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Abstract

In this paper1 a formulation of U(1) gauge theory on a fuzzy torus
is discussed. The theory is regulated in both the infrared and ultravio-
let. It can be thought of as a non-commutative version of lattice gauge
theory on a periodic lattice. The construction of Wilson loops is particu-
larly transparent in this formulation. Following Ishibashi, Iso, Kawai and
Kitazawa, we show that certain Fourier modes of open Wilson lines are
gauge invariant.

We also introduce charged matter fields which can be thought of as
fundamentals of the gauge group. These particles behave like charges
in a strong magnetic field and are frozen into the lowest Landau levels.
The resulting system is a simple matrix quantum mechanics which should
reflect much of the physics of charged particles in strong magnetic fields.

1 The fuzzy torus

In this paper we will be interested in the construction of gauge invariant Wilson
loops in a regularized version of non–commutative gauge theory. After this
paper was written we realized that the theory we are using and much of our
results have previously been discussed by Ambjorn, Makeenko, Nishimura and
Szabo [2]. Our presentation is much less general than theirs but because it is
also very simple we felt it was worth circulating.

The regularized theory is a non–commutative version of lattice gauge theory
on the fuzzy torus. It is patterned after the the Hamiltonian form of lattice
gauge theory [9].

The lattice version is an especially intuitive formulation of the non-perturba-
tive theory. For illustrative purposes we will concentrate on the Abelian theory
in 2 + 1 dimensions. The generalization to higher dimensions and non-abelian
gauge groups is straight forward. Our main focus will be on defining the gauge
invariant quantities of the theory including closed and open Wilson lines and
in formulating the theory of matter in the fundamental representation of the
noncommutative algebra of functions.

1Presented at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
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The fuzzy 2-torus is defined by non-commuting coordinates U, V satisfying

U†U = V †V = 1
UN = V N = 1
UV = V Ueiθ (1.1)

with θ = 2π/N . These relations can be represented by N ×N matrices

U =




0 1 0 0 0 0 . .
0 0 1 0 0 0 . .
0 0 0 1 0 0 . .
. . . . . . . .
1 0 0 0 0 0 . .




(1.2)

V =




1 0 0 0 0 0 . .
0 eiθ 0 0 0 0 . .
0 0 e2iθ 0 0 0 . .
. . . . . . . .
0 0 0 0 0 0 . ei(N−1)θ




. (1.3)

The physical interpretation of U, V is that they are exponentials of non-
commuting periodic coordinates

U = exp
ix

R

V = exp
iy

R
. (1.4)

Formal manipulations would indicate nontrivial commutation relations for x, y
of the form

[y, x] = iθR2. (1.5)

This relation can be satisfied by introducing a pair of operators on Hilbert space
q, p with

p = −i∂q (1.6)

and defining

y = qRθ
1
2

x = pRθ
1
2 . (1.7)

This equation is sometimes a useful mnemonic but it is not strictly correct;
no two finite dimensional matrices can have a commutator with a non-vanishing
trace.

Functions on the fuzzy torus are defined by the non–commutative analogue
of a Fourier series

φ(U, V ) =
N−1∑

n,m=0

cmnUnV m. (1.8)
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It is convenient to define

Umn = e−imnθUmV n

φmn = eimnθcmn

φ(U, V ) =
N−1∑

n,m=0

φmnUmn. (1.9)

Note that the Umn satisfy

UmnUrs = exp
1
2
iθ(ms− nr) ≡ Umn ∗ Urs. (1.10)

Equation (1.8) defines the star-product on the fuzzy torus.
The fuzzy torus is analogous to a periodic lattice with a spacing

a = 2πR/N. (1.11)

This is because the Fourier expansion in (1.7) has only a finite number of terms.
In other words there is a largest momentum in each direction

pmax = 2π(N − 1)/R. (1.12)

Thus the fuzzy torus has both an infrared cutoff length R and an ultraviolet
cutoff length 2πR/N .

The operators U, V function as shifts on the periodic lattice. Using the last
of equations (1.1) one easily finds

Uφ(U, V )U† = φ(U, V eiθ)
U†φ(U, V )U = φ(U, V e−iθ)
V φ(U, V )V † = φ(Ue−iθ, V )
V †φ(U, V )V = φ(Ueiθ, V ). (1.13)

More generally

UnV mφ(U, V )V †mU†n = φ(Ue−imθ, V einθ). (1.14)

The rule for integration on the fuzzy torus is simply
∫

Umn = 4π2R2δm0δn0. (1.15)

Noting that
TrUmn = Nδm0δn0 (1.16)

we make the identification
∫

F (U, V ) =
4π2R2

N
TrF (U, V ). (1.17)
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2 Gauge theory on the fuzzy torus

In what follows we will work in the temporal gauge in which the time component
of the vector potential is zero.

