
Vector and scalar variables laminar natural
convection in 2D geometry arbitrary angle of

inclination

Miomir Raos and Ljubǐsa Nešić

Abstract

The aim of this study1 is to analyze vector and scalar depending
variables in parallelogram enclosures which changing angle of inclination
measured from horizontal plane in laminar natural convection conditions.
Parallelogram enclosure has two isothermal opposite walls with different
temperatures, and two adiabatic mating walls. Mathematical model de-
scribed by the system of partial differential equations which solved by
numerical procedure, control volume method. Results of numerical pro-
cedure, treated by original software demonstrate values of variables in
estimate domain, as velocities, pressures and temperatures. There are
comprehensive graphic presentation obtained by named results.

1 Description

The study represents investigation of the laminar natural convection phenomena
in enclosed rectangular spaces. Therefore, realization of this subject has been
done through number of phases which have to make better understanding and
configuration: velocity, temperature and pressure fields in enclosures. The real
physical model of the enclosure, which represents two dimensional rectangular
object with differentially heated side and adiabatic horizontal walls, has been
defined in order to predict good enough results. Rotation of the enclosures is one
of the aim of this study too. Physical model represent base for mathematical
model which define valid parameters for temperature flow regime. Solution
of the defined mathematical model, with respect the nature of the equation
has been done with numerical control volume method. Due to presence of
the numerical procedure results there is made a computer code, which contain
SIMPLE procedure in essence, and which contain routine for solving variable
fields. Results of the numerical experiment has been compared with literature
ones, and it gives a satisfaction. Results of this study with some other analysis
and research present good base for definition of the object parameters which can
find in engineering practice, and which essentially contain natural convection
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phenomena. There are so many phenomena like: cooling electronic equipment,
solar panel, different modes of heating, cooling nuclear reactors, global natural
phenomena etc.

2 Basic

In order to get some quality values of named phenomena there are defined
physical model of enclosure, 2D geometry with differentially heated opposite
walls and two sided isothermal walls as on the figure 1.

Figure 1: 2D enclosed geometry

In fact, named enclosure represent well enough base for 3D investigation
because of similarity of flow pattern in cross section of enclosed space if there
is enough depth of 3D enclosure. One more element is used as very important
in this investigation and it is rotation of the enclosure. Dimension are: L for
length, H for width. There were used Cartesian coordinate system fixed on the
one corner point of the enclosure, and it rotate with object around z axe. There
is defined geometrical scale as A = H/L. For x = 0 temperature of the hot wall
is TH , and for x = L temperature of the cold wall is TC . Temperature differ-
ence of the isothermal walls defined as: ∆T = TH − TC . The other sided walls
are adiabatic. Because of the rotate hot wall always makes some angle by the
horizontal plane. Laminar convection achieved by the fixed of the Ra number
on 106 value, as the Pr number is about 0,73 for air. The other physical charac-
teristic: dynamic viscosity, thermal conductivity, specific heat on the constant
pressure and density (excluded buoyancy therm) assumed to be constant for av-
eraged rate of temperature T0. In investigation excluded radiation heat transfer
because of low intensity of heat transfer. We used Boussinesq approximation
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in Buoyancy therm in equations of momentum because of small temperature
differences. Therefore the density in buoyancy therm of momentum equations
linearized as:

ρ(T ) = ρ(T0)− βρ(T0)(T − T0) (1)

were (β represent volume thermal expansion coefficient for averaged temperature
T0.

3 Modelling

There are defined mathematical model by physical model, and it define param-
eters which we are interesting for.
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In order to get some results we are defined boundary conditions. Velocities on
the walls are zero as well as temperature gradients on the adiabatic walls. The
temperatures of the isothermal walls defined as TH and TC .

