Some matrix transformations between the difference sequence spaces $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta l_{\infty}(p)$

Eberhard Malkowsky and Mursaleen

Abstract

For any sequence $x = (x_k)_{k=1}^{\infty} \in \omega$ and any subset X of ω , we write $\Delta x = (\Delta x_k)_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty}$ and $\Delta X = \{x \in \omega : \Delta x \in X\}$. Let $p = (p_k)_{k=1}^{\infty}$ and $q = (q_k)_{k=1}^{\infty}$ be bounded sequences of positive reals. We determine the β -duals of the sets $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$. Furthermore, we characterize the matrix classes $(\Delta X, Y)$ and $(\Delta X, \Delta Y)$ for $X = c_0(p), c(p), l_{\infty}(p)$ and $Y = c_0(q), c(q), l_{\infty}(q)$.¹.

1 Introduction

Let ω be the set of all complex sequences $x = (x_k)_{k=1}^{\infty}$, and c_0 , c, l_{∞} and c_3 be the sets of all null, convergent and bounded sequences and of all convergent series, respectively. Furthermore, let $p = (p_k)_{k=1}^{\infty}$ and $q = (q_k)_{k=1}^{\infty}$ be bounded sequences of positive reals throughout, and $c_0(p) = \{x \in \omega : \lim_{k \to \infty} |x_k|^{p_k} = 0\}$, $c(p) = \{x \in \omega : \lim_{k \to \infty} |x_k - l|^{p_k} = 0$ for some $l \in \mathbb{C}\}$ and $l_{\infty}(p) = \{x \in \omega : \sup_k |x_k|^{p_k} < \infty\}$ (cf. [5], [6] and [10]).

Grosse-Erdmann [2] characterized the matrix classes (X, Y) for $X = c_0(p)$, c(p), $l_{\infty}(p)$ and $Y = c_0(q)$, c(q), $l_{\infty}(q)$.

Given any sequence $x \in \omega$, we write $\Delta x = (\Delta x_k)_{k=1}^{\infty} = (x_k - x_{k+1})_{k=1}^{\infty}$. Furthermore, for any subset X of ω , let $\Delta X = \{x \in \omega : \Delta x \in X\}$. In [1] and [7], the sequence spaces ΔX were introduced and studied for $X = c_0(p), c(p), l_{\infty}(p)$. If $p_k = const$ for all k then these sets reduce to $c_0(\Delta), c(\Delta)$ and $l_{\infty}(\Delta)$, respectively (see [3],[8]).

In this paper, we determine the β -duals of the sets $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$ and characterize the matrix classes $(\Delta X, Y)$ and $(\Delta X, \Delta Y)$ for $X = c_0(p), c(p), l_{\infty}(p)$ and $Y = c_0(q), c(q), l_{\infty}(q)$.

¹Presented at the IMC "Filomat 2001", Niš, August 26–30, 2001

²⁰⁰⁰ Mathematics Subject Classification: 40H05, 46A45

Keywords: Sequence spaces, difference sequence spaces, matrix transformations

The β -duals of $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$ $\mathbf{2}$

If z is any sequence and Y is any subset of ω then we write $z^{-1} * Y = \{x \in \omega :$ $zx = (z_k x_k)_{k=1}^{\infty} \in Y$. For any subset X of ω , the set $X^{\beta} = \bigcap_{x \in X} (x^{-1} * cs)$ is called the β -dual of X. The β -duals of the sets $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta l_{\infty}(p)$ were studied in [1], [7] and [9]. Boundedness of the sequence p was not assumed. If, however, we assume boundedness of the sequence p a different proof may be applied which considerably improves the results for the β -duals of $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$.

Let X and Y be subsets of ω . By (X, Y) we denote the class of all infinite matrices $A = (a_{nk})_{n,k=1}^{\infty}$ of complex numbers such that $A_n = (a_{nk})_{k=1}^{\infty} \in X^{\beta}$ for all n and $A(x) = (A_n(x))_{n=1}^{\infty} = (\sum_{k=1}^{\infty} a_{nk} x_k)_{k=1}^{\infty} \in Y$ for all $x \in X$. We write e and $e^{(n)}$ (n = 1, 2, ...) for the sequences with $e_k = 1$ (k = 1)

1,2,...), and $e_n^{(n)} = 1$ and $e_k^{(n)} = 0$ $(k \neq n)$. If $a \in cs$ we define the sequence R by $R_k = \sum_{j=k+1}^{\infty} a_j$ for $k = 0, 1, \ldots$. We need the following result.

