On Q-analogies of generalized Hermite's polynomials

Predrag Rajković and Sladjana Marinković

Abstract

In this paper ${ }^{1}$, we discuss the properties of q - polynomials which are hold in any way, especially difference-differential equation and similar relations. Also, the distribution of zeros is studied. At last, we illustrate all by a few examples and make some conjectures.

1 Introduction

In the theory of q-analogies and q-extensions of classical formulas and functions, for $0<q<1$, we investigate some new classes of polynomials. These polynomials are bibasic, i.e. in their definition participate both, ordinary and q-numbers.

We discuss the properties of q-polynomials which are hold on in any way with respect to standard ones, especially difference-differential relations. This research deals with a problem which makes connection between combinatorial algebra and polynomial theory.

Let

$$
\begin{gathered}
{[n]_{\alpha}=\frac{1-q^{\alpha n}}{1-q^{\alpha}}, \quad[n]_{1}=[n],} \\
{[n]_{\alpha}!=[n]_{\alpha}[n-1]_{\alpha} \cdots[1]_{\alpha}, \quad[0]_{\alpha}!=1}
\end{gathered}
$$

and

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\alpha}=\frac{[n]_{\alpha}!}{[k]_{\alpha}![n-k]_{\alpha}!}
$$

The q-exponential function $e_{\alpha}(x)$ is defined by

$$
\begin{equation*}
e_{\alpha}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]_{\alpha}!}, \quad e_{1}(x)=e(x) \tag{1.1}
\end{equation*}
$$

Lemma 1.1 The q-exponential function $e_{\alpha}(x)$ has the properties:

$$
\text { (a) } \frac{1}{e_{\alpha}(x)}=e_{-\alpha}(-x) \quad(b) e_{\alpha}\left(q^{\alpha} x\right)=\left(1+\left(q^{\alpha}-1\right) x\right) e_{\alpha}(x)
$$

[^0]We define q-derivative with index α by

$$
D_{\alpha}=\frac{f\left(q^{\alpha} x\right)-f(x)}{x\left(q^{\alpha}-1\right)}, \quad D_{1}=D
$$

Lemma 1.2 For q-derivative of the pair of functions is valid:

$$
\begin{align*}
& D(\lambda a(x)+\mu b(x))=\lambda D a(x)+\mu D b(x) \tag{1}\\
& D(a(x) \cdot b(x))=a(q x) D b(x)+D a(x) b(x) \tag{2}\\
& D\left(\frac{a(x)}{b(x)}\right)=\frac{D a(x) b(x)-a(x) D b(x)}{b(x) b(q x)}
\end{align*}
$$

Remark. Unfortunately, in q-analysis does not exist theorem about q-derivative of composition, corresponding to known rule in standard analysis. For example, if we want to evaluate q-derivative of $e\left(x^{2}\right)$ we must find it using expansion by series. So, we find

$$
D e\left(x^{2}\right)=x\left(q e\left(q x^{2}\right)+e\left(x^{2}\right)\right)
$$

which is not an "expected" result.
The main problem. Let $\left\{P_{n}(x)\right\}$ be a sequence of the polynomials determined by the generating function $G(x, t)$, i.e.

$$
\sum_{n=0}^{\infty} P_{n}(x) \frac{t^{n}}{n!}=G(x, t)
$$

Find a similar generating function $\mathcal{G}(x, t, q)(0<q<1)$ which generates a sequence $\left\{P_{n}(x ; q)\right\}$ such that

$$
\sum_{n=0}^{\infty} P_{n}(x ; q) \frac{t^{n}}{[n]_{\alpha}!}=\mathcal{G}(x, t, q)
$$

holding on the majority of properties of the polynomial sequence and reducing to known ones when $q \uparrow 1$.

Evidently the q-analogies need not to be unique (for example, see J. Cigler [3]). All papers, we could find, deals with the sequences of polynomials which are orthogonal and satisfy three-term recurrence relation. Our purpose is to make q-extensions of the polynomials satisfying m-th order recurrence relation. That is why we start from the papers of G.V. Milovanović and G.D. Djordjević about generalized Hermite's polynomials [4].