0 ≤ x ≤ L, y = 0, u = v = 0,
∂T

∂y
= 0,

0 ≤ x ≤ L, y = H, u = v = 0,
∂T

∂y
= 0,

x = 0, 0 ≤ y ≤ H, u = v = 0, T = TH ,

x = L, 0 ≤ y ≤ H, u = v = 0, T = TC (3)

4 Numerical Investigation

Mathematical model solved by the control volume numerical investigation. Nu-
merical procedure, based on FV method, transforming system of the partial dif-
ferential equations in system of algebraic equation by the discretisation method.
Named algebra equation can be solved easily by the some well known method
of solving as Gauss-Zeidel method General discretizated equation:

∂

∂t
(ρΦ) + div(ρ~wΦ) = div(ΓΦ gradΦ) + SΦ (4)
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were: Φ - dependent variable, ~w - velocity vector, SΦ - source therm for depen-
dent variable.

Enclosure is divided by orthogonal grid. The essence of the investigation
is in quality choice of the discretization scheme, and good balancing between
convective and diffusive therms through the walls of the enclosed space. We used
hybrid scheme which gives well enough results. The hybrid scheme developed
for east side of the enclosure is:
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other words:
Pee ≤ −2Je = FeΦE ,

−2 < Pee < 2Je = 0, 5Fe(ΦP + ΦE)−De
ΦE − ΦP

∆xe
(6)

Pee ≥ 2Je = FeΦP

where: F represent fluxes, and Γe diffusion coefficients. By the integration
of the named differential equation for control volume, using Gauss theorem of
divergation we find balance of the source therms and fluxes for each side of
control volume:

∫

VP

∂

∂t
(ρΦ)dV +

∫
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(ρ~wΦ− ΓΦ gradΦ)~ndS =
∫

VP

SΦdV. (7)

Total fluxes, convective and diffusive for one dimension are:

Jx = ρuΦ− ΓΦ
∂Φ
∂x

(8)

as they are constant for side of neighbor control volume
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∫
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Generalize for other side of the control volume:

(Je − Jw) + (Jn − JS) =
∫

SΦdV. (10)

Source therm on the right side of the eq. (4) can be write as:
∫

SΦdV = (Sc + SpΦP )∆x∆y (11)

and Sc i Sp represent constants, independent of the Φp value. The Sp therm
must be positive to achieve numerical stability and result convergation. Final
results presented by the general discretizated equation:

aP ΦP = aEΦE + aW ΦW + aNΦN + aSΦS + b (12)
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where: ap, ae, aw, an, as are coefficients for point of discretization.
There where used SIMPLE procedure in order to get results of the numerical

investigation and therefore we made original source code which including routine
for solving independent values. By adding of some Mathlab routines there were
made wide graphical presentation independent values.

5 Results

6 Closure

Results represent very complex dependance of the parameters. The angle of
rotation below 200 gives unstable results which can be describes as time depen-
dent or 3D trend. The patterns with angle of rotation between 200 and 1800

are stabile. Increasing angle of rotation makes increasing of diffusion mecha-
nism, particulary for angle close to 1800 where is pure diffusion. The highest
intensity of heat transfer noticeable near by 700 − 800. It can be conclude that
the enclosure act as some kind of thermal diode. Increasing of the Ra number
results increasing Nu number. There should be emphasized that for increasing
Ra number gives Nu number as linear function of Ra number characterized for
boundary layer. The Nu number achieve maximum value on the different height
of hot wall depending of the angle of rotation. The results, generally can be good
base for further investigation, in air conditioning, cooling phenomena, wherever
natural convection represent base phenomena in heat transfer and flowing. there
are a numerous ways of hating spaces, solar cells, cooling electronic equipment,
even for cooling of nuclear reactor or global natural phenomena.
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Figure 2: Temperature (isotherms): angle 600, 900, 1600; ∆T = 100C; Ra =
1, 28x106,Pr = 0, 73
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Figure 3: Pressure (isobars): angle 600, 900, 1600; ∆T = 100C; Ra = 1, 28x106,
Pr = 0, 73
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Figure 4: Velocity vectors (isovels): angle 600, 900, 1600; scale 1:3; geometr.
scale (1:4:62)