Lemma 1 ([7, Corollary 1]) Let d be a non-decreasing sequence of positive reals. Then $a \in d^{-1} * cs$ implies $R \in d^{-1} * c_0$.

We write $\mathbf{n} = (n)_{n=1}^{\infty}$, $\mathbf{N}^{1/p} = (N^{1/p_k})_{k=1}^{\infty}$, $\mathbf{N}^{-1/p} = (N^{-1/p_k})_{k=1}^{\infty}$, $\Sigma \mathbf{N}^{1/p} = (\sum_{j=1}^{k-1} N^{1/p_j})_{k=1}^{\infty}$ and $\Sigma \mathbf{N}^{-1/p} = (\sum_{j=1}^{k-1} N^{-1/p_j})_{k=1}^{\infty}$ for each $N \in IN \setminus \{1\}$. The following result in which the boundedness of the sequence p is not needed is well known.

Lemma 2 (cf. [9, Theorem 2]) We put

$$M_{\infty}^{(1)}(p) = \bigcap_{N \in IN \setminus \{1\}} \left\{ a \in \omega : R \in (\mathbf{N}^{1/p})^{-1} * \ell_1 \right\}$$

and

$$\tilde{M}_{\infty}^{(2)}(p) = \bigcap_{N \in IN \setminus \{1\}} (\mathbf{\Sigma} \mathbf{N}^{1/p})^{-1} * cs.$$

Then $(\Delta \ell_{\infty}(p))^{\beta} = M_{\infty}^{(1)}(p) \cap \tilde{M}_{\infty}^{(2)}(p).$

Now we give the β -duals of $\Delta c_0(p)$, $\Delta c(p)$ and $\Delta \ell_{\infty}(p)$ for bounded sequences p.

Theorem 1 We put

$$M_0^{(1)}(p) = \bigcup_{N \in IN \setminus \{1\}} \left\{ a \in \omega : R \in (\mathbf{N}^{-1/p})^{-1} * \ell_1 \right\},$$
$$M_0^{(2)}(p) = \bigcup_{N \in IN \setminus \{1\}} \left\{ a \in \omega : R \in (\mathbf{\Sigma}\mathbf{N}^{-1/p})^{-1} * \ell_\infty \right\},$$
$$M(p) = (\mathbf{n})^{-1} * cs$$

and

$$M_{\infty}^{(2)}(p) = \bigcap_{N \in IN \setminus \{1\}} \left\{ a \in \omega : R \in (\Sigma \mathbf{N}^{1/p})^{-1} * c_0 \right\}.$$

Then

(a) $(\Delta c_0(p))^{\beta} = M_0^{(1)}(p) \cap M_0^{(2)}(p)$, and if $a \in (\Delta c_0(p))^{\beta}$ then

$$\sum_{k=1}^{\infty} a_k y_k = -\sum_{k=1}^{\infty} R_k \Delta y_k + y_1 \sum_{k=1}^{\infty} a_k \text{ for all } y \in \Delta c_0(p);$$
(1)

(b) $(\Delta c(p))^{\beta} = (\Delta c_0(p))^{\beta} \cap M(p)$, and if $a \in (\Delta c(p))^{\beta}$ then identity (1) holds for all $y \in \Delta c(p)$;

(c) $(\Delta \ell_{\infty}(p))^{\beta} = M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$, and if $a \in (\Delta \ell_{\infty}(p))^{\beta}$ then identity (1) holds for all $y \in \Delta \ell_{\infty}(p)$.

Proof. (a) We write $Y = \Delta c_0(p)$ and $X = c_0(p)$.

First we assume $a \in M_0^{(1)}(p) \cap M_0^{(2)}(p)$. Let $y \in Y$ be given. Then $x = \Delta y \in X$. Abel's summation by parts yields

$$\sum_{k=1}^{n} a_k y_k = -\sum_{k=1}^{n-1} R_k x_k - R_n y_n + y_1 R_0 \ (n = 1, 2, \dots).$$
⁽²⁾

First $a \in M_0^{(1)}(p)$, that is $R \in X^{\beta}$ by [6, Theorem 6] implies $Rx \in cs$. Furthermore

$$R_n(y_n - y_1) = -\sum_{k=1}^{n-1} R_n x_k \text{ for } n = 1, 2, \dots,$$
(3)

and we note that $y \in Y$ if and only if $y - y_1 e^{(1)} \in Y$, since Y is a linear space for bounded sequences p. We define the matrix A by

$$a_{nk} = \begin{cases} -R_n & (1 \le k \le n-1) \\ 0 & (k > n) \end{cases} \quad (n = 1, 2, \dots).$$
(4)

