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Abstract
In this paper1 we compare two variants of Mehrotra’s primal dual al-

gorithm which are based on the augmented and normal equations system,
respectively. An implementation of corresponding algorithms in the pack-
age MATHEMATICA, version 4.1, is used for the comparison. Numerical
examples are reported applying the program on some Netlib test prob-
lems.

1 Introduction

We consider the linear programming problem in the general form, which com-
prehends both equality and inequality constraints. This problem can be trans-
formed into the equivalent standard form

(1.1) minimize cT x subject to Ax = b, x ≥ 0,

where c, x ∈ Rn, b ∈ Rm, A is an m× n real matrix and cT is transpose of the
vector c. The dual problem for (1.1) is

(1.2) maximize bT λ subject to AT λ + s = c, s ≥ 0,

where λ ∈ Rm and s ∈ Rn and bT , AT denote transpose of the vector b and
the matrix A, respectively. It is known that the vector x∗ ∈ Rn is a solution
of (1.1) if and only if there exist vectors s∗ ∈ Rn and λ∗ ∈ Rm such that the
following conditions hold:

AT λ∗ + s∗ = c,

Ax∗ = b,

x∗i s
∗
i = 0, i = 1, . . . , n,(1.3)

(x∗, s∗) ≥ 0.(1.4)
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All primal-dual methods generate iterates (xt, λt, st) that satisfy the bounds
(1.4) strictly, that is, xt > 0 and st > 0, and instead the condition (1.3) deal
with the condition xisi = τ, i = 1, . . . , n, where τ → 0.

Known linear programming codes based on interior point methods have been
developed mainly in programming languages FORTRAN, C and MATLAB. If per-
formance is the ultimate goal, then the code should be implemented in C or
FORTRAN. The implementation described in the present paper should be of in-
terest to those wishing to become familiar with various variants of Mehrotra’s
interior point method for linear programming by experimenting with the imple-
mentation based on the convenience of a symbolic language rather than having
to deal with the ”nitty-gritty” details provided by use of procedural program-
ming languages.

About the primal-dual interior point codes in MATHEMATICA see for example
a recently published book [4]. But, these codes are not based on the Mehrotra’s
predictor-corrector algorithm, which is used as a fundament for most interior-
point codes since 1990. The Mehrotra’s predictor-corrector method incorporates
a number of heuristics that have been developed during ten years of computa-
tional experience and also allows an adaptive choice of the centering parameter
at each iteration.

The main numerical effort in Mehrotra’s primal dual algorithm is to solve
two systems of linear equations, presented in the so called augmented system
form or the normal equations form. So far in the literature the normal equation
system is more widely used. Starting from [2], several researches have decided
to incorporate the augmented system approach [8]. The computational effort
(flops) of the two competitive approaches is studied in [8]. We incorporate
the capability of symbolic and numeric computation available in MATHEMATICA,
version 4.1, and develop experimental codes for both variants of the algorithm.
After that we will compare behavior of these algorithms on the set of test linear
programming problems.

2 Description of algorithms

It is known that the linear systems to be solved at each primal-dual iteration
can be formulated in three equivalent ways. The unreduced form for infeasible-
interior-point algorithm is

(2.1)




0 A 0
AT 0 I
0 S X







∆λ
∆x
∆s


 =




−rb

−rc

−XSe + σµe


 ,

where µ = xT s/n and rb = Ax− b, rc = AT λ + s− c.
Eliminating ∆s from (2.1) and using the notation D = S−1/2X1/2, we obtain

augmented system and after the elimination ∆x from we obtain the normal
equations system. The details will be given in the description of the algorithm.
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We briefly describe a variant of the Mehrotra’s algorithm which is similar to the
variant used in the code of PCx (see for example [5], [12]).
Step 1. Generate the starting iteration (xt, λt, st), t = 0.
Step 2. Calculate the residues

rb = Axt − b, rc = AT λt + st − c

and check the following stopping criteria

||rb||
1 + ||b|| ≤ ε,

||rc||
1 + ||c|| ≤ ε,

|cT x− bT λ|
1 + |cT x| ≤ ε.

In practice, it is rare that the third condition is satisfied and at the same time
other conditions do not hold. Consequently, the most important and perhaps
the only condition that really has to be checked is the third condition [1]. An
8-digits exact solution (ε = 10−8) is typically required in the literature.