2 On q-analogies of generalized Hermite's polynomials

The generalized Hermite's polynomials are defined by the generating function (see G. Djordjević, G.V. Milovanović [4])

$$
\sum_{n=0}^{\infty} h_{n, m}(x) \frac{t^{n}}{n!}=e^{x t-t^{m} / m}=G(x, t, m)
$$

This function has the property

$$
\begin{equation*}
G_{t}^{\prime}(x, t, m)=\left(x-t^{m-1}\right) G(x, t, m) \tag{2.1}
\end{equation*}
$$

In our purpose to determine $\mathcal{G}(x, t, m, q)$ like we mentioned defining our main problem, the troubles come from the fact that we do not have q-derivative rule for composition of functions.

We start with a function which satisfies

$$
f(t)=\sum_{k=0}^{\infty} a_{k} t^{k}: \quad D f(t)=C t^{m-1} f(t), f(0)=1, C=\text { const. }
$$

From the condition $f(0)=1$, we get $a_{0}=1$. Then,

$$
\sum_{k=1}^{\infty} a_{k}[k] t^{k-1}=C t^{m-1} \sum_{k=0}^{\infty} a_{k} t^{k}
$$

where from $a_{k}=0, k=1,2, \ldots, m-1$ and $[k+1] a_{k}=C a_{k-(m-1)}$. Using $[k m]=[m][k]_{m}$, we have

$$
a_{k m}=\frac{C}{[k m]} a_{(k-1) m} \Rightarrow a_{k m}=\frac{C^{k}}{[m]^{k}[k]_{m}!}
$$

i.e.

$$
f(t)=\sum_{k=0}^{\infty} \frac{1}{[k]_{m}!}\left(\frac{C t^{m}}{[m]}\right)^{k}=e_{m}\left(C t^{m} /[m]\right)
$$

We can get a class of generalizations choosing different values for C. We will use $C=q$.

Let the polynomials $\left\{h_{n, m}(x ; q)\right\}_{n=0}^{\infty}(m \in N, q \in(0,1))$ be defined by the next generating function

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n, m}(x ; q) \frac{t^{n}}{[n]!}=\frac{e(x t)}{e_{m}\left(q t^{m} /[m]\right)}=\mathcal{G}(x, t, m, q) \tag{2.2}
\end{equation*}
$$

Using lemma 1.2 about quotient, we have

$$
D \mathcal{G}(x, t, m, q)=\frac{x e(x t) e_{m}\left(q t^{m} /[m]\right)-e(x t) q t^{m-1} e_{m}\left(q t^{m} /[m]\right)}{e_{m}\left(q t^{m} /[m]\right) e_{m}\left(q(q t)^{m} /[m]\right)}
$$

At last, by lemma 1.1, we note that this function has the property

$$
\begin{equation*}
D \mathcal{G}(x, t, m, q)=\frac{x-q t^{m-1}}{1+q(q-1) t^{m}} \mathcal{G}(x, t, m, q) \tag{2.3}
\end{equation*}
$$

In the next theorems, we will use $\lfloor n / m\lfloor$ to denote the nearest integer smaller or equal to n / m.

Theorem 2.1 Every polynomial $h_{n, m}(x ; q)$ can be expressed by the next sum relation

$$
h_{n, m}(x ; q)=[n]!\sum_{s=0}^{\lfloor n / m\llcorner }(-1)^{s} \frac{q^{s}}{[m]^{s}[s]_{-m}!} \frac{x^{n-m s}}{[n-m s]!} .
$$