Then $a \in M_0^{(2)}(p)$ implies

$$\sup_{n} \sum_{k=1}^{\infty} |a_{nk}| N^{-1/p_k} = \sup_{n} |R_n| \sum_{k=1}^{n-1} N^{-1/p_k} < \infty \text{ for some } N \in IN \setminus \{1\}.$$
(5)

Furthermore $R_n = \sum_{k=n+1}^{\infty} a_k \to 0 \ (n \to \infty)$, that is

$$\lim_{n \to \infty} a_{nk} = 0 \text{ for each fixed } k.$$
(6)

By [4, Corollary 3], conditions (5) and (6) together imply $A \in (X, c)$, that is $R(y - y_1 e^{(1)}) \in c$, and so $Ry \in c$. Finally, by (2), we conclude $ay \in cs$. Thus we have shown

$$M_0^{(1)}(p) \cap M_0^{(2)}(p) \subset Y^{\beta}.$$
 (7)

355

Now we assume $a \in Y^{\beta}$. Then $ay \in cs$ for all $y \in Y$. Since $\Delta e = 0 \in X$, it follows that $e \in Y$, and so $a = ae \in cs$, hence the sequence R is defined. If $y \in Y$ then $x = \Delta y \in X$, and

$$\sum_{k=1}^{n} a_k (y_k - y_1) = -\sum_{k=1}^{n-1} x_k \sum_{j=k+1}^{n} a_j \ (n = 1, 2, \dots).$$

We define the matrix $B = (b_{nk})_{n,k=1}^{\infty}$ by $b_{nk} = -\sum_{j=k+1}^{n} a_j$ for $1 \le k \le n-1$ and $b_{nk} = 0$ for $k \ge n$ (n = 1, 2, ...). Then $B \in (X, c)$, and again, by [4, Corollary 3], there are $N \in IN \setminus \{1\}$ and a constant K such that

$$\sum_{k=1}^{\infty} |b_{nk}| N^{-1/p_k} = \sum_{k=1}^{n-1} \left| \sum_{j=k+1}^n a_j \right| N^{-1/p_k} \le K \text{ for all } n.$$

We fix $m \in \mathbb{N}$. Then

$$\sum_{k=1}^{m-1} \left| \sum_{j=k+1}^n a_j \right| N^{-1/p_k} \le K \text{ for all } n \ge m$$

Since $R_k = \lim_{n \to \infty} \sum_{j=k+1}^n a_j$ exists for each k, this implies $\sum_{k=1}^{m-1} |R_k| N^{-1/p_k} \leq K$, and since $m \in \mathbb{N}$ was arbitrary, we conclude $\sum_{k=1}^{\infty} |R_k| N^{-1/p_k} \leq K$, that is $R \in X^{\beta}$ by [6, Theorem 6], and so $a \in M_0^{(1)}(p)$. Defining the matrix A as in (4), we have $A \in (X, c)$, and this yields (5) by [4, Corollary 3], hence $a \in M_0^{(2)}(p)$. Thus we have shown $Y^{\beta} \subset M_0^{(1)}(p) \cap M_0^{(2)}(p)$. This and (7) together yield $Y^{\beta} = M_0^{(1)}(p) \cap M_0^{(2)}(p)$.

Finally, we assume $a \in Y^{\beta}$ Then, by what we have just shown, there is $N \in IN \setminus \{1\}$ such that, for the matrix A defined in (4),

$$D = \sup_{n} \sum_{k=1}^{\infty} |a_{nk}| N^{-1/p_k} = \sup_{n} |R_n| \sum_{k=1}^{n-1} N^{-1/p_k} < \infty,$$

and condition (6) holds. Let $\varepsilon > 0$ be given. We put $P = \sup_k p_k < \infty$ and $M_0 = \max\{N((2D+1)/\varepsilon)^P, N\}$. Then for all $M \ge M_0$ and for all $n \in \mathbb{N}$,

$$\begin{aligned} |R_n| \sum_{k=1}^{n-1} M^{-1/p_k} &\leq |R_n| \sum_{k=1}^{n-1} M_0^{-1/p_k} = |R_n| \sum_{k=1}^{n-1} N^{-1/p_k} \left(\frac{N}{M_0}\right)^{1/p_k} \\ &\leq \left(|R_n| \sum_{k=1}^{n-1} N^{-1/p_k} \right) \left(\frac{N}{M_0}\right)^{1/P} \leq D \left(\frac{N}{M_0}\right)^{1/P} \leq D \frac{N\varepsilon}{(2D+1)N} \leq \varepsilon/2, \end{aligned}$$

and so

$$\lim_{M \to \infty} \sup_{n} |a_{nk}| M^{-1/p_k} = 0.$$
(8)

By [2, Theorem 5.1, 5.], conditions (6) and (8) together imply $A \in (X, c_0)$, hence $Ry \in c_0$, and (1) follows from (2).