Let us introduce gauge fields on the fuzzy torus in analogy with the link
variables of lattice gauge theory [9]. We will explicitly work with the gauge
group U(1). The link variable in the x, y direction is called X, Y . The link
variables are unitary

X†X = 1
Y †Y = 1. (2.1)

The gauge invariance of the theory is patterned on that of lattice gauge theory.
Let Z be a unitary, time independent function of U, V , Z†Z = 1. The gauge
transformation induced by Z is defined to be

X ′ = Z(U, V )X(U, V )Z†(Ueiθ, V )
Y ′ = Z(U, V )Y (U, V )Z†(U, V eiθ) (2.2)

or

X ′ = ZX V †Z†V
Y ′ = ZY UZ†U†. (2.3)

Let us now construct Wilson loops by analogy with the conventional lattice
construction. We will give some examples first. A Wilson line which winds
around the x-cycle of the torus at a fixed value of y is given by

Wx = TrX(U, V )X(Ueiθ, V )X(Ue2iθ, V )..X(Uei(N−1)θ, V )
= Tr(XV †)N . (2.4)

Similarly
Wy = Tr(Y U)N . (2.5)

These expressions are gauge invariant under the transformation in (2.3).
Another example of a Wilson loop is the analogue of the plaquette in lattice

gauge theory. It is given by

P = TrX(U, V )Y (Ueiθ, V )X†(U, V eiθ)Y †(U, V )
= Tr(X)(V †Y V )(UX†U†)(Y †)
= e−iθTr(XV †)(Y U)(V X†)(U†Y †). (2.6)

The general rule involves drawing a closed oriented chain formed from di-
rected links. A step in the positive (negative) x direction is described by the
link operator XV † (V X†). Similarly a step in the positive (negative) y direc-
tion gives a factor Y U (U†Y †). The link operators are multiplied in the order
specified by the chain and the trace is taken. In addition there is a factor e−iAθ
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where A is the signed Area of the loop in units of the lattice spacing. For a sim-
ple contractable clockwise oriented loop with no crossings, A is just the number
of enclosed plaquettes.

A simple Lagrangian for the gauge theory can be formed from plaquette
operators and kinetic involving time derivatives. The expression

TrẊ†Ẋ + Ẏ †Ẏ (2.7)

is quadratic in time derivatives and is gauge invariant. Again, following the
model of lattice gauge theory [9] we choose the action

L =
4π2R2

g2a2N
Tr

[
Ẋ†Ẋ + Ẏ †Ẏ +

e−iθ

a2
(XV †)(Y U)(V X†)(U†Y †) + cc

]
. (2.8)

Evidently the operators XV † and Y U play an important role. We therefore
define

X = XV †

Y = Y U. (2.9)

These operators transform simply under gauge transformations:

X → ZXZ†

Y → ZYZ†. (2.10)

The action is now written in the form

L =
4π2R2

g2a2N
Tr

[
Ẋ †Ẋ + Ẏ†Ẏ +

e−iθ

a2
XYX †Y† + cc

]
(2.11)

or using (1.9)

L =
N

g2
Tr

[
Ẋ †Ẋ + Ẏ†Ẏ +

e−iθ

a2
XYX †Y† + cc

]
. (2.12)

In this form the action is equivalent to that of a U(N) lattice gauge theory
formulated on a single plaquette but with periodic boundary conditions of a
torus. This appears to be a form of Morita equivalence [3].

If the coupling constant is small, the ground state is determined by mini-
mizing the plaquette term in the Hamiltonian. This is done by setting

e−iθXYX †Y† = 1. (2.13)

Up to a gauge transformation the unique solution of this equation is

X = V †

Y = U (2.14)

or
X = Y = 1. (2.15)
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3 Open Wilson loops

Thus far we have constructed closed Wilson loops. Recall that the construc-
tion involves taking a trace. This is the analogue of integrating the location of
the Wilson loop over all space. In other words the closed Wilson loop carries
no spatial momentum. In a very interesting paper Ishibashi, Iso, Kawai and
Kitazawa [7] have argued that there exist gauge invariant operators which cor-
respond to specific Fourier modes of open Wilson lines. These objects are very
closely related to the growing dipoles of non–commutative field theory whose
size depends on their momentum [4, 8]. Das and Rey [5] have shown that these
operators are a complete set of gauge invariant operators. Their importance has
been further clarified by Gross, Hashimoto and Itzhaki [6].

Let us consider the simplest example of an open Wilson line, i.e., a single link
variable, say X. From the equation (2.3) we see that X is not gauge invariant.
But now consider XV † = X . Under gauge transformations

X → ZXZ†, (3.1)

evidently the quantity
TrXV † = TrX (3.2)

is gauge invariant. Now using (1.4) we identify this quantity as

TrXV † =
N

4π2R2

∫
Xe

−iy
R d2x. (3.3)

Thus we see that a particular Fourier mode of X is gauge invariant.
Let us consider another example in which an open Wilson line consist of two

adjacent links, one along the x axis and one along the y axis

XV †Y V = XYU†V. (3.4)

Multiplying by V †U and taking the trace gives

Tr(XV †Y V )V †U = TrXY = gauge invariant. (3.5)

