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Abstract

Affine invariant Iterated Function Systems (AIFSs), introduced earlier
by the authors, are further investigated from the point of view of ability to
generate sets of Cantor-type. Conditions upon which the AIFS is totally
disconnected are discussed 1.

1 Introduction: IFS and AIFS

An IFS, or Iterated Function System, in the metric space (X, d) is the system

Σ = {X; w1, . . . , wn}, n ≥ 2, (1)

where each wi denotes a contraction in (X, d) with the Lipschitz factor si < 1
[1]. The attractor of the IFS Σ is a compact subset of X uniquely attached to
Σ by the following procedure. The set of all nonempty compact subsets of X,
say H[X], with the Hausdorff metric induced by d, say hd, gives the complete
metric space (H[X], hd). Here the Hutchinson operator associated to Σ, namely

WΣ(·) = ∪n
i=1wi(·), (2)

is a contraction, with the Lipschitz factor s = maxi{si} < 1. The fixed point of
WΣ in (H[X], hd) is called the attractor of Σ. By definition, it satisfies

att(Σ) = WΣ

(
att(Σ)

)
= lim

k→∞
(WΣ)k(G), G ∈ H[X]. (3)

Having, mostly, a fractional Hausdorff dimension, att(Σ) is called a fractal set.
In this paper we use an alternative form IFS, the AIFS or affine invariant

Iterated Function System, that was introduced by ourselves in [5], [7], and also
was dealt with in [6], [8], [9]. The metric space where we work is a real m-
dimensional space (IRm, d) with m ≥ 2, but we omit to mention the distance d
whenever this is not quite relevant. In (IRm, d) an AIFS is a system defined by an
(m− 1)-dimensional simplex along with two or more real square m-dimensional
row-stochastic matrices, according to the following definition.
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Definition 1 (AIFS) With m,n ≥ 2, let ∆T ⊂ IRm−1 be a non-degenerate
closed simplex with vertices T = [T1, . . . ,Tm]T , and let {Si}n

i=1, be a set of real
square nonsingular row-stochastic matrices of order m. The system

ΩT = {T; S1, . . . , Sn}, n ≥ 2

is the corresponding AIFS (affine invariant IFS) in IRm. If all the linear map-
pings associated with the matrices Si are contractions in (IRm, d), ΩT is said
hyperbolic and it has the unique attractor att(ΩT ) ⊂ IRm−1.

2 Canonical AIFS

First we state some terminology and basic facts about AIFS, then we will es-
tablish a connection between any affine IFS in a real multi-dimensional metric
space and a corresponding AIFS.

As customary, we identify a point in the m-dimensional affine space with
its cartesian coordinates vector. We denote, for instance, by {ei = [δij ]mj=1 }m

i=1

the orthonormal basis of IRm and by E = [e1 . . . em]T the m-vector having
unit points of the corresponding affine space as its components. By ∆T we
denote the convex hull of the points of IRm which are components of the vector
T = [T1 . . .Tm]T , namely the simplex ∆T = conv(T1, . . . , Tm). Identifying a
simplex by its vertices, we also refer to ”the simplex T” as ”the simplex ∆T”.
Furthermore, we denote by V the affine hull of the unit points {e1, . . . , em} (and
write V = aff(e1, . . . , em) ⊂ IRm ), or the hyperplane satisfying

∑m
i=1 xi = 1 .

This is an (m− 1)-dimensional subspace of IRm , orthogonal to the direction of
e = [ 1 1 . . . 1 ]T . And we denote by IRm−1

⊥ the hyperplane given by the equation
xm = 1, a subspace orthogonal to the the vector em = [ 0 0 . . . 0 1 ]T .

Definition 2 (Canonical simplex) Let {ei}m
i=1 be the orthonormal basis of IRm

and let E = [e1 . . . em]T . The simplex ∆E ⊂ V is the canonical simplex of IRm.

Remark 1 It is straightforward that for the points in V barycentric coordinates
with respect to the simplex ∆E coincide with cartesian coordinates in IRm.