(b) First we assume $a \in (c(p))^{\beta}$. Since $\Delta c_0(p) \subset \Delta c(p)$ implies $(\Delta c(p))^{\beta} \subset (\Delta c_0(p))^{\beta}$, we have $a \in (\Delta c_0(p))^{\beta}$. Furthermore, $\mathbf{n} \in \Delta c(p)$, since $\Delta \mathbf{n} - (-1)e \in c_0(p)$. Thus $a\mathbf{n} \in cs$, that is $a \in M(p)$. Thus we have shown

$$(\Delta c(p))^{\beta} \subset (\Delta c_0(p))^{\beta} \cap M(p).$$
(9)

Conversely we assume $a \in (\Delta c_0(p))^{\beta} \cap M(p)$. Let $y \in \Delta c(p)$ be given. Then $x = \Delta y \in c(p)$, hence there is $l \in \mathbb{C}$ such that $x - le \in c_0(p)$. Let $z = y + l\mathbf{n}$. Then $\Delta z = \Delta y + l\Delta \mathbf{n} = x - le \in c_0(p)$, hence $z \in \Delta c_0(p)$, and, as in (2),

$$\sum_{k=1}^{n} a_k y_k = \sum_{k=1}^{n} a_k z_k + l \sum_{k=1}^{n} k a_k = -\sum_{k=1}^{n-1} R_k \Delta z_k - R_n z_n + z_1 R_0 + l \sum_{k=1}^{n} k a_k \text{ for all } n.$$
(10)

Since $z \in \Delta c_0(p)$, we have $R\Delta z \in cs$ and $Rz \in c$ by Part (a). Furthermore $a\mathbf{n} \in cs$, since $a \in M(p)$. Thus $ay \in cs$, and we have shown $(\Delta c_0(p))^{\beta} \cap M(p) \subset (\Delta c(p))^{\beta}$. Together with (9) this yields $(\Delta c(p))^{\beta} = (\Delta c_0(p))^{\beta} \cap M(p)$. Finally, let $a \in (\Delta c(p))^{\beta}$ and $y \in c(p)$ be given. By (2),

$$\sum_{k=1}^{n} a_k y_k = -\sum_{k=1}^{n-1} R_k \Delta y_k - R_n y_n + y_1 R_0 = -\sum_{k=1}^{n-1} R_k \Delta y_k - R_n z_n + R_n n + y_1 R_0 \quad (n = 0, 1, \dots).$$

Since $z \in \Delta c_0(p)$ and $a \in M_0^{(2)}(p)$, $Rz \in c_0$ by Part (a). Furthermore $a \in M(p)$ implies $\mathbf{n}R \in c_0$ by Lemma 1. So $ay \in cs$ implies $R\Delta y \in cs$, and (2) holds.

(c) We write $Y = \Delta \ell_{\infty}(p)$ and $X = \ell_{\infty}(p)$. By Lemma 1 and Lemma 2,

$$Y^{\beta} \subset M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p).$$

$$\tag{11}$$

Conversely we assume $a \in M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$. Let $y \in Y$ be given. Then $x = \Delta y \in X$. First $a \in M_0^{(1)}(p)$, that is $R \in X^{\beta}$ by [5, Theorem 2] implies $Rx \in cs$. We define the matrix A as in (4). Then $a \in M_{\infty}^{(2)}(p)$ implies

$$\lim_{n \to \infty} \sum_{k=1}^{\infty} |a_{nk}| N^{1/p_k} = \lim_{n \to \infty} \sum_{k=1}^{n-1} |R_n| \sum_{k=1}^{n-1} M^{1/p_k} = 0 \text{ for all } N \in IN \setminus \{1\},$$

that is $A \in (X, c_0)$ by [2, Theorem 5.1, 7.]. Therefore we conclude from (3) that $R(y - y_1 e^{(1)}) \in c_0$, and so $Ry \in c_0$. By (2), $ay \in cs$. Thus we have shown $M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p) \subset Y^{\beta}$. This and (11) together yield $Y^{\beta} = M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$. The last part is obvious.

