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difference sequence spaces Acy(p), Ac(p) and

Als(p)

Eberhard Malkowsky and Mursaleen

Abstract

For any sequence x = (zx)p2; € w and any subset X of w, we write
Az = (Azk)iZ, = (T — Trt1)iey and AX = {z € w: Az € X}. Let
p = (pr)iz, and ¢ = (qr)r=: be bounded sequences of positive reals.
We determine the S—duals of the sets Aco(p), Ac(p) and Al (p). Fur-
thermore, we characterize the matrix classes (AX,Y) and (AX,AY) for

X = co(p), c(p),loo(p) and Y = co(q), ¢(q), Lo (q).".

1 Introduction

Let w be the set of all complex sequences = (2)72,, and co, ¢, I and cs
be the sets of all null, convergent and bounded sequences and of all convergent
series, respectively. Furthermore, let p = (px)32, and ¢ = (¢x)5>; be bounded
sequences of positive reals throughout, and c¢o(p) = { € w : limg_, o0 |2K|P* =
0}, c(p) = {x € w: im0 |z —I|P* = 0 for some | € C} and lo(p) = {r € w :
supy, |xg|P* < oo} (cf. [5], [6] and [10]).

Grosse-Erdmann [2] characterized the matrix classes (X,Y") for X = ¢y(p),
c(p); loo(p) and Y = co(q), ¢(9), Lo (9)-

Given any sequence x € w, we write Az = (Axy)32 | = (25 — Tp41)52 - Fur-
thermore, for any subset X of w, let AX = {x € w: Az € X}. In [1] and [7],
the sequence spaces AX were introduced and studied for X = ¢ (p), ¢(p), loo (p).
If pr, = const for all k then these sets reduce to co(A), ¢(A) and I (A), respec-
tively (see [3],[8]).

In this paper, we determine the S-duals of the sets Acy(p), Ac(p) and
Al (p) and characterize the matrix classes (AX,Y) and (AX,AY) for X =
co(p), €(p), loo(p) and Y = co(q), ¢(q); loc (9)-
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2 The f—duals of Acy(p), Ac(p) and Al (p)

If z is any sequence and Y is any subset of w then we write 2z 1 %Y = {z € w:
zx = (zwx)3, € Y}. For any subset X of w, the set X = Nyex(z7! * cs)
is called the f—dual of X. The S—duals of the sets Acy(p), Ac(p) and Al (p)
were studied in [1], [7] and [9]. Boundedness of the sequence p was not assumed.
If, however, we assume boundedness of the sequence p a different proof may be
applied which considerably improves the results for the f—duals of Acy(p), Ac(p)
and Al (p).

Let X and Y be subsets of w. By (X,Y) we denote the class of all infinite
matrices A = (ank);ﬁfk:l of complex numbers such that A4, = (a,x)3, € X*
for all n and A(z) = (A, (2))52 = (O pey k)i, €Y for all z € X.

We write e and (™ (n = 1,2,...) for the sequences with e, = 1 (k =
1,2,...), and e™ =1 and e;n) =0 (k #n). If a € cs we define the sequence R
by Ry, =372, aj for k=0,1,....

We need the following result.

Lemma 1 ([7, Corollary 1]) Let d be a non—decreasing sequence of positive
reals. Then a € d~' % cs implies R € d~ " * ¢y.

We write n = (n)52,, NV/P = (NVPr)ee | N~VP = (N~1/pe)e  SINVP =
(ShZL NVPiype and BN-VP = (Y57F NTVPi)ee ) for each N € IN \ {1},

The following result in which the boundedness of the sequence p is not needed
is well known.

Lemma 2 (cf. [9, Theorem 2])
We put

MOp) = ) {a cw:Re (NYP)~! *zl}
NeIN\{1}

and

MP (p) = ﬂ (ENVP)~L s cs.
NeIN\{1}

Then (Ao (p))® = M (p) N M2 (p).