Let Mn denote the family of square matrices of order n, and Sn denote the one
of row stochastic matrices, namely matrices whose rows sum up to one. Given
S ∈Mm , we call the linear mapping L : IRm → IRm such that L(x) = ST x, the
linear mapping associated with S. We denote by Λ the set of all linear mappings
L : IRm → IRm, and by ΛS its subset consisting of the mappings associated with
matrices in Sn. Also, we denote by Φ the set of affine mappings of IRm−1, namely
mappings w : x ∈ IRm−1 7→ Ax + b ∈ IRm−1 , with A ∈Mm−1, b ∈ IRm−1.

Remark 2 L(V) = V, ∀ L ∈ ΛS . In other words, the subspace V is invariant
for any linear transformation of IRm associated with a row stochastic matrix.

Now, it is known that for any matrix M a left eigenvector of M is orthogonal
to any right eigenvector of M corresponding to a different eigenvalue, and that
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the right eigenvectors of MT are left eigenvectors of M. Also it is known that
any matrix S ∈ Sm admits the eigenvalue λ = 1 and that the right eigenvector
of S associated with λ = 1 is e = [ 1 1 . . . 1 ]T ∈ IRm. We deduce from this that
given any S ∈ Sm having the spectrum {λi}m

i=1 with λm = 1 , provided that
this eigenvalue is simple, all the right eigenvectors of ST corresponding to the
(other) eigenvalues λ1, . . . , λm−1 are orthogonal 1 to e and therefore, denoting
them by {vi}m−1

i=1 , we have vi ⊂ V (i = 1, . . . , m − 1). Furthermore, if they
are linearly independent, they form a basis in V, and therefore

Remark 3 Given S ∈ Sm, having linearly independent left eigenvectors
{vT

i }m−1
i=1 corresponding to the non-unit eigenvalues {λi}m−1

i=1 , any vector u ⊂ V
admits the representation u =

∑m−1
i=1 αivi , with αi ∈ R, ∀ i.

We have tools, now, to introduce the AIFS, consistently with the general IFS
theory recalled earlier.

Definition 3 (Canonical AIFS) Given n m-dimensional row stochastic matri-
ces {Si}n

i=1 (n ≥ 2), the corresponding canonical AIFS is defined by the relation

Ω = {E; S1, . . . , Sn} ≡ {V; L1, . . . ,Ln }. (4)

The compact set att(Ω) ⊂ V being the attractor of the IFS

Ω = {V; L1, . . . ,Ln}

is, by definition, the corresponding (canonical) attractor.

Notice that the attractor of a canonical AIFS of dimension m lies in the space
spanned by the vertices of the canonical simplex of IRm, namely a space having
dimension m − 1 . In fact, the requirement that Si ∈ Sm , ∀ i , guarantees that
all the iterates stay in V (see Remark 2), so the AIFS actually “works” in V.

We will show how to introduce a canonical AIFS corresponding to any given
affine IFS. First, introduce the (immersion) map i : x ∈ IRm−1 7→ [xT | 1]T

= [x1, x2, . . . , xm−1, 1]T ∈ IRm−1
⊥ , which is obviously one to one and, so to say,

embeds the space IRm−1 into IRm by ”laying it over” the hyperplane xm = 1.
Then, notice that, even though the (orthogonal) projection from IRm to IRm−1

⊥ ,
namely the map proj⊥ : [x1, . . . , xm−1, xm]T ∈ IRm 7→ [x1, . . . , xm−1, 1]T ∈
IRm−1
⊥ is not invertible in IRm, its restriction to V is such (it is a one to one

map from V to IRm−1
⊥ ). Then, introducing the block triangular matrices of Mm

Sp =




Im−1

... 1
. . . . . . . . .

0T
... 1


 , Sl = S−1

p =




Im−1

... −1
. . . . . . . . .