3 Matrix transformations

Let $p = (p_k)_{k=1}^{\infty}$ and $q = (q_k)_{k=1}^{\infty}$ be bounded sequences of positive reals throughout.

If $A = (a_{nk})_{n,k=1}^{\infty}$ is an infinite matrix then we write R^A for the matrix with $r_{nk}^A = \sum_{j=k+1}^{\infty} a_{nj}$ for all n and k, provided the series converge. First we reduce the characterizations of the classes $(\Delta X, Y)$ to those of

(X, Y) for arbitrary subspaces Y of ω and $X = c_0(p)$, c(p) and $l_{\infty}(p)$.

Theorem 2 Let Y be an arbitrary subspace of ω . Then (a) $A \in (\Delta c_0(p), Y)$ if and only if

$$R \in (c_0(p), Y), \tag{12}$$

$$A(e) \in Y \tag{13}$$

and

 $\begin{cases} \text{for each } n \text{ there is } N_n \in IN \setminus \{1\} \text{ such that} \\ \sup_k |r_{nk}^A| \sum_{j=1}^{k-1} N^{-1/p_j} < \infty; \end{cases}$ (14)

(b) $A \in (\Delta c(p), Y)$ if and only if

$$A \in (\Delta c_0(p), Y) \tag{15}$$

and

$$A(\mathbf{k}) \in Y;\tag{16}$$

(c) $A \in (\Delta l_{\infty}(p), Y)$ if and only if condition (13) holds and

$$R \in (l_{\infty}(p), Y) \tag{17}$$

and

$$\begin{cases} \sup_{k} |r_{nk}^{A}| \sum_{j=1}^{k-1} N^{1/p_{j}} < \infty \\ \text{for all } n = 1, 2, \dots \text{ and for all } N \in IN \setminus \{1\}. \end{cases}$$

$$(18)$$

Proof. (a) We put $X = c_0(p)$ and $Z = \Delta X$, and observe that $z \in Z$ if and only if $x = \Delta z \in X$. Furthermore we write $R = R^A$.

First we assume $A \in (Z, Y)$. Condition (13) is obvious, since $e \in Z$. Furthermore $A_n \in Z^{\beta}$ implies $R_n \in M_0^{(2)}(p)$ for each n by Theorem 1 (a), and so condition (14) holds. Let $x \in X$ be given. We define the sequence z by $z_k = \sum_{j=1}^{k-1} x_j$ (k = 1, 2, ...). Then $z \in Z$ and

$$R_n(x) = -A_n(z) + z_1 r_{n0} = -A_n(z)$$
 for all n

by identity (1), and $A(z) \in Y$ implies $R(x) \in Y$. Thus condition (12) holds. Conversely, we assume that conditions (12), (13) and (14) hold. First $R_n \in X^{\beta}$ for all n and condition (14) together imply $A_n \in Z^{\beta}$ for all n by Theorem 1 (a). Let $z \in Z$ be given. Then by (1)

$$A_n(z) = -R_n(x) + z_1 r_{n0} = R_n(x) + z_1 A_n(e)$$
 for all n ,

and $R(x) \in Y$ and condition (13) together imply $A(z) \in Y$, since Y is a linear space.

(b) First we assume $A \in (\Delta c(p), Y)$. Then obviously $A \in (\Delta c_0(p), Y)$. Furthermore $\mathbf{k} \in \Delta c(p)$ implies condition (16).

Conversely, we assume that conditions (15) and (16) hold. First, condition (16) implies $A_n \in \mathbf{k}^{-1} * cs$, that is $A_n \in M(p)$ for all n, and since also $A_n \in (\Delta c_0(p))^{\beta}$ for all n by condition (15), we conclude $A_n \in (\Delta c(p))^{\beta}$ by Theorem 1 (b). Let $z \in \Delta c(p)$ be given. Then $\Delta z - le \in c_0(p)$ for some $l \in \mathbb{C}$. We put $x = z + l\mathbf{k}$. Then $x \in \Delta c_0(p)$, and

$$A_n(z) = A_n(x) - lA_n(\mathbf{k})$$
 for all n .

Now $A(x) \in Y$ and condition (16) together imply $A(z) \in Y$, since Y is a linear space.

(c) Part (c) is proved in the same way as Part (a) by applying Theorem 1(c) instead of Theorem 1 (a).

Remark 1 Condition (13) in Theorem 2 (a) and (c) may be replaced by

$$A(e^{(1)}) \in Y. \tag{19}$$

Proof. Let $X = c_0(p)$ or $X = l_{\infty}(p)$ and $Z = \Delta X$.

