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Abstract
In this paper!, we discuss the properties of ¢ - polynomials which
are hold in any way, especially difference-differential equation and similar
relations. Also, the distribution of zeros is studied. At last, we illustrate
all by a few examples and make some conjectures.

1 Introduction

In the theory of g-analogies and g-extensions of classical formulas and func-
tions, for 0 < ¢ < 1, we investigate some new classes of polynomials. These
polynomials are bibasic, i.e. in their definition participate both, ordinary and
g-numbers.

We discuss the properties of g - polynomials which are hold on in any way
with respect to standard ones, especially difference-differential relations. This
research deals with a problem which makes connection between combinatorial
algebra and polynomial theory.

Let 1 _ gon
M= T =1
[n]a! = [n]a[n — 1o [1a, 0]a!=1
and
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The g-exponential function e, (x) is defined by
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Lemma 1.1 The g-exponential function e, (x) has the properties:
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We define g-derivative with index a by

flg®x) — f(x)

Da = )
z(q* —1)

D, =D.

Lemma 1.2 For g-derivative of the pair of functions is valid:
(1) D(Xa(z) + pb(z)) = ADa(z) + pDb(x)
(2) D(a(m) . b(w)) = a(qx)Db(z) + Da(x)b(x)

a(z)\  Da(z)b(x) — a(z)Db(x)
® D < )‘ badb(a)

Remark. Unfortunately, in g-analysis does not exist theorem about g¢-deri-
vative of composition, corresponding to known rule in standard analysis. For
example, if we want to evaluate g-derivative of e(x?) we must find it using
expansion by series. So, we find

De(2?) = x(qe(qx®) + e(x?)),
which is not an ”expected” result.

The main problem. Let { P, (x)} be a sequence of the polynomials determined
by the generating function G(x,t), i.e.

> Pn(x);—n' = G(x,t).
n=0 ’

Find a similar generating function G(x,t,q) (0 < g < 1) which generates a
sequence { Py, (x;q)} such that

> Pulasa) i = 6. ta).
n=0 @

holding on the majority of properties of the polynomial sequence and reducing
to known ones when q T 1.

Evidently the g-analogies need not to be unique (for example, see J. Cigler
[3]). All papers, we could find, deals with the sequences of polynomials which
are orthogonal and satisfy three-term recurrence relation. Our purpose is to
make g-extensions of the polynomials satisfying m-th order recurrence relation.
That is why we start from the papers of G.V. Milovanovi¢ and G.D. Djordjevié
about generalized Hermite’s polynomials [4].
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2 On g¢-analogies of generalized Hermite’s poly-
nomials

The generalized Hermite’s polynomials are defined by the generating function
(see G. Djordjevi¢, G.V. Milovanovié [4])

Z hn,m(x)% = MM — Qa,t,m).
n=0 ’

This function has the property
Gi(z,t,m) = (x — " HG(x,t,m). (2.1)

In our purpose to determine G(x,t,m,q) like we mentioned defining our main
problem, the troubles come from the fact that we do not have g-derivative rule
for composition of functions.

We start with a function which satisfies

ft) = iaktk . Df(t)=Ct™ ' f(t), f(0) =1, C = const.
k=0

From the condition f(0) = 1, we get ag = 1. Then,

(oo} oo
> apkt T =Ty agtt,
k=1 k=0

where from ap = 0, k = 1,2,...,m — 1 and [k + 1Jar = Caj_(m—1). Using
[km] = [m][k]m, we have

=% 4 R <

km — [k‘m] (k—1)m km — [m}k[k] 1

m:*

0=3 G ()" = et m).

[m]

We can get a class of generalizations choosing different values for C. We will
use C' = q.

Let the polynomials {hn, m (2;¢)}.—, (m € N, g € (0,1)) be defined by the
next generating function

S N < C. B Y,
2B O = & g~ St 02

Using lemma 1.2 about quotient, we have

e(wt)em (qt™ /[m]) — e(xt)gt™ e (gt™ /[m])

DG(x,t,m, q) = em (qt™ /[m])em (a(gt)™ /[m])
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At last, by lemma 1.1, we note that this function has the property
T — qtm71

DG(z,t,m,q) = Trqq—1im

G(z,t,m,q). (2.3)

In the next theorems, we will use |n/m| to denote the nearest integer smaller
or equal to n/m.