0T
... 1


 , (5)

1Indeed, this can also be checked directly noticing that ∀ i ∈ {1, . . . , m − 1}, λi〈vi, e〉 =
〈λivi, e〉 = (λivi)

∗e = (ST vi)
∗e = (v∗i S)e = v∗i (Se) = v∗i e = 〈vi, e〉 , where 〈u,v〉 = u∗v

denotes the usual scalar product of complex-valued vectors u and v. Now, if S is a regular
matrix so that λi 6= 0 (i = 1, . . . , m), λi〈vi, e〉 = 〈vi, e〉 yields that if λi 6= 1 = λm , it must
be 〈vi, e〉 = 0 .
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where 0 = [0, . . . , 0]T ∈ IRm−1, 1 = [1, . . . , 1]T ∈ IRm−1 and Im−1 ∈ Mm−1 is
the unit matrix, we see that the linear maps associated to Sp and Sl, namely
Lp ∈ Λ and Ll = L−1

p ∈ Λ, respectively map V ⊂ IRm into IRm−1
⊥ ⊂ IRm

and vice-versa. More precisely, if x = [x1, x2, . . . , xm−1, 1 −
∑m−1

i=1 xi]T ∈ V
and xp = [x1, x2, . . . , xm−1, 1]T ∈ IRm−1

⊥ , then we see that Lp(x) = ST
p x = xp

and Ll(xp) = ST
l xp = x. Therefore the restriction of Lp to V is the same as

the restriction of proj⊥ to V, but the first one is linear and is invertible in IRm

(its inverse being Ll) while the latter, as we said, is not. We call Lp a linear
projection (from V to IRm−1

⊥ ) and its inverse, Ll, a (linear) lifting. Finally, we
can compose Lp and Ll by the immersion map i introduced earlier, so to obtain
the invertible (projection) map π (= i−1Lp) : V → IRm−1 with its inverse
π−1 (= Ll i) : IRm−1 → V. As it is easy to check directly, π preserves convex
combinations, so that the following definitions make sense.

Definition 4 (Standard simplex) The standard simplex of IRm−1, denoted by
∆0 ⊂ IRm−1, is the projection, by means of π, of the canonical simplex of IRm.

Remark 4 Since π preserves convex combinations, we have ∆0 = ∆E0 where
E0 = π (E) = [ π (e1) π (e2) . . . π (em)]T = [ e′1 e′2 . . . e′m−1 0 ]T , with the
notation {ei = [δij ]mj=1 }m

i=1 and {e′i = [δij ]m−1
j=1 }m−1

i=1 . In fact, by definition

∆0 = π (∆E) = ∆π(E) = ∆E0 , ∆E = π−1(∆0) = Lli (∆0). (6)

Definition 5 (Standard AIFS) Given n row stochastic matrices of order m,
{Si}n

i=1 (n ≥ 2), denoting by E0 the standard simplex of IRm−1, the AIFS

Ω0 = {E0; S1, . . . , Sn} ≡ {IRm−1; πL1 π−1, . . . , πLn π−1} (7)

is the corresponding standard AIFS and the attractor att(Ω0) ⊂ IRm−1 is called
the corresponding standard attractor.

Definition 6 Let w ∈ Φ and L ∈ ΛS . The mapping w is said the (orthogonal)
projection of L on IRm−1 , and is denoted by w = Π(L) , iff

π
(L(x)

)
= w

(
π(x)

)
, ∀x ∈ V. (8)

Theorem 1 For any w ∈ Φ there is one and only one L ∈ ΛS such that
w = Π(L). More precisely, if w : x ∈ IRm−1 7→ Ax + b ∈ IRm−1 and L : x ∈
IRm 7→ ST x ∈ IRm, and if Sw ∈Mm is the transpose of

ST
w =




A
... b

. . . . . . . . .