First we assume that conditions (12), (13) and (14) or (17), (13) and (18) hold. Then $A \in (Z, Y)$ by Theorem 2 (a) or (c), respectively. Now $e^{(1)} \in Z$ implies $A(e^{(1)}) \in Y$, that is condition (19) holds.

Conversely, we assume that conditions (12), (19) and (14) or (17), (19) and (18) hold. Then $A_n(e) = R_n(e^{(1)}) + A_n(e^{(1)})$ for all n. Since $e^{(1)} \in X$, we have $R(e^{(1)}) \in Y$ by condition (12) or condition (17). This and condition (19) together imply $A(e) \in Y$, that is condition (13) holds.

The characterization of $(X, \Delta Y)$ can easily be reduced to that of (X, Y).

Theorem 3 Let X and Y be arbitrary subsets of ω . Then $A \in (X, \Delta Y)$ if and only if

$$4_1 \in X^\beta \tag{20}$$

and

$$B \in (X, Y)$$
 where $b_{nk} = a_{nk} - a_{n+1,k}$ for all n and k . (21)

Proof. First we assume $A \in (X, \Delta Y)$. Then $A_n \in X^{\beta}$ for all n, in particular, condition (20) holds, and $B_n = \Delta_n A_n = A_n - A_{n+1} \in X^{\beta}$ for all n. Furthermore, $A(x) \in \Delta Y$, that is $\Delta_n A(x) = B(x) \in Y$ for all $x \in X$, and so (21) holds. Conversely, we assume that conditions (20) and (21) are satisfied. Then $A_{n+1} = A_n - B_n \in X^{\beta}$ for all $n \geq 2$ by induction. Furthermore, $B(x) = \Delta_n A(x) \in Y$, that is $A(x) \in \Delta Y$ for all $x \in X$. Thus we have shown $A \in (X, \Delta Y)$.

Now we apply Theorem 2 and well-known results from [2] to characterize the classes (X, Y) and $(X, \Delta Y)$ where X is any of the spaces $\Delta l_{\infty}(p), \Delta c_0(p)$ and $\Delta c(p)$, and Y is any of the spaces $l_{\infty}(p)$, $c_0(p)$ and c(p).

Theorem 4 The necessary and sufficient conditions for $A \in (X, Y)$ for X = $\Delta \ell_{\infty}(p), \Delta c_0(p), \Delta c(p) \text{ and } Y = \ell_{\infty}(q), c_0(q), c(q), \Delta \ell_{\infty}(p), \Delta c_0(q), \Delta c(q) \text{ can be}$ read from the following table

To From	$\ell_{\infty}(q)$	$c_0(q)$	c(q)	$\Delta \ell_{\infty}(q)$	$\Delta c_0(q)$	$\Delta c(q)$
$\Delta \ell_{\infty}(p)$	(1.)	(2.)	(3.)	(10.)	(11.)	(12.)
$\Delta c_0(p)$	(4.)	(5.)	(6.)	(13.)	(14.)	(15.)
$\Delta c(p)$	(7.)	(8.)	(9.)	(16.)	(17.)	(18.)

where, with $r_{nk}^A = \sum_{j=k+1}^{\infty} a_{nj}$ and $r_{nk}^B = \sum_{j=k+1}^{\infty} (a_{nj} - a_{n+1,j})$ (n, k = 1, 2, ...),

- (1.): (1.1), (1.2), (1.3) where (1.1) $\sup_{n} (\sum_{k=1}^{\infty} |r_{nk}^{A}| N^{1/p_{k}})^{q_{n}} < \infty$ for all $N \in IN \setminus \{1\}$ (1.2) $\begin{cases} \sup_{k=1} |r_{nk}^{A}| N^{1/p_{k}})^{q_{n}} < \infty \\ \text{for all } N \in IN \setminus \{1\} \text{ and for all } n = 1, 2, \dots \end{cases}$ (1.3) $\sup_{n} |a_{n1}|^{q_{n}} < \infty$
- (2.1), (1.2), (2.2) where (2.): $\begin{array}{l} (2.1) \lim_{n \to \infty} (\sum_{k=1}^{\infty} |r_{nk}^{A}| N^{1/p_{k}})^{q_{n}} = 0 \text{ for all } N \in IN \setminus \{1\} \\ (2.2) \lim_{n \to \infty} |a_{n1}|^{q_{n}} = 0 \end{array}$