But we can also write this as

N

4π2R2

∫
d2x(XV †Y V )e

−iy
R e

−ix
R . (3.6)

In other words it is again a Fourier mode of the open Wilson line. In general
the particular Fourier mode is related to the separation between the endpoints
of the Wilson line by the same relation as that in [4, 8] where it was shown that
a particle in non–commutative field theory is a dipole oriented perpendicular to
it momentum with a size proportional to the momentum.
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4 Fields in the fundamental representation

In this section we will define fields in the fundamental representation of the gauge
group. For simplicity we consider non-relativistic particles. Let us begin with
what we do not mean particles in the fundamental. Define a complex valued
field φ that takes values in the N ×N dimensional matrix algebra generated by
U, V . The gauge transformation properties of φ are given by

φ → Zφ. (4.1)

Note that this is left multiplication by Z and not conjugation. The field φ carries
a single unit of abelian gauge charge. Although the field has two indices in the
N -dimensional space the gauge transformations only act on the left index.

An obvious choice of gauge invariant ”hopping” Hamiltonian would be

H ∼ Trφ†XV †φV φ†XUφU† + cc. (4.2)

In a non-abelian theory a similar construction can be carried out for quark fields
in the fundamental.

We shall mean something different by fields in the fundamental. Such fields
have only one index. They are vectors rather than matrices in the Hilbert space
that the represents the algebra of functions. In the present case they are N
component complex vectors |ψ〉. These fields represent particles moving in a
strong magnetic field which are frozen into the lowest Landau level.

Consider the case of non-relativistic particles moving on the non-commuta-
tive lattice. The conventional lattice action would be

L = L0 − Lh, (4.3)

where
L0 = i

(
〈ψ̇†|ψ〉 − cc

)
(4.4)

and Lh is a hopping Hamiltonian. The natural non–commutative version of the
hopping term is

Lh =
1
a
〈ψ|XV † + Y U − 2|ψ〉+ cc. (4.5)

The presence of the link variables X, Y is familiar from ordinary lattice field
theory and the V †, U are the shifts which move ψ. We may also write the
hopping term as

Lh =
1
a
〈ψ|X + Y| − 2ψ〉+ cc. (4.6)

Combining (2.12), (4.2) and (4.4)

L =
N

g2
Tr

[
Ẋ †Ẋ + Ẏ†Ẏ +

e−iθ

a2
XYX †Y† + cc

]
+i〈ψ̇†|ψ〉+ 1

a
〈ψ|X+Y−2|ψ〉+cc.

(4.7)



320 Daniela Bigatti

Let us consider hopping terms in (4.6). In the limit of weak coupling we may
use (2.14) to give

Lh =
1
a
〈ψ|V † + U − 2|ψ〉+ cc. (4.8)

To get some idea of the meaning of this term let us use (1.4) and expand the
exponentials

Lh =
1
a
〈ψ| (x

2 + y2)
R2

|ψ〉+ cc (4.9)

and using (1.7)

Lh =
1
a
〈ψ|(p2 + q2)θ|ψ〉+ cc. (4.10)

Thus we recognize this term as a harmonic oscillator hamiltonian with an in
spectrum of levels spaced by θ ∼ N−1. Evidently, in this approximation the
particles move in quantized circular orbits around the origin.

This phenomena is related to the fact that the fundamental particles behave
like charged particles in a strong magnetic field and are frozen into their lowest
Landau levels. Furthermore the LLL’s are split by a force attracting the particles
to x = y = 0. This has a natural interpretation in matrix theory in which the
same system appears as a 2-brane and 0-brane with strings connecting them [1].

5 Rational Theta

Thus far we have worked with the equation (1.1) with θ = 2π/N . Let us
generalize the construction to the case θ = 2πp/N with p relatively prime to N .
We continue to define the fuzzy torus by (1.1). Let us define two matrices u, v
satisfying

u†u = v†v = 1
uN = vN = 1
uv = vue

2πiα
N (5.1)

such that
αp = 1(modN ). (5.2)

Then it follows that

U = up

V = vp (5.3)

satisfies (1.1). Furthermore, u and v† act as shifts by distance 2πR/N ;

uV u† = V exp
(

2πi

N

)

v†Uv = U exp
(

2πi

N

)
. (5.4)
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The basic plaquette is now given by

P = Tr(X)(v†Y v)(uX†u†)(Y †)
= e

2πiα
N Tr(Xv†)(Y u)(vX†)(u†Y †). (5.5)

The final expression for action is essentially the same as in (2.10) except that
the factor eiθ is replaced by e

2πiα
N .

We can now describe one approach to the continuum limit, a → 0. To get
to such a limit (1.9) requires that N → ∞. We also want the theta parameter
to approach a finite limit. This requires p/N to approach a limit. For example
if we want p/N → 1/2 we can choose the sequence (p = n,N = 2n + 1) so that
p and N remain relatively prime. In this way p/N can tend to a rational or
irrational limit and the lattice spacing will approach zero.
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