0T
... 1


 , (9)

then S and Sw, and therefore S, A and b, are connected by the relation

S = Sp Sw Sl = Sp Sw (Sp)−1 (10)

where Sp and Sl are given by (5). Furthermore, if the spectrum of the A is
σ(A) = {λi}m−1

i=1 , then the spectrum of S is σ(S) = {λ1, λ2, . . . , λm−1, 1}.
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Proof. Let Lw ∈ Λ be the linear mapping associated to Sw, clearly

Lw(IRm−1
⊥ ) = IRm−1

⊥ .

More precisely Lw([xT | 1]T ) = ST
w [xT | 1]T = [w(x)T | 1]T . Therefore

Lw(i(x)) = Lw([xT | 1]T ) = ST
w [xT | 1]T = [w(x)T | 1]T = i(w(x)) , (11)

∀x ∈ IRm−1. Consider, now, S ∈ Sm and the associated L ∈ ΛS , mapping
x ∈ V into L(x) = ST x ∈ V. By Definition 6, w = Π(L) if and and only if (8)
holds. Since, by definition, π(x) = i−1(Lp(x)) ∀x ∈ V, (8) is equivalent to

Lp(L(x)) = i (w (i−1(Lp(x)))) ,

and , applying (11) for x = i−1(Lp(x)) ∈ IRm−1, this yields that w = Π(L) iff

Lp(L(x)) = Lw(i (i−1Lp(x))) = Lw(Lp(x)) , ∀x ∈ V. (12)

Writing (12) in matrix form yields ST
p ST x = ST

wST
p x , ∀x ∈ V which leads to

ST = (ST
p )−1ST

wST
p

or, equivalently, (10).
Clearly, because of its particular block triangular structure, Sw has the same

eigenvalues as A plus the eigenvalue λm = 1, namely σ(Sw) = {1}∪σ(A). But,
by (10), S is similar to Sw , therefore σ(S) = σ(Sw) = {1} ∪ σ(A) .

Remark 5 We observe explicitly that by Theorem 1 the operator Π is in-
vertible. The inverse Π−1 is responsible for adding to the spectrum of the
transformation w an eigenvalue equal to one but, as far as the restriction of
L = Π−1(w) to V is concerned, this has no practical effect, by the orthogonality
of V with the corresponding eigenvector of ST (see Remark 3).

Definition 7 The IFS Σ = {IRm−1; w1, . . . , wn} is called the projection of the
canonical AIFS Ω = {E; S1, . . . , Sn , }, and it is written Σ = Π(Ω), if and only
if wi = Π(Li), ∀ i = 1, . . . , n, where Li ∈ Λ is the linear map associated to Si.

Corollary 1 Given the IFS Σ = {IRm−1; w1, . . . , wn}, there is one and only
one canonical AIFS Ω = {E; S1, . . . , Sn } in IRm such that Σ = Π(Ω), and
att(Σ) = π(att(Ω)) holds.

Proof. It is straightforward from Definition 7 and Theorem 1

Theorem 2 Let a canonical AIFS Ω be given by (4) and let the IFS Σ be its
projection. Then, if one of them is hyperbolic, the other one is hyperbolic too.
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Proof. Suppose that Ω be hyperbolic. Let L ∈ ΛS be the linear mapping
associated with some S ∈ Ω. Being this a contraction in V, there exist a vector
norm ‖·‖ and a real number 0 < α < 1 such that, being v the vector v = x−y,

‖L(v)‖ = ‖ST v‖ ≤ α‖v‖ , ∀ x, y ∈ V. (13)

Let, now, w = Π(L) with w : x 7→ Ax + b, and let ρ(A) = maxm−1
i=1 |λi|

be the spectral radius of A. Since, by Theorem 1, σ(A) ⊂ σ(S), for any i ∈
{1, . . . , m− 1}, λi ∈ σ(A) ⇒ λi ∈ σ(S) and, denoting by vi the corresponding
right eigenvector of ST , by Remark 2 and (13) we deduce

|λi|‖vi‖ = ‖λivi‖ = ‖ST vi‖ ≤ α‖vi‖ , i = 1, . . . ,m− 1.