(3.): (3.1), (3.2), (1.2), (3.3) where
(3.1)
$$\sup_{n} \sum_{k=1}^{\infty} |r_{nk}^{A}| N^{1/p_{k}} < \infty \text{ for all } N \in IN \setminus \{1\}$$

(there is a sequence $(\alpha_{k})_{k=1}^{\infty}$ such that

$$(3.2) \begin{cases} \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} |r_{nk}^A - \alpha_k| N^{1/p_k} \right)^{q_n} = 0 \\ for all \ N \in IN \setminus \{1\} \end{cases}$$

(3.3)
$$\lim_{n\to\infty} |a_{n1} - \alpha|^{q_n} = 0$$
 for some $\alpha \in \mathbb{C}$

$$\begin{aligned} \textbf{(5.):} & (5.1), (5.2), (4.2), (2.2) where \\ & (5.1) \lim_{n \to \infty} |r_n^k|^{\alpha_n} = 0 \text{ for all } k \\ & (5.2) \lim_{n \to \infty} \sum_{k=1}^{n} |r_{nk}^k|^{\alpha_k} = 0 \text{ for all } k \\ & (5.2) \lim_{n \to \infty} \sum_{k=1}^{n} |r_{nk}^k|^{\alpha_k} = 0 \text{ for some } N \in IN \setminus \{1\} \\ & \text{ there is a sequence } (a_k)_{k=1}^{\infty} \text{ such that} \\ & \text{ lim}_{n \to \infty} \sup_{n} (\sum_{k=1}^{\infty} |r_{nk}^k|^{\alpha_k} = -a_k|M^{-1/p_k}|^{\alpha_k} = 0 \\ & (6.3) \begin{cases} \text{ there is a sequence } (\beta_k)_{k=1}^{\infty} \text{ such that} \\ & \text{ lim}_{n \to \infty} |r_{nk}^k - \beta_k|^{\alpha_k} = 0 \\ \text{ for all } k \end{cases} \\ \hline \textbf{(7.):} & (7.1), (4.1), (4.2), (4.2), (4.2), (2.2) \text{ where} \\ & (7.1) \sup_{n} |\sum_{k=1}^{\infty} ka_n|^{\alpha_k} < \infty \end{cases} \\ \hline \textbf{(8.):} & (8.1), (5.1), (5.2), (4.2), (2.2) \text{ where} \\ & (7.1) \sup_{n} |\sum_{k=1}^{\infty} ka_n|^{\alpha_k} = 0 \end{cases} \\ \hline \textbf{(9.):} & (9.1), (6.1), (6.2), (6.3), (4.2), (3.3) \text{ where} \\ & (9.1) \lim_{n \to \infty} |\sum_{k=1}^{\infty} ka_n|^{\alpha_k} - \alpha|^{\alpha_m} = 0 \text{ for some } \alpha \in \mathbb{C} \\ \hline \textbf{(10.):} & (10.1), (10.2), (10.3), (10.4), (10.5) \text{ where} \\ & (10.1) \sup_{n} (\sum_{k=1}^{\infty} |r_{nk}^n|^{N/1p_k}|^{\alpha_k} < \infty \text{ for all } N \in IN \setminus \{1\} \\ & (10.2) \begin{cases} \sup_{k=1} |r_{nk}^n|^{N/1p_k} < \infty \text{ for all } N \in IN \setminus \{1\} \\ & (10.2) \begin{cases} \sup_{k=1} |r_{nk}^n|^{N/1p_k} < \infty \text{ for all } N \in IN \setminus \{1\} \\ & (10.3) \sup_{n} |a_{n1} - a_{n+1,1}|^{\alpha_n} < \infty \\ & (10.4) \sum_{k=1}^{\infty} |r_{nk}^n|^{N/1p_k} < \infty \text{ for all } N \in IN \setminus \{1\} \\ & (10.5) \sup_{k=1} |r_{nk}^n|^{N/1p_k} < \infty \text{ for all } N \in IN \setminus \{1\} \\ & (11.2) \lim_{n \to \infty} (\sum_{k=1}^{\infty} |r_{nk}^n|^{N/1p_k} |q_n = 0 \text{ for some } \alpha \in \mathbb{C} \\ \hline \textbf{(12.1):} \quad (12.1), (12.2), (10.2), (12.3), (10.4), (10.5) \text{ where} \\ & (12.1) \sup_{n \to \infty} (\sum_{k=1}^{\infty} |r_{nk}^n|^{N/1p_k} |q_n = 0 \text{ for some } \alpha \in \mathbb{C} \\ \hline \textbf{(13.):} \quad (13.1), (13.2), (10.3), (13.3), (13.4), where \\ & (13.2) \begin{cases} \text{ there is a sequence} (\alpha_k)_{k=1}^{\infty} \operatorname{such that} \\ & \lim_{n \to \infty} (\sum_{k=1}^{\infty} |r_{nk}^n|^{N/1p_k} |q_n = 0 \text{ for some } \alpha \in \mathbb{C} \\ \hline \textbf{(13.):} \quad (13.1), (13.2), (13.3), (13.3), (13.4) \text{ where} \\ & (14.2) \lim_{n \to \infty} |r_{nk}^n|^{N/1p_k} |q_n = 0 \text{ for some } N \in IN \setminus \{1\} \\ & (13.4) \sup_{k=1} |r_{nk}^n|^{N-1/p_k} < \infty \text{ for some } N \in IN \setminus \{1\} \\$$