If the stopping criterion is satisfied, return the output xt; otherwise, go to
Step 3.
Step 3. Form the matrices S, X and the vector e as

S = diag(s1, . . . , sn), X = diag(x1, . . . , xn), e=(1, . . . , 1)T ∈ Rn.

Step 4. Compute D = S−1/2X1/2, rxs = XSe and solve one of the following
two systems with respect to (∆xaff ,∆λaff , ∆saff ). In the normal equations
system case solve the system

(2.2) AD2AT ∆λaff = −rb −A(S−1Xrc − S−1rxs)

and compute the increments

∆saff = −rc −AT ∆λaff ,

∆xaff = −S−1(rxs + X∆saff ),

where

S−1 = diag(1/s1, . . . , 1/sn), D2 = diag(x1/s1, . . . , xn/sn);

in the augmented system case solve

(2.3)
[

0 A
AT −D−2

] [
∆λaff

∆xaff

]
=

[ −rb

−rc + X−1rxs

]
,

and compute the increment ∆saff = −rc −AT ∆λaff .

Step 5. Calculate the measure of duality µ = 1
n

n∑
i=1

xisi =
xT s

n
.
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Step 6. Calculate conditions for non-negativity of the iterative point

αpri
aff =max{α∈ [0, 1] : xt+α∆xaff≥0}=Min[1, {xt

i/∆xaff
i , ∆xaff

i <0}],
αdual

aff =max{α∈ [0, 1] : st+α∆saff≥0}=Min[1, {st
i/∆saff

i , ∆saff
i <0}].

Step 7. Calculate

µaff =
1
n

(xt + αpri
aff∆xaff )(st + αdual

aff ∆saff ) and σ =
(

µaff

µ

)3

.

Step 8. Compute rxs = −σµe + ∆Xaff∆Saffe, where

∆Xaff = diag(∆xaff
1 , . . . , ∆xaff

n ), ∆Saff = diag(∆saff
1 , . . . , ∆saff

n ),

and solve one of the following two systems for (∆xcor, ∆λcor, ∆scor). In the
normal equations system case solve the system

(2.4) AD2AT ∆λcor = AS−1rxs,

and compute
∆scor = −AT ∆λcor,

∆xcor = −S−1(rxs + X∆scor);

in the augmented system case solve the system

(2.5)
[

0 A
AT −D−2

] [
∆λcor

∆xcor

]
=

[
0

X−1rxs

]
,

and compute ∆scor = −AT ∆λcor.

Step 9. Set (∆xt, ∆λt,∆st)=(∆xaff ,∆λaff , ∆saff )+(∆xcor, ∆λcor,∆scor).
Step 10. Calculate the parameters

αpri
max = max{α ≥ 0 : xt + α∆xt ≥ 0} = Min[1, {xt

i/∆xt
i, ∆xt

i < 0}]
αdual

max = max{α ≥ 0 : st + α∆st ≥ 0} = Min[1, {st
i/∆st

i, ∆st
i < 0}].

Step 11. Set
αpri

t = min{0.99αpri
max, 1}

αdual
t = min{0.99αdual

max, 1}.
Step 12. Compute the next iteration

xt+1 = xt + αpri
t ∆xt,

(λt+1, st+1) = (λt, st) + αdual
t (∆λt, ∆st),

put (xt, λt, st) = (xt+1, λt+1, st+1), t = t + 1 and go to Step 2.
We propose a simple algorithm for computation of an initial solution which

will be well centered and satisfies at least one constraint, if it is possible. More-
over, the proposed algorithm generates the initial solution about ten times faster
than a single interior point iteration.
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Algorithm 1.

Step 1.1. Compute the quantity aux = max{q1, . . . , qm}, where

(2.6) qi =





max

{
bi∑n

j=1 aij
, 1

}
,

∑n
j=1 aij 6= 0,

1,
∑n

j=1 aij = 0, i = 1, . . . , m.

Step 1.2. Generate starting points x, and s, whose all coordinates are equal
to aux, and the starting point l, with all coordinates equal to zero.

Motivated by [9], we generate an alternative initial solution, which is gen-
erated in a similar way as in Step 1.1 and Step 1.2 , using the quantity aux =
max{q1, . . . , qm}, where

(2.7) qi =





max





bi√∑n
j=1 a2

ij

, 1



 ,

∑n
j=1 a2

ij 6= 0,

1,
∑n

j=1 a2
ij = 0, i = 1, . . . , m.