This yields |λi| ≤ α < 1 , i = 1, . . . , m− 1, and consequently ρ(A) < 1. Now, it
is known that, given any matrix M, if the spectral radius of M is strictly smaller
than one, there exists a natural matrix norm ‖ · ‖M such that ‖M‖M < 1 ( see,
e.g. [11] or [3]). Thus, denoting by ‖ · ‖ both a matrix norm such that ‖A‖ < 1
and a vector norm compatible with it, we have, ∀x, y ∈ IRm−1,

‖w(x)− w(y)‖ = ‖A(x− y)‖ ≤ ‖A‖ ‖(x− y)‖ < ‖x− y‖,
according to which w is a contraction in IRm−1.

Vice versa, supposing that Σ be a hyperbolic IFS, consider any contraction
w : x 7→ Ax + b in Σ and let L ∈ ΛS be the transformation in Ω such that
w = Π(L). Let x 6= y ∈ V and let {vi}m−1

i=1 be the right eigenvectors of ST

corresponding to the non-unit eigenvalues, then (see Remark 3) there exist real
constants {αi}m−1

i=1 such that the vector (x− y) =
∑m−1

i=1 αivi and therefore

‖L(x)−L(y)‖=‖ST (x− y)‖=
∥∥∥ST

m−1∑

i=1

αivi

∥∥∥=
∥∥∥

m−1∑

i=1

αiS
T vi

∥∥∥=
∥∥∥

m−1∑

i=1

αiλivi

∥∥∥

≤
∥∥∥

m−1∑

i=1

αiρ(A)vi

∥∥∥ = ρ(A)
∥∥∥

m−1∑

i=1

αivi

∥∥∥ = ρ(A) ‖x− y‖ < ‖x− y‖.

By the arbitrariness of x and y in V, L is a contraction in V.

3 Cantor set and Cantor dust

Probably, the first fractal set in history was published by Georg Cantor in 1883
[2], much earlier than the term fractal was ever coined. Not widely accepted
by mathematicians at the time, the Cantor set C gained popularity a hundred
years later, with the development of the new theory of fractal sets. The essence
of the definition given in [2] is as follows.

Definition 8 (Cantor set: set theoretic definition)
Step 1. C0 = [ 0, 1 ];
Step 2. For n ∈ IN : Cn = Cn−1 \ {middle third of all intervals in Cn−1};
Step 3. C = ∩n∈IN0Cn.
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Since its very birth this Cantor ”middle third” set seemed to be a puzzle, en-
joying different properties, some of which were (only apparently) contradictory.

Proposition 1 (Properties of the Cantor set) P1. C is a nonempty compact
subset of IR ; P2. C ⊂ [0, 1] ; P3. C is a perfect set ; P4. C is nowhere
dense in IR ; P5. C is of zero length and does not contain any open set ; P6.
C is totally disconnected ; P7. C has zero topological dimension.

At first sight, it may sound surprising that C be perfect but nowhere dense in
IR, yet this very property deserved to this set the alternative name of Cantor
discontinuum. All the points in C are frontier points, namely C = ∂C, but all
the points in C are also accumulation points, as C = C . The fact that C is
uncountably infinite but has null length also sounds paradoxical. But all these
peculiarities and apparent discrepancies can be explained by the distinction of
the topological dimension of C, DT (C), from its Hausdorff dimension DH(C).
In fact, as we said, DT (C) = 0, while DT (C) 6= DH(C) = log 2/ log 3 = 0.63092.

It was shown by Mandelbrot, in [10], that the property of C of having zero
topological dimension is a consequence of being totally disconnected. He also
noted that there is a large family of sets that share this characteristic with C,
and coined for them the new term dust, giving the following definition:

Definition 9 (Dust) A set X such that DT (X) = 0 is called a dust.

Borrowing Mandelbrot’s terminology, we call dust a totally disconnected subset
of IRm, for any m. The AIFS theory developed in the previous sections offers us
an easy tool to construct and represent dusts in spaces of arbitrary dimension.