Proof. Expanding the generating function in series, we yield

$$
\begin{aligned}
\frac{e(x t)}{e_{m}\left(q t^{m} /[m]\right)} & =e(x t) e_{-m}\left(-q t^{m} /[m]\right) \\
& =\sum_{i=0}^{\infty} \frac{(x t)^{i}}{[i]!} \sum_{j=0}^{\infty} \frac{\left(-q t^{m} /[m]\right)^{j}}{[j]_{-m}!} \\
& =\sum_{k=0}^{m-1} \sum_{n=0}^{\infty} \sum_{j=0}^{n} \frac{(x t)^{m j+k}}{[m j+k]!} \frac{\left(-q t^{m} /[m]\right)^{n-j}}{[n-j]-m!} .
\end{aligned}
$$

Comparing with (2.2), we find

$$
h_{m n+k, m}(x ; q)=[m n+k]!\sum_{j=0}^{n} \frac{x^{m j+k}}{[m j+k]!} \frac{(-q /[m])^{n-j}}{[n-j]_{-m}!} .
$$

Putting $N=m n+k$ and $s=n-j$, we get wanted relation.
Theorem 2.2 For the polynomial sequence $\left\{h_{n, m}(x ; q)\right\}_{n=0}^{\infty}$ is valid the next q-differential relation

$$
D h_{n, m}(x ; q)=[n] h_{n-1, m}(x ; q)
$$

Proof. Using q-deriving of the both sides of (2.2) by x and using the property of the function $e(z): D e(a z)=a e(a z)$, where a is a constant.

Theorem 2.3 The polynomial sequence $\left\{h_{n, m}(x ; q)\right\}_{n=0}^{\infty}$ satisfies the next m-th order recurrence relation

$$
\begin{gathered}
h_{n+1, m}(x ; q)=x h_{n, m}(x ; q)-q^{n-m+2} \frac{[n]!}{[n-m+1]!} h_{n-m+1, m}(x ; q) \\
h_{k, m}(x ; q)=x^{k}, \quad k=0,1, \ldots, m-1
\end{gathered}
$$

Proof. Using q-deriving of the both sides of (2.2) by t and formula (2.3), we yield

$$
\sum_{n=1}^{\infty} h_{n, m}(x ; q) \frac{t^{n-1}}{[n-1]!}=\frac{x-q t^{m-1}}{1+q(q-1) t^{m}} \mathcal{G}(x, t, m, q)
$$

where from

$$
\left(1+q(q-1) t^{m}\right) \sum_{n=0}^{\infty} h_{n+1, m}(x) \frac{t^{n}}{[n]!}=\left(x-q t^{m-1}\right) \sum_{n=0}^{\infty} h_{n, m}(x ; q) \frac{t^{n}}{[n]!}
$$

After equalizing the coefficients by t^{n} in all series, the recurrence relation follows.

Theorem 2.4 The polynomial $y=h_{n, m}(x ; q)$ satisfy the m-th order q-differential equation

$$
q^{n-m+1} D^{m} y-x D y+[n] y=0
$$

Proof. By successive applying of theorem 2.2, we get

$$
D^{m} h_{n, m}(x ; q)=[n][n-1] \cdots[n-m+1] h_{n-m, m}(x ; q) .
$$

Substituting $n+1$ with n in recurrence relation in theorem 2.3 and applying the previous expression, we yield differential equation for $h_{n, m}(x ; q)$.

Theorem 2.5 For polynomial $h_{n, m}(x ; q)$ holds

$$
x^{n}=[n]!\sum_{k=0}^{\lfloor n / m\rfloor} \frac{q^{k}}{[m]^{k}[k]_{m}![n-m k]!} h_{n-m k, m}(x ; q) .
$$

Proof. Using generating function of polynomials $h_{n, m}(x ; q)$ and definition expressions for functions $e(x t)$ and $e_{m}\left(q t^{m} /[m]\right)$ we have

$$
e_{m}\left(q t^{m} /[m]\right) \sum_{n=0}^{\infty} h_{n, m}(x ; q) \frac{t^{n}}{[n]!}=e(x t)
$$

i.e.