Now we give the S—duals of Acy(p), Ac(p) and Al (p) for bounded se-
quences p.

Theorem 1 We put

Mél)(p): U {aEaJ:Re(N_l/p)_1*€1}7
NeIN\{1}
Méz)(p): U {aéw:Re (ENfl/p)’l*&x}},
NeIN\{1}
M(p) = (n)""xcs
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and
M3 (p) = m {aew:RE(ENl/p)’l*co}.
NeIN\{1}
Then
(a) (Aco(p)? = M§" (p) 0 M (p), and if a € (Aco(p))? then
> aryr ==Y Relyr +y1 Y ax for all y € Aco(p); (1)
k=1 k=1 k=1

(b) (Ac(p))? = (Aco(p))? N M(p), and if a € (Ac(p))? then identity (1) holds
for ally € Ac(p) ;

(¢) (Al(p))? = ME (p) N ML (p), and if a € (Moo(p))® then identity (1)
holds for all y € Alo(p).

Proof. (a) We write Y = Acy(p) and X = ¢o(p).

First we assume a € Mél)(p) ﬂMéQ) (p). Let y € Y be given. Then z = Ay € X.
Abel’s summation by parts yields

n n—1
ZakykZ—Zkak—Rnyn+leo (n=1,2,...). (2)
=1 k=1

First a € Mél)(p), that is R € X? by [6, Theorem 6] implies Rx € cs. Further-

more
n—1

Rn(yn—yl):—ZRn:ﬁk forn=1,2,..., (3)
k=1

and we note that y € Y if and only if y — y1e!) € Y, since Y is a linear space
for bounded sequences p. We define the matrix A by

—-R, (1<k<n-1)
nk — =1,2,...). 4
ok {0 (k > n) n ) @)
Then a € Méz) (p) implies
e} n—1
supz |lank| N~VPE = sup | R,| Z N~YPr < oo for some N € IN \ {1}. (5)
" k=1 " k=1

Furthermore R, = " . ar — 0 (n — o0), that is

lim an, = 0 for each fixed k. (6)
n—oo
By [4, Corollary 3], conditions (5) and (6) together imply A € (X, ¢), that is
R(y — y1eM) € ¢, and so Ry € c. Finally, by (2), we conclude ay € cs. Thus
we have shown ) ,
M (p) N MEP (p) € VP, (7)
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Now we assume a € YP. Then ay € cs for all y € Y. Since Ae = 0 € X, it
follows that e € Y, and so a = ae € c¢s, hence the sequence R is defined. If
y €Y then z = Ay € X, and

n

Z Yk — 1) Zxk Z a; (n=1,2,...).

k=1 k=1 Jj=k+1

We define the matrix B = (bng)5—; by bk = — Z;L:kﬂ ajfor1<k<n-1
and b, = 0 for k > n (n = 1,2,...). Then B € (X,c¢), and again, by [4,
Corollary 3], there are N € IN \ {1} and a constant K such that

oo n—1 n
D bk NTUPE =31 N a | NTVPE < K for all n.
k=1 k=1 |j=k+1

We fix m € IN. Then

m—1 n

—1/px < K for all n > m.
k=1 |j=k+1

Since Ry = limy, oo Y7y, @ exists for each k, this implies Z;”:_ll |Ry,| N~ 1/Px
< K, and since m € IN was arbitrary, we conclude > 77 | |Rx|N~1/Px < K that
is R € X? by [6, Theorem 6], and so a € Mél)(p). Defining the matrix A
as in (4), we have A € (X,c¢), and this yields (5) by [4, Corollary 3|, hence
a € M (p). Thus we have shown Y? c M{"(p) n M{? (p). This and (7)
together yield Y” = Mél)(p) N MSQ) (p).