It is known that, in the context of IFS theory, the Cantor set C can be
introduced as the attractor of a two term affine IFS (see [1], [10])

Definition 10 (Cantor set: definition by IFS) The Cantor set C is the at-
tractor of the IFS { [ 0, 1 ] ; w1, w2} with w1(x) = x/3, w2(x) = (x + 2)/3.

In the AIFS theory context, by Theorem 1 and Corollary 1 in Section 2, the
Cantor set can be introduced as the attractor of an AIFS in IR2. In fact, de-
noting by E{m} the set of vertices of the canonical m-simplex (for any m ≥ 2),

Definition 11 (Cantor set: definition by AIFS) The Cantor set C is the π-
projection of the attractor of the AIFS Ξ = {E{2} ; S1, S2} where

S1 =
[

1 0
2/3 1/3

]
, S2 =

[
1/3 2/3
0 1

]
. (14)

Furthermore, the particular nature of the AIFS model makes generalization
of the previous definition to m-dimensional spaces straightforward.

Definition 12 (Multi-dimensional Cantor dust: definition by AIFS) For any
m ≥ 2 and 0 < p < 1/2 , let the matrices Sk = [sk

ij(p)]i,j have the elements

sk
ij(p) =

{
(1− p) + p δij if j = k,

p δij if j 6= k,
i, j = 1, 2, ..., m (15)
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for k = 1, ..., m. The attractor of the AIFS

Ξ(m, p) = {E{m} ; S1(p), ..., Sm(p) },

denoted by C(m,p), is called an (m− 1)-dimensional (generalized) Cantor dust.

Remark 6 Definition 12 yields the middle third Cantor set for m = 2, p = 1/3.
Namely C = π(C(2, 1/3)).

The generalized Cantor dust C(m, p) is a self-similar fractal, and its Hausdorff
dimension can be calculated by the formula for box-dimension [1],

DH(C(m,p)) =
log m

log(1/p)
. (16)

If we consider the dusts obtained by keeping the dimension m̂ fixed and allowing
for all feasible values of p, we obtain the family Dbm = {C(bm, p) }p∈ ( 0, 1/2 ).

We see from (16) that the Hausdorff dimension DH(C(bm, p)) increases with p,
ranging from 0 to (log m̂/ log 2) as p ranges from 0 to 0.5 .

A different behavior is exhibited by the family D = {C(m, 1/m)}m≥3 since,
by (16), all members of D have Hausdorff dimension 1. In particular, the
Cantor dust C(3, 1/3) ∈ D is a subset of IR2. It is a different set, though, from
the Cartesian auto-product of the Cantor set (C2 = C × C ) discussed in [4].
By its nature, C(3, 1/3) is closer to the Sierpinski triangle than to C2. In fact,
the Sierpinski triangle can be obtained as C(3, 1/2), but it must be remarked
that, according to Definition 12, this is not a dust any more, since p = 1/2.
This is consistent with the well known fact that the Sierpinsky triangle S4 is
a connected subset of IR2, actually a plane open curve whence DT (S4) = 1,
while DH(S4) = log3/log2.

4 Totally disconnected AIFS

As we mentioned, the Cantor set C is characterized by the property of being a
totally disconnected set (P6). In [1], Barnsley defines the totally disconnected
IFS. An analogous definition can be given for AIFS, namely

Definition 13 The hyperbolic AIFS Ω = {E{m}; S1, . . . , Sn} with regular ma-
trices Si and with the attractor A is totally disconnected if

Li(A) ∩ Lj(A) = ∅, all i 6= j, (17)

where Li is the linear mapping associated with the matrix Si, i = 1, . . . , n.

In order to characterize attractors of totally disconnected AIFS, we need to
preliminarily introduce a new property, the convex hull property.