Theorem 2.1 Every polynomial hy m(x;q) can be expressed by the next sum

relation
[n/m| s

B (iq) = )l Y (~1)°

s=0 [m]® [s]_m! [n—ms]!

n—ms
xT

Proof. Expanding the generating function in series, we yield

s = elat)en(—at™ /)
| @) S )y
TR
m—1

S g (@) ()"

[mj+ k! [n—jl-m!
Comparing with (2.2), we find
~ ™t (—q/[m])"

g + R =)ol

hanrk,m(m; Q) = [mn + k]'

Putting N = mn + k and s = n — j, we get wanted relation. [

Theorem 2.2 For the polynomial sequence {hym(x;q)},—, is valid the next
g-differential relation

Dhim (25 q) = [n]hn—1,m(2; ).
Proof. Using ¢-deriving of the both sides of (2.2) by z and using the property

of the function e(z): De(az) = a e(az), where a is a constant. L]

Theorem 2.3 The polynomial sequence {hn m(x;q)} - satisfies the next m-th
order recurrence relation

B n|!
n—m-+2 [ } 'hn—m—i-l,m(x;Q)’

hot1,m (25.0) = T (219) — q —mx1]
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Proof. Using ¢-deriving of the both sides of (2.2) by ¢ and formula (2.3), we
yield

nfl T — qtmfl

Zhnqu n—1! 1+q(q—1)tmg(x’t’m’Q)’

where from

(U talg-1i™) 3 hn+1,m($)[%v =@ —qt™ ") hnm(w; q)[tn%l.
n=0 . v ]

After equalizing the coefficients by ¢ in all series, the recurrence relation follows.
[

Theorem 2.4 The polynomial y = hy m(x;q) satisfy the m-th order ¢-diffe-
rential equation
qn—vrz+1D7rzy _ ny + [n} =0.

Proof. By successive applying of theorem 2.2, we get
D" hy o (x59) = [n)[n—1] -+ [n — m 4+ hp—m.m(z;q).

Substituting n + 1 with n in recurrence relation in theorem 2.3 and applying
the previous expression, we yield differential equation for A, n,(z;q). ]

Theorem 2.5 For polynomial hy, m(z;q) holds

[n/m] k

a" =]l Y oG [k]:![n vy hin—mk.m (T3 q)-

Proof. Using generating function of polynomials h, n(z;¢) and definition ex-
pressions for functions e(xt) and e, (qt™/[m]) we have

m(qt™/[m Zh”m x;q)— = e(xt) ,

i.e.

= " = (o)
(Z[mmm )(Zh’““ Y ) 2T

n=0 n=0

Multiplying sums on the left-hand side of the 1dent1ty we obtain

Z [n Z Z hjm (2 )t

n=0 k=0 j= 0
o |n/m] k

- Z Z n — mk:] hnfmk,m(m; q) "

n=0 k=0

where from the statement of theorem follows. n
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Theorem 2.6 For polynomial hy m(x;q) and a real value u, holds

[n/m] k

U o (/05.) = [n]! Y ol [k],:![n T Ay by (23.9),

where
k Tk ‘
A= 21p ]
i m
Proof. Using generating function of polynomials
em(qt™/[m])

em (gt um/[m])

g(x/u,tu,m,q) = [
= em(qt™/Im])e—m(—qt™u™ /[m])G(z,t, m, q).

g(l‘, t7 m, Q)

The product on the right—hand side is

i Ek: —1)7 gFumi gmk i o (2 )’i
k=0 j=0 [m]* [f]m! [k — j]m! yars i,m T34 bl
oo |n/m] k (_l)jqkum]‘

= — Im]* ]! [k — jlm![n — mk]! hon—mike,m (x; Q)"

Comparing with

oo un
G(x/u,tu,m,q) = Z Whn’m(a:/u;q)t"
n=0
and assigning
A= [t (1) D DU W I
=0 [J]m'[k_]]m' =0 Jlm
state holds. n
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