Finally, we assume a € Y? Then, by what we have just shown, there is N €
IN \ {1} such that, for the matrix A defined in (4),

n—1
D—supZ|a kN~ 1/”’“*sup|R |ZN 1Pk < o0,
k=1 k=1

and condition (6) holds. Let € > 0 be given. We put P = sup, px < oo and
My = max{N((2D +1)/e), N}. Then for all M > M, and for all n € IN,

n—1 n—1 N 1/px
|R |ZM 1/pk < |R |ZM—1/Pk |Rn| ZNfl/Pk <M )
0
k=1 k=1 k=1

n—1 1/P 1/P
N N Ne
< 1Ral SN ) [ <D <D <g/2
= <| |k:1 )(M0> = (M0> <Dapinn S&/%

and so
N}im Sup |an| M~YPE = 0. (8)
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By [2, Theorem 5.1, 5.], conditions (6) and (8) together imply A € (X, co),
hence Ry € ¢y, and (1) follows from (2).

(b) First we assume a € (c¢(p))?. Since Acy(p) C Ac(p) implies (Ac(p))? C
(Aco(p))?, we have a € (Acy(p))?. Furthermore, n € Ac(p), since An—(—1)e €
co(p). Thus an € cs, that is a € M (p). Thus we have shown

(Ac(p))? C (Aco(p))? N M (p). 9)

Conversely we assume a € (Aco(p))® N M(p). Let y € Ac(p) be given. Then
x = Ay € ¢(p), hence there is | € C such that x — le € ¢y(p). Let z = y + In.
Then Az = Ay +IAn =z —le € ¢y(p), hence z € Acy(p), and, as in (2),

Zakyk = Zakzk +leak =
k=1 k=1 k=1

n—1 n (1())
— Z RipAz, — Ryzn + 21Ro + 1 Z kay, for all n.

k=1 k=1

Since z € Aco(p), we have RAz € ¢s and Rz € ¢ by Part (a). Furthermore
an € cs, since a € M (p). Thus ay € cs, and we have shown (Aco(p))? N M (p) C
(Ac(p))”. Together with (9) this yields (Ac(p))? = (Aco(p))® N M (p).

Finally, let a € (Ac(p))? and y € ¢(p) be given. By (2),

n n—1
Yo apyr = — > ReAyr — Ruyn +y1Ro =
k=1 k=1

n—1

— > RiAyr — Rpzn + Rpn+y1Ro (n=0,1,...).
k=1

Since z € Acy(p) and a € Mé2) (p), Rz € ¢ by Part (a). Furthermore a € M (p)
implies nR € ¢y by Lemma 1. So ay € c¢s implies RAy € cs, and (2) holds.
(¢) We write Y = Al (p) and X = £o(p). By Lemma 1 and Lemma 2,

V8 < MO (p) n MP (p). (11)

Conversely we assume a € Méé)(p) n M (p). Let y € Y be given. Then
x = Ay € X. First a € Mél)(p)7 that is R € X? by [5, Theorem 2] implies
Rz € cs. We define the matrix A as in (4). Then a € M2 (p) implies

o0 n—1 n—1
lim " Jans| NP = lim > " [R,| Y MYPe =0 for all N € IN \ {1},
k=1 k=1 k=1

that is A € (X, ¢p) by [2, Theorem 5.1, 7.]. Therefore we conclude from (3)
that R(y — y1e(M)) € ¢o, and so Ry € cy. By (2), ay € cs. Thus we have shown

Méi)(p) ﬂMg)(p) C YA, This and (11) together yield Y* = M(%)(p) nMP (p).
The last part is obvious. [ |
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3 Matrix transformations

Let p = (p)32; and ¢ = (gx)72; be bounded sequences of positive reals through-
out

If A= (ank); k=1 is an infinite matrix then we write R# for the matrix with
rﬁk = Z;’ik 41 @nj for all n and k, provided the series converge.
First we reduce the characterizations of the classes (AX,Y) to those of

(X,Y) for arbitrary subspaces Y of w and X = ¢o(p), ¢(p) and I (p).