- (16.): (16.1), (13.1), (13.2), (10.3), (13.3), (13.4), (16.2) where $(16.1) \sup_{n} |\sum_{k=1}^{\infty} k(a_{nk} - a_{n+1,k})|^{q_n} < 0$ $(16.2) \sum_{k=1}^{\infty} ka_{1k} \text{ converges}$
- (17.): ((17.1), (14.1), (14.2), (13.2), (11.2), (13.3), (13.4), (16.2) where (17.1) $\lim_{n\to\infty} |\sum_{k=1}^{\infty} k(a_{nk} - a_{n+1,k})|^{q_n} = 0$
- (18.): (18.1), (15.1), (15.2), (15.3), (13.2), (12.3), (13.3), (13.4), (16.2) where (18.1) $\lim_{n\to\infty} |\sum_{k=1}^{\infty} k(a_{nk} - a_{n+1,k}) - \alpha|^{q_n} = 0$ for some $\alpha \in \mathbb{C}$

Proof. We apply Theorem 2, [2, Theorem 5.1] and Remark 1 to obtain the conditions in (1.) to (9.). By Theorem 2 (b), we have to add condition (16) of Theorem 2 which is (7.1), (8.1) or (9.1) to the conditions in (4.), (5.) of (6.), respectively. Condition (19) in Remark 1 is (1.3) in (1.) and (4.), (2.2) in (2.) and (5.) or (3.3) in (3.) and (6.); condition (18) in Theorem 2 is (1.2) in (1.), (2.) and (3.); condition (14) in Theorem 2 is (4.2) in (4.), (5.) and (6.). The conditions for $R^A \in (\ell_{\infty}(p), Y)$ for $Y = \ell_{\infty}(q), c_0(q), c(q)$ are given in [2, Theorem 5.1, (15), (7), (11)] and those for $R^A \in (c_0(p), Y)$ for $Y = \ell_{\infty}(q), c_0(q), c(q)$ are given in [2, Theorem 5.1, (13), (5), (9)].

By Theorem 3, we have to add condition (20) in Theorem 3 in (10.) to (18.) which is (10.4) and (10.5) in (10.), (11.) and (12.), (13.3) and (13.4) in (13.), (14.) and (15.) and (13.3), (13.4) and (16.2) in (16.), (17.) and (18.) . Furthermore, we have to replace r_{nk}^A and a_{nk} in the conditions in (1.) to (9.) by r_{nk}^B and b_{nk} in the respective ones in (10.) to (18.).

References

- Z. U. Ahmad and Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42 (56) (1987), 57-61.
- [2] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223–238.
- [3] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169–175.
- [4] C. G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific Journal of Mayhematics 38,2 (1971), 487–500.
- [5] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99–104.
- [6] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1967), 431–435.

- [7] E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Publ. Inst. Math. (Beograd) 46 (60) (1989), 97–104.
- [8] E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal. 4 (1995), 81–91.
- [9] E. Malkowsky, Mursaleen and Qamaruddin, Generalized sets of difference sequences, their duals and matrix transformations, Advances in Sequence Spaces and Applications, Narosa Publishing Company, Delhi, 1999, 68–83.
- [10] S. Simons, The sequence spaces $l(p_{\nu})$ and $m(p_{\nu})$, Proc. London Math. Soc. **15** (1965), 422–436.

Department of Mathematics University of Giessen Arndtstrasse 2 D–35392 Giessen Germany c/o Department of Mathematics Faculty of Science and Mathematics Višegradska 33, 18000 Niš Yugoslavia ema@pmf.pmf.ni.ac.yu

Department of Mathematics Aligarh Muslim University Aligarh–202002 India mursaleen@postmark.net