For the Cantor set C, property P2 in Proposition 1 states that it is contained
in [0, 1] namely in the the π-projection of the canonical 2-simplex. By Remark



Cantor dust by AIFS 273

6 this is equivalent to C(2,1/3) ⊂ conv{E{2}} = ∆E. It is natural to wonder if
such an inclusion property is valid for arbitrary m and p . Actually it is, as
stated by Corollary 2, below. This is straightforward, since, as was proved in
[6],

Theorem 3 If all the matrices in the AIFS Ω = {E{m};S1, ..., Sn} are non-
negative, then Ω has the convex hull property, namely att(Ω) ⊂ conv{E{m}}.

Corollary 2 The AIFS Ξ(m, p) in Definition 12 has the convex hull property.
Therefore, for any m ≥ 2 and any p ∈ (0, 1/2), C(m,p) ⊂ conv{E{m}}.

Proof. If p ∈ (0, 1/2), according to (15) 0 < sk
i,j < 1 for all i, j, k = 1, . . . , m

and for any arbitrary m. Therefore the assertion follows from Theorem 3 .

Furthermore, for any given hyperbolic AIFS, there always exists another
hyperbolic AIFS with the same attractor and with the convex hull property.

Theorem 4 For any hyperbolic canonical AIFS Ω = {E{m}; S1, ..., Sn },
there exists an AIFS ΩU = {U; P1, . . . , Pn } that satisfies

(i) att(ΩU) = att(Ω);
(ii) ΩU has the convex hull property, i.e. att(ΩU) ⊂ U.

Proof. Let WΩ = ∪iLi be the Hutchinson operator associated with Ω, and let
E = E{m}, ∆E = conv{E}. Obviously, the set B = ∪+∞

k=0W
k
Ω(∆E) ⊃ att(Ω)

is a bounded subset of V. Then, there exists in V an m-simplex U such that
B ⊂ conv(U) = ∆U, which implies ∆E ⊂ ∆U. But, then, also E ⊂ ∆U

which implies the existence of a non-negative row-stochastic matrix M such
that E = M U and therefore also SiE = SiMU ⊂ ∆U, for i = 1, . . . , n. Let
Pi = SiM and ΩU = {U; P1, . . . , Pn }. Note that the orbits {W k

U(∆U)}+∞k=1

and {W k
Ω(∆E)}+∞k=1 are identical, which implies the inclusion W k

U(∆U) ⊂ ∆U,
∀ k ∈ N. And, because of this, limk W k

U(∆U) = att(ΩU) = att(Ω) ⊂ ∆U

Lemma 1 Let ∆E = conv(E{m}). If the AIFS Ω = {E{m}; S1, . . . , Sn} has
convex hull property and it satisfies

Li(∆E) ∩ Lj(∆E) = ∅, all i 6= j, (18)

then it is totally disconnected.

Proof. A ⊂ ∆E ⇒ Li(A) ⊂ Li(∆E). So if the sets
{Li(∆E)

}n

i=1
are mutually

disjoint, the sets {Li(A)}n
i=1 are, too. And (17) holds.

Theorem 5 If the hyperbolic AIFS Ω = {E{m}; S1, . . . , Sn} satisfies the hy-
potheses of Lemma 1, the attractor of Ω is a totally disconnected set.
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Proof. For fixed m, let E = E{m} and let Ω = {E; S1, . . . , Sn} have the
convex hull property, so that A = att(Ω) ⊂ ∆E. Let WΩ(·) = ∪iLi(·) be the
Hutchinson operator associated with Ω, and let (18) hold. We will prove by
contradiction that, under such conditions, A is a totally disconnected set. By
definition, a set is totally disconnected iff it does not contain any non-empty
connected set that is not a single point. So, let K(ρ) be a closed ball having
radius ρ > 0 such that K(ρ) ⊂ A. We will prove that ρ > 0 is false.