3 Numerical experiences

Example 3.1 In this example we consider a subset of known test problems in
the literature. Notice that the precision is eps= 10−8 in all cases and the starting
point is selected in accordance with (2.6). Values TA and TN represent the
processor time required to solve the problem using the augmented and normal
system, respectively.

Table 1.

Problem Dimensions TA/TN Problem Dimensions TA/TN
Adlittle 56× 138 0.76 Lotfi 153× 366 0.64
Afiro 27× 51 0.95 Sc105 105× 163 0.51
Agg 488× 615 0.52 Sc205 205× 203 0.55
Agg2 516× 758 0.46 Sc50b 50× 78 0.72
Agg3 516× 758 0.57 Sc50a 50× 78 0.66

Bandm 305× 472 0.63 Scagr7 129× 185 0.61
Blend 74× 114 0.75 Sctap1 300× 660 0.78
Israel 174× 316 0.69 Share2b 96× 162 0.66
Kb2 43× 68 0.69 Stocfor1 117× 165 0.60

Note that the augmented system approach is faster in all cases in the Table
1. Observe that the difference in the processor time between the augmented
and normal equations system decreases proportionally with the dimensions of
the problem. Similar results are obtained using the starting point generated by
(2.7).
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Example 3.2 Algorithms for the construction of the starting point has no in-
fluence on numerical stability of the iterative process in all test problems from
Table 1. But, in the case of the augmented system approach, there exist badly
conditioned test problems whose numerical stability essentially depends of the
choice of starting point. Note that in the normal system approach, these test
problems are remain badly conditioned regardless of the choice of starting point.
To illustrate this claim, regard the next small test problems. In [10] it is given
an interesting example of dimensions 18×18 which can not be solved by known
linear programming solvers PCx and HOPDM . Using the starting point in
accordance with (2.6) and the augmented system approach we get the near-
optimal value 0.0000231958320761213. On the other hand, using (2.7) for the
starting point we get much better result 8.4656617528504510−6.

Example 3.3 The second example is the following very simple test problem
maximize 30x1 + 60x2 + 50x3
subject to 3x1 + 4x2 + 2x3 ≤ 60

x1 + 2x2 + 2x3 ≤ 30
2x1 + x2 + 2x3 ≤ 40.

Augmented system approach gives the optimal value 899.999999999 for each
initial point. The normal system approach produce the same optimal value
using (2.7) for the starting point, but it is unable to solve the problem using
(2.6) for the starting point.

Example 3.4 In this example we show that the properties of the current prob-
lem can be crucial for choice of the approach. In the case of the problem Degen2
even the initial matrix is ill-conditioned. The augmented system approach is
unable to solve this problem. On the other hand, the normal system approach
produce the optimal value -1435.177999919273 with the precision 10−8, in 12th
iteration. In the case of the problem Scfxm1 the iterative process based on the
normal system approach is divergent, but the augmented approach produces the
optimal value 18416.759034153343 with the precision 10−8.

4 Conclusion

We compare two variants of Mehrotra’s primal dual algorithm which are based
on the augmented and normal equations system. As we see in Example 3.1 the
augmented system approach is generally faster than the normal system. As the
precision is similar in the both approaches, we conclude that augmented system
approach has better performance in the most of cases. Also, we show that
numerical performances of the augmented system approach can be improved by
the appropriate selection of the staring point. It is worth of mention that this
result depends on the specific methods for solving the augmented and normal
system in the package MATHEMATICA. As it is reported in [1], [8], [12], the
implementation of the augmented system approach in procedural languages has
advantageous stability properties and ability of its easy extension to handling
quadratic programming problems and free variables. But, the augmented system
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formulation has some disadvantages with respect to procedural languages [8],
[12]:

- Algorithms and software for solving sparse symmetric indefinite systems
are not as highly developed and widely available as sparse Cholesky codes.

- It takes more computer time (typically, 50% -100% more) to obtain the
iterative step from the augmented system form than from the Cholesky algo-
rithm.
The first objection is less significant, thanks to considerable recent work on
software in this area [3], [6], [7]. The second objection - increased solution
time - generally will probably remain, even if significant advances are made in
software. In this paper we observed that the implementation of the augmented
system in the package MATHEMATICA is even faster, especially for large scale
problems. In any case, the advantages of the augmented system formulation
give it an important role to play in future software for primal-dual methods.
Note that HOPDM determines the implemented approach with respect to the
properties of the current problem. This idea will be used in our future work.
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