Theorem 2 LetY be an arbitrary subspace of w. Then
(a) A € (Aco(p),Y) if and only if

R e (CO<p)aY)a (12)
Ale) €Y (13)

and
for each n there is N,, € IN \ {1} such that

k—1
sup|r;?k| > N-YPi < o0; (14)
k j=1
(b) A e (Ac(p),Y) if and only if
A€ (Aco(p),Y) (15)
and
Ak) €Y; (16)
(c) A€ (Ale(p),Y) if and only if condition (13) holds and
Re (l(p),Y) (17)
and
41T N <
sup |r i < 00
P il 2 (13)

foralln=1,2,... and for all N € IN \ {1}.

Proof. (a) We put X = ¢y(p) and Z = AX, and observe that z € Z if and
only if = Az € X. Furthermore we write R = R4.

First we assume A € (Z,Y). Condition (13) is obvious, since e € Z. Fur-
thermore A,, € Z” implies R,, € Mé2)(p) for each n by Theorem 1 (a), and
so condition (14) holds. Let x € X be given. We define the sequence z by

zk:Z;?;llxj (k=1,2,...). Then z € Z and

R, (z) = —An(2) + 2170 = —An(2) for all n

by identity (1), and A(z) € Y implies R(zx) € Y. Thus condition (12) holds.
Conversely, we assume that conditions (12), (13) and (14) hold. First R,, € X”



Some matrix transformations between the difference sequence spaces ... 359

for all n and condition (14) together imply A, € Z? for all n by Theorem 1 (a).
Let z € Z be given. Then by (1)

Ap(2) = —Rp(z) + 2170 = Rp(x) + 21 A (e) for all n,

and R(x) € Y and condition (13) together imply A(z) € Y, since Y is a linear
space.

(b) First we assume A € (Ac(p),Y). Then obviously A € (Acy(p),Y).
Furthermore k € Ac(p) implies condition (16).
Conversely, we assume that conditions (15) and (16) hold. First, condition (16)
implies A,, € k~1xcs, that is A, € M(p) for all n, and since also A,, € (Acy(p))?
for all n by condition (15), we conclude A,, € (Ac(p))? by Theorem 1 (b). Let
z € Ac(p) be given. Then Az —le € ¢o(p) for some | € C. We put z = z + k.
Then x € Aco(p), and

An(z) = A, (z) — 1A, (k) for all n.

Now A(x) € Y and condition (16) together imply A(z) € Y, since Y is a linear
space.

(c) Part (c) is proved in the same way as Part (a) by applying Theorem 1
(c) instead of Theorem 1 (a). [

Remark 1 Condition (13) in Theorem 2 (a) and (c) may be replaced by
AeM)y e Y. (19)

Proof. Let X = ¢o(p) or X =l(p) and Z = AX.

First we assume that conditions (12), (13) and (14) or (17), (13) and (18) hold.
Then A € (Z,Y) by Theorem 2 (a) or (c), respectively. Now el) € Z implies
A(eM) € Y, that is condition (19) holds.

Conversely, we assume that conditions (12), (19) and (14) or (17), (19) and
(18) hold. Then A, (e) = R,(eM) + A,(eM) for all n. Since e € X, we
have R(e(!)) € Y by condition (12) or condition (17). This and condition (19)
together imply A(e) € Y, that is condition (13) holds. =

The characterization of (X, AY") can easily be reduced to that of (X,Y).

Theorem 3 Let X and Y be arbitrary subsets of w. Then A € (X,AY) if and
only if
A e xP (20)
and
B € (X,Y) where by, = ankg — any1,x for alln and k. (21)

Proof. First we assume A € (X, AY). Then A, € X? for all n, in particular,
condition (20) holds, and B,, = A, A, = A, — A,41 € XP for all n. Further-
more, A(z) € AY, that is A, A(x) = B(x) € Y for all x € X, and so (21) holds.
Conversely, we assume that conditions (20) and (21) are satisfied. Then A, =
A, — B, € XP for all n > 2 by induction. Furthermore, B(z) = A, A(z) € Y,
that is A(xz) € AY for all € X. Thus we have shown A € (X,AY). L]
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Now we apply Theorem 2 and well-known results from [2] to characterize
the classes (X,Y) and (X, AY) where X is any of the spaces Al (p), Aco(p)
and Ac(p), and Y is any of the spaces I (p), co(p) and c¢(p).

