher than two on the Shishkin mesh ΩN :

– CFDS of order three uses formula (8) away from the interface and (10) in
the interface;

– CFDS of order four uses formula (8) away from the interface and (11) in
the interface.

4 Numerical Experiments

Numerical experiments are discussed in this section for the example, S = 1, R =
0 and

−ε2piu
′′ + qiu = fi in Ωi, i = 1, 2, u (−1) = 0, u (1) = 0,

check the theoretical results established in the previous section. The error of
scheme (9) is measured in the discrete maximum norm. It depends on the
perturbation parameter ε and the discretization parameter N :

eε,N = max
Ω̄N

∣∣u (xi)− UN (xi)
∣∣ ,
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where u is the exact solution of the differential problem and UN is the discrete
solution. In our tests the maximal error eN (it is highlighted in each column of
Table.1) and the corresponding convergence rates are estimated by

eN = max
r=0,...,8

e2−r,N and pN =
ln eN − ln e2N

ln 2
.

The first part of Table 1 illustrates the “almost” second-order estimate of The-
orem 3.1.

Table 1: p1 = 1, p2 = 100, q1 = 1, q2 = 1, f1 = .7, f2 = −.6, Q = 0, R =
0, σ0 = 2.

ε,N 32 64 128 256 512 1024 2048
2−1 2.194E-4 5.493E-5 1.374E-5 3.436E-6 8.589E-7 2.147E-7 5.368E-8

1.998 1.999 2.000 2.000 2.000 2.000
2−2 9.199E-4 2.308E-4 5.775E-5 1.444E-5 3.611E-6 9.027E-7 2.257E-7

1.995 1.999 2.000 2.000 2.000 2.000
2−3 2.666E-3 6.775E-4 1.701E-4 4.256E-5 1.065E-5 2.662E-6 6.654E-7

1.976 1.994 1.998 1.999 2.000 2.000
2−5 3.196E-2 1.196E-2 3.176E-3 8.262E-4 2.076E-4 5.195E-5 1.299E-5

1.418 1.913 1.943 1.993 1.998 1.999
2−6 3.114E-2 1.310E-2 4.909E-3 1.633E-3 5.213E-4 1.618E-4 4.897E-5

1.250 1.416 1.588 1.647 1.688 1.724
2−7 3.256E-2 1.376E-2 5.043E-3 1.661E-3 5.295E-4 1.638E-4 4.951E-5

1.243 1.448 1.602 1.650 1.693 1.726
pN 1.198 1.416 1.588 1.647 1.688 1.724
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ε, N 32 128 512 1024 2048
ε = 2−4,

1 ≤ i < N/8 9.861E-3 6.668E-4 4.190E-5 1.048E-5 2.620E-6
1.911 1.994 1.999 2.000

7N/8 < i < N 1.289E-3 1.076E-4 7.102E-6 1.790E-6 4.495E-7
1.703 1.946 1.988 1.994

3N/8 ≤ i ≤ 5N/8 2.700E-3 1.743E-4 1.092E-5 2.730E-6 6.826E-7
1.963 1.997 2.000 2.000

5N/8 ≤ i ≤ 7N/8 6.184E-3 4.116E-4 2.584E-5 6.461E-6 1.615E-6
1.928 1.994 2.000 2.000

3N/8 < i < N/2 1.008E-2 7.218E-4 4.538E-5 1.135E-5 2.838E-6
1.866 1.993 1.999 2.000

N/2 < i < 5N/8 8.662E-3 6.255E-4 4.006E-5 1.005E-5 2.517E-6
1.850 1.976 1.995 1.997

N/2 9.644E-3 2.535E-3 6.424E-4 1.612E-4 4.033E-5
1.928 1.995 2.000 1.999 1.999

ε = 2−8

1 < i < N/8 2.225E-2 3.751E-3 4.062E-4 1.257E-4 3.806E-5
1.198 1.641 1.712 1.738

7N/8 < i < N 1.746E-2 1.426E-3 9.189E-5 2.299E-5 5.748E-6
1.071 1.558 1.692 1.724

3N/8 ≤ i ≤ 5N/8 7.962E-4 3.654E-5 5.809E-7 4.303E-8 2.654E-9
1.686 1.960 1.999 2.000

5N/8 ≤ i ≤ 7N/8 7.115E-4 4.268E-5 2.659E-6 6.647E-7 1.662E-7
2.113 2.716 3.755 4.019

N/2 < i < 5N/8 3.683E-2 5.532E-3 5.609E-4 1.712E-4 5.131E-5
2.046 2.004 2.000 2.000

N/2 < i < 5N/8 4.261E-3 1.986E-3 3.432E-4 1.183E-4 3.835E-5
1.198 1.641 1.712 1.738

N/2 3.557E-3 2.645E-3 3.744E-4 1.238E-4 3.924E-5
1.198 1.588 1.688 1.724

5 Remarks on Extension to two Dimensions

Some of the results obtained in sections 2,3,4 can be extended to two dimensions.
Consider the following singularly perturbed elliptic interface problem

−ε2 ∂

∂x1

(
p1 (x)

∂u

∂x1

)
− ε2 ∂

∂x2

(
p2 (x)

∂u

∂x2

)
+ q (x) u = f (x) ,

x ∈ Ω\Γ, Ω = (0, 1)2

with Dirichlet boundary condition u = 0 on ∂Ω and jump conditions on the
interface Γ

[u] = 0, ε

[
∂u

∂np

]
= Q (x) u + R (x) across Γ.
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Up to now, we have not found in the literature any generalization of the
compact high-order FDS constructed in [5] for 2D problems. This seems possible
for the case when Γ is a line parallel to one of the axis Ox1, Ox2. The other
difficulty is the obtaining asymptotic expansion of the derivatives of u, [6], at
the interface layers and corner points.
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