Let ∆0 = ∆E and ∆k = W k
Ω(∆E) , for k ∈ N. Note that, by (18), ∆k

is the union of nk disjoint sub-simplices of the simplex ∆E, namely the sets
∆j1,...,jk

= Ljk
(. . . (Lj2(Lj1(∆E)))) for all possible combinations of k indices

such that ji ∈ {1, . . . n}, ∀ i. Also notice that, since every Lj is a contraction,
with the factor sj , denoting by s = maxj sj < 1, and by D(X) the diameter
of the set X, it holds that D(∆j1,...,jk

) < skD(∆E) = d(k), for every k and
for every set of indices. Therefore, for any fixed ρ there exists kρ such that, if
k > kρ, D(∆j1,...,jk

) < ρ for any set of indices.
Suppose, now, that there exists a closed ball K(ρ), ρ > 0 such that K(ρ) ⊂

A. Then, ∀ k ∈ N, it must be K(ρ) ⊂ A = ∩∞h=0∆h ⊂ ∆k. And, since K(ρ) is
obviously connected, it must be entirely contained in one of the connected parts
of ∆k. In other words, for every k there must be one and only one set of indices
such that K(ρ) ⊂ ∆j1,...,jk

. Which implies ρ < D(∆j1,...,jk
) < d(k). By the

arbitrariness of k, this would imply ρ = 0 , contradicting the hypothesis that
ρ > 0. Thus, A = att(Ω) cannot contain a closed ball of positive radius i.e., it
is a totally disconnected set.

Finally we state a condition on the matrices in in the AIFS Ω under which Ω
is totally disconnected, and att(Ω) is a totally disconnected set, or a dust. Let
sgn{v} = +1 if all the components of v ∈ IRm are positive, and sgn{v} = −1 if
they are negative.

Theorem 6 If the AIFS Ω = {E{m}; S1, . . . , Sn} has the convex hull property
and if, for 1 ≤ i < j ≤ n, there exist vectors aij such that

sgn{Si aij} = − sgn{Sj aij}, 1 ≤ i < j ≤ n, (19)

then Ω is totally disconnected.

Proof. Let E = E{m}, and ∆i = Li(∆E), ∀ i ∈ {1, . . . , n}. By Lemma 1, Ω
will be totally disconnected if ∀ i 6= j, ∆i ∩ ∆j = ∅. Now, since ∆i and
∆j are convex subsets of IRm, if they have empty intersection there must be
some hyperplane separating them. Recall that, in IRm, given a vector a =
[a1 . . . am]T , the equation

H(r) = 〈a, r〉 =
m∑

j=1

ajρj = 0, (20)
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represents the hyperplane Ha of dimension m − 1, passing through the origin
and orthogonal to the vector a. This hyperplane splits the space IRm to two
half-spaces, H(r) < 0 and H(r) > 0. Suppose x and y are position vectors of
the corresponding points from V such that they belongs to different half-spaces.
Then, signs of scalar products xT a = H(x) and yT a = H(y) are different and
vice versa.

Note that the rows of matrix Si represents vertices of the simplex ∆i. If (19)
is valid then there exists a hyperplane Haij

of the form (20) with orthogonal
vector aij that separates simplices ∆i and ∆j . The rest follows from Lemma
1.

References

[1] M. F. Barnsley, Fractals Everywhere, Academic Press, 1988.

[2] G. Cantor, Uber unendliche lineare Punktmannigfultigkeiten V , Math. An-
nalen 21 (1883), 545-591.

[3] V. Comincioli, Analisi Numerica, McGraw Hill Italia, 1990.

[4] K. Falconer, Fractal Geometry. Mathematical Foundations and Applica-
tions, John Wiley & Sons, 1990.
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[9] Lj. Kocić, AIFS: A tool for biomorphic fractal modeling , Nonlinear Dy-
namics, Psychology, and Life Sciences, 5(1) (2001), 45–63.

[10] B. Mandelbrot, The Fractal Geometry of Nature, Freeman and Company,
1977.

[11] Z. Stojakovic and D. Herceg, Numerical Methods of Linear Algebra, Novi
Sad University Press, Belgrade, 1982.
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