Theorem 4 The necessary and sufficient conditions for A € (X,Y) for X =

Al (p), Aco(p), Ac(p) and Y = Lo (q), c0(q), c(q), Al (p), Aco(q), Ac(q) can be
read from the following table

| L@ | eofa) | ela) | Dola) | Acola) | Acta)
M) | (1) | ) [ BT (10 | (11) | (12)
Reolp) | (1) | (5) | (6] (13) | (14) | (15)
Ac(p) 7) | (8) [ (9) 1 (16.) | (17) | (18,

w?”’)@’ wz’;‘h Tr)?k (: Z):(;i(kJrl)anj and 1y, = E;ik+1(anj_an+1,j) (nk=12,...),
1.): (1.1), (1.2), (1.3) where

(1.1) sup,, (3202, [rA INYPr)in < o0 for all N € IN \ {1}

(1.2) supg okl 3571 NU/P < oo

3) fTral‘lNEIN\{l} and for alln =1,2,...

1.3) sup,, |an1|? < 00

(2.): (2.1), (1.2), (2.2) where
(2.1) limy— 0o (O g0, |rA | NY/PRYI =0 for all N € IN \ {1}
(2.2) limy oo |an1 |7 = 0

(3.): (3.1), (3.2), (1.2), (3.3) where
(8.1) sup,, S50 | |rd |NVPe < 0o for all N € IN \ {1}
there is a sequence (o)72, such that
(3.2) § limg—oo (3002, 1oy, — [ N1/PR)In =0
for all N € IN \ {1}

(3.3) limy, o0 |an1 — |9 =0 for some a € C

4.): (4-1), (4.2), (1.3) where
(4.1) sup,,(>oe |rA|N~YPe)in < 00 for some N € IN \ {1}
{ for each n € IN there is N,, € IN \ {1} such that
(4:2)

supy, | 5 N, /P
Pk Tnk:‘ Zl n <00
j=
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(5.):  (5.1), (5.2), (4.2), (2.2) where
(5.1) limy, o0 |72 |7 =0 for all k
(5.2) g oo sUP,, (3232 [ [ MH/P4) 1 =0

(6.):  (6.1), (6.2), (6.3), (4.2), (3.3) where
(6.1) sup,, S0 | |rA INY/Pr < oo for some N € IN \ {1}
(6.2) _ there is a sequence (ou)72 sqjch that
limag e S1p, (552, 1, — [ M-1/72)an =
(6.3) there is a sequence (Br)72, such that
’ limy, o0 |12, — Be|% =0 for all k
(7.):  (7.1), (4.1), (4.2), (1.8) where
(7.1) sup,, | Ype | kany|? < oo

(8.):  (8.1), (5.1), (5.2), (4.2), (2.2) where

(8.1) limy, oo | Dpe kank|® =0
(9.):  (9.1), (6.1), (6.2), (6.3), (4.2), (3.3) where

(9.1) limy oo | > poy kank — | =0 for some o € C
(10.):  (10.1), (10.2), (10.3), (10.4), (10.5) where

(10.1) sup,, (352, [rB INVPeYan < 00 for all N € IN \ {1}

B k—1 1/pj

supy, [ 25=1 NP < o0
for all N € IN\ {1} and for alln=1,2,...
(10.8) sup,, |an1 — Gnt1,1]9" < 00
(10.4) 332, [riy INY/Pr < 00 for all N € IN \ {1}
(10.5) supy, [} | S2571 NV/Pi < o0 for all N € IN \ {1}

(11.):  (11.1), (10.2), (11.2), (10.4), (10.5) where
(11.1) limy, o (352, [PB INVPE)In = 0 for all N € IN \ {1}
(]1.2) limn_,oo ‘(lnl — an+1,1|q" =0

(12.):  (12.1), (12.2), (10.2), (12.3), (10.4), (10.5) where
(12.1) sup, >-pey IPB|NV/Pr < oo for all N € IN \ {1}
there is a sequence (o), such that
(12.2) { Timyoe (552, [, — ax[NV/Pe)n — 0
for all N € IN \ {1}
(12.8) lim,, oo |Gn1 — @ny1,1 — | =0 for some a € C

(13.):  (13.1), (13.2), (10.3), (13.8), (13.4) where
(13.1) sup, (352, [rB IN~V/Pr)an < oo for some N € IN \ {1}
for each n € IN there is N,, € IN \ {1} such that
k—1
(15.2) supg [r| Y Va7 < o
=1

(10.2) {

=
(13.3) 332, [P IN~YPe < 00 for some N € IN \ {1}

(18.4) supy, |ris | Z;:ll N~YPi < oo for some N € IN \ {1}

(14.):  (14.1), (14.2), (13.2), (11.2), (13.8), (13.4) where
(14.1) limy, o0 |75 |9 = 0 for all k
(14.2) limps—o0 sup,, (3 ey |’r§k_|M_1/pk)(In -0
(15.):  (15.1), (15.2), (15.3), (13.2), (12.3), (15.3), (15.4) where
(15.1) sup, > pe, [rBIN~YPe < 00 for some N € IN \ {1}
(15.2) { there is a sequence (ou)7, such that
' lim g —oo sup, (30, I, — o[ M~1/PE)in =0
(15.3) { there is a sequence (B;)72, such that
’ limy, oo |12, — Bi|® =0 for all k
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(16.): (16.1), (13.1), (15.2), (10.3), (13.8), (13.4), (16.2) where

(16.1) sup,, | > pey k(ank — apy1,)|™ <0
(16.2) Y72, kayy, converges

(17.): ((17.1), (14.1), (14.2), (13.2), (11.2),
(18.8), (138.4), (16.2) where

(17.1) limy, o0 | > 5oy k(ank — any1,6)|? =0
(18.):  (18.1), (15.1),(15.2), (15.8), (13.2), (12.3),
(15.8), (158.4), (16.2) where
(18.1) limy,— oo | Y7o | k(ank — ant1,6) — a|? =0 for some a € C

Proof. We apply Theorem 2, [2, Theorem 5.1] and Remark 1 to obtain the
conditions in (1.) to (9.). By Theorem 2 (b), we have to add condition (16)
of Theorem 2 which is (7.1), (8.1) or (9.1) to the conditions in (4.), (5.) of
(6.), respectively. Condition (19) in Remark 1 is (1.3) in (1.) and (4.), (2.2)
in (2.) and (5.) or (3.3) in (3.) and (6.); condition (18) in Theorem 2 is
(1.2) in (1.), (2.) and (3.); condition (14) in Theorem 2 is (4.2) in (4.), (5.)
and (6.). The conditions for R4 € ({oo(p),Y) for Y = £(q),co(q),c(q) are
given in [2, Theorem 5.1, (15), (7), (11)] and those for R4 € (co(p),Y) for
Y =ls(q),c0(q),c(q) are given in [2, Theorem 5.1, (13), (5), (9)].

By Theorem 3, we have to add condition (20) in Theorem 3 in (10.) to (18.)
which is (10.4) and (10.5) in (10.), (11.) and (12.), (13.3) and (13.4) in (13.),
(14.) and (15.) and (13.3), (13.4) and (16.2) in (16.), (17.) and (18.) .
Furthermore, we have to replace rZ, and a,j in the conditions in (1.) to (9.)
by B and by, in the respective ones in (10.) to (18.). [
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