$$
\left(\sum_{n=0}^{\infty} \frac{q^{n}}{[m]^{n}[n]_{m}!} t^{m n}\right)\left(\sum_{n=0}^{\infty} h_{n, m}(x ; q) \frac{t^{n}}{[n]!}\right)=\sum_{n=0}^{\infty} \frac{(x t)^{n}}{[n]!}
$$

Multiplying sums on the left-hand side of the identity we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!} t^{n} & =\sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{q^{k}}{[m]^{k}[k]_{m}![j]!} h_{j, m}(x ; q) t^{m k+j} \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n / m\rfloor} \frac{q^{k}}{[m]^{k}[k]_{m}![n-m k]!} h_{n-m k, m}(x ; q) t^{n}
\end{aligned}
$$

where from the statement of theorem follows.

Theorem 2.6 For polynomial $h_{n, m}(x ; q)$ and a real value u, holds

$$
u^{n} h_{n, m}(x / u ; q)=[n]!\sum_{k=0}^{\lfloor n / m\rfloor} \frac{q^{k}}{[m]^{k}[k]_{m}![n-m k]!} A_{k} h_{n-m k, m}(x ; q)
$$

where

$$
A_{k}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{m} u^{m j}
$$

Proof. Using generating function of polynomials

$$
\begin{aligned}
\mathcal{G}(x / u, t u, m, q) & =\frac{e_{m}\left(q t^{m} /[m]\right)}{e_{m}\left(q t^{m} u^{m} /[m]\right)} \mathcal{G}(x, t, m, q) \\
& =e_{m}\left(q t^{m} /[m]\right) e_{-m}\left(-q t^{m} u^{m} /[m]\right) \mathcal{G}(x, t, m, q)
\end{aligned}
$$

The product on the right-hand side is

$$
\begin{aligned}
& \left(\sum_{k=0}^{\infty} \sum_{j=0}^{k} \frac{(-1)^{j} q^{k} u^{m j}}{[m]^{k}[j]_{m}![k-j]_{m}!} t^{m k}\right)\left(\sum_{i=0}^{\infty} h_{i, m}(x ; q) \frac{t^{i}}{[i]!}\right) \\
& =\sum_{n=0}^{\infty} \sum_{k=0}^{\lfloor n / m\rfloor} \sum_{j=0}^{k} \frac{(-1)^{j} q^{k} u^{m j}}{[m]^{k}[j]_{m}![k-j]_{m}![n-m k]!} h_{n-m k, m}(x ; q) t^{n}
\end{aligned}
$$

Comparing with

$$
\mathcal{G}(x / u, t u, m, q)=\sum_{n=0}^{\infty} \frac{u^{n}}{[n]!} h_{n, m}(x / u ; q) t^{n}
$$

and assigning

$$
A_{k}=[k]_{m}!\sum_{j=0}^{k}(-1)^{j} \frac{u^{m j}}{[j]_{m}![k-j]_{m}!}=\sum_{j=0}^{k}(-1)^{j}\left[\begin{array}{c}
k \\
j
\end{array}\right]_{m} u^{m j}
$$

state holds.

Acknowledgement. We are thankful to dr Gradimir V. Milovanović and dr Miomir Stanković for their help.

References

[1] T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978.
[2] J. Cigler, Operatormethoden fur q-identitaten, Monatsheffe fur Mathematik 88 (1979), 87-105.
[3] J. Cigler, Elementare q-identitaten Publication de l'institute de recherche Mathematique avancee 23-57, 1982.
[4] G.B. Djordjević and G.V. Milovanović, Polynomials related to the generalized Hermite polynomials Facta Univ. Niš, Ser. Math. Inform. 8 (1993), 35-43.
[5] R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Report 17 (1998).

Faculty of Mechanical Engineering
Faculty of Electronic Engineering
University of Niš, 18000 Niš, Yugoslavia
pecar@masfak.masfak.ni.ac.yu
sladjana@elfak.ni.ac.yu

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001 2000 Mathematics Subject Classification:
 Keywords:

