Some matrix transformations between the difference sequence spaces $\Delta c_{0}(p), \Delta c(p)$ and $\Delta l_{\infty}(p)$

Eberhard Malkowsky and Mursaleen

Abstract

For any sequence $x=\left(x_{k}\right)_{k=1}^{\infty} \in \omega$ and any subset X of ω, we write $\Delta x=\left(\Delta x_{k}\right)_{k=1}^{\infty}=\left(x_{k}-x_{k+1}\right)_{k=1}^{\infty}$ and $\Delta X=\{x \in \omega: \Delta x \in X\}$. Let $p=\left(p_{k}\right)_{k=1}^{\infty}$ and $q=\left(q_{k}\right)_{k=1}^{\infty}$ be bounded sequences of positive reals. We determine the β-duals of the sets $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$. Furthermore, we characterize the matrix classes $(\Delta X, Y)$ and $(\Delta X, \Delta Y)$ for $X=c_{0}(p), c(p), l_{\infty}(p)$ and $Y=c_{0}(q), c(q), l_{\infty}(q) .{ }^{1}$.

1 Introduction

Let ω be the set of all complex sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$, and c_{0}, c, l_{∞} and $c s$ be the sets of all null, convergent and bounded sequences and of all convergent series, respectively. Furthermore, let $p=\left(p_{k}\right)_{k=1}^{\infty}$ and $q=\left(q_{k}\right)_{k=1}^{\infty}$ be bounded sequences of positive reals throughout, and $c_{0}(p)=\left\{x \in \omega: \lim _{k \rightarrow \infty}\left|x_{k}\right|^{p_{k}}=\right.$ $0\}, c(p)=\left\{x \in \omega: \lim _{k \rightarrow \infty}\left|x_{k}-l\right|^{p_{k}}=0\right.$ for some $\left.l \in \mathbb{C}\right\}$ and $l_{\infty}(p)=\{x \in \omega$: $\left.\sup _{k}\left|x_{k}\right|^{p_{k}}<\infty\right\}$ (cf. [5], [6] and [10]).

Grosse-Erdmann [2] characterized the matrix classes (X, Y) for $X=c_{0}(p)$, $c(p), l_{\infty}(p)$ and $Y=c_{0}(q), c(q), l_{\infty}(q)$.

Given any sequence $x \in \omega$, we write $\Delta x=\left(\Delta x_{k}\right)_{k=1}^{\infty}=\left(x_{k}-x_{k+1}\right)_{k=1}^{\infty}$. Furthermore, for any subset X of ω, let $\Delta X=\{x \in \omega: \Delta x \in X\}$. In [1] and [7], the sequence spaces ΔX were introduced and studied for $X=c_{0}(p), c(p), l_{\infty}(p)$. If $p_{k}=$ const for all k then these sets reduce to $c_{0}(\Delta), c(\Delta)$ and $l_{\infty}(\Delta)$, respectively (see [3],[8]).

In this paper, we determine the β-duals of the sets $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$ and characterize the matrix classes $(\Delta X, Y)$ and $(\Delta X, \Delta Y)$ for $X=$ $c_{0}(p), c(p), l_{\infty}(p)$ and $Y=c_{0}(q), c(q), l_{\infty}(q)$.

[^0]
2 The β-duals of $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$

If z is any sequence and Y is any subset of ω then we write $z^{-1} * Y=\{x \in \omega$: $\left.z x=\left(z_{k} x_{k}\right)_{k=1}^{\infty} \in Y\right\}$. For any subset X of ω, the set $X^{\beta}=\cap_{x \in X}\left(x^{-1} * c s\right)$ is called the β-dual of X. The β-duals of the sets $\Delta c_{0}(p), \Delta c(p)$ and $\Delta l_{\infty}(p)$ were studied in [1], [7] and [9]. Boundedness of the sequence p was not assumed. If, however, we assume boundedness of the sequence p a different proof may be applied which considerably improves the results for the β-duals of $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$.

Let X and Y be subsets of ω. By (X, Y) we denote the class of all infinite matrices $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ of complex numbers such that $A_{n}=\left(a_{n k}\right)_{k=1}^{\infty} \in X^{\beta}$ for all n and $A(x)=\left(A_{n}(x)\right)_{n=1}^{\infty}=\left(\sum_{k=1}^{\infty} a_{n k} x_{k}\right)_{k=1}^{\infty} \in Y$ for all $x \in X$.

We write e and $e^{(n)}(n=1,2, \ldots)$ for the sequences with $e_{k}=1(k=$ $1,2, \ldots)$, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. If $a \in c s$ we define the sequence R by $R_{k}=\sum_{j=k+1}^{\infty} a_{j}$ for $k=0,1, \ldots$.

We need the following result.
Lemma 1 ([7, Corollary 1]) Let d be a non-decreasing sequence of positive reals. Then $a \in d^{-1} *$ cs implies $R \in d^{-1} * c_{0}$.

We write $\mathbf{n}=(n)_{n=1}^{\infty}, \mathbf{N}^{1 / p}=\left(N^{1 / p_{k}}\right)_{k=1}^{\infty}, \mathbf{N}^{-1 / p}=\left(N^{-1 / p_{k}}\right)_{k=1}^{\infty}, \mathbf{\Sigma} \mathbf{N}^{1 / p}=$ $\left(\sum_{j=1}^{k-1} N^{1 / p_{j}}\right)_{k=1}^{\infty}$ and $\boldsymbol{\Sigma} \mathbf{N}^{-1 / p}=\left(\sum_{j=1}^{k-1} N^{-1 / p_{j}}\right)_{k=1}^{\infty}$ for each $N \in I N \backslash\{1\}$.

The following result in which the boundedness of the sequence p is not needed is well known.

Lemma 2 (cf. [9, Theorem 2])
We put

$$
M_{\infty}^{(1)}(p)=\bigcap_{N \in I N \backslash\{1\}}\left\{a \in \omega: R \in\left(\mathbf{N}^{1 / p}\right)^{-1} * \ell_{1}\right\}
$$

and

$$
\tilde{M}_{\infty}^{(2)}(p)=\bigcap_{N \in I N \backslash\{1\}}\left(\boldsymbol{\Sigma} \mathbf{N}^{1 / p}\right)^{-1} * c s
$$

Then $\left(\Delta \ell_{\infty}(p)\right)^{\beta}=M_{\infty}^{(1)}(p) \cap \tilde{M}_{\infty}^{(2)}(p)$.
Now we give the β-duals of $\Delta c_{0}(p), \Delta c(p)$ and $\Delta \ell_{\infty}(p)$ for bounded sequences p.

Theorem 1 We put

$$
\begin{aligned}
M_{0}^{(1)}(p) & =\bigcup_{N \in I N \backslash\{1\}}\left\{a \in \omega: R \in\left(\mathbf{N}^{-1 / p}\right)^{-1} * \ell_{1}\right\}, \\
M_{0}^{(2)}(p) & =\bigcup_{N \in I N \backslash\{1\}}\left\{a \in \omega: R \in\left(\boldsymbol{\Sigma} \mathbf{N}^{-1 / p}\right)^{-1} * \ell_{\infty}\right\}, \\
M(p) & =(\mathbf{n})^{-1} * c s
\end{aligned}
$$

and

$$
M_{\infty}^{(2)}(p)=\bigcap_{N \in I N \backslash\{1\}}\left\{a \in \omega: R \in\left(\boldsymbol{\Sigma}^{1 / p}\right)^{-1} * c_{0}\right\}
$$

Then
(a) $\left(\Delta c_{0}(p)\right)^{\beta}=M_{0}^{(1)}(p) \cap M_{0}^{(2)}(p)$, and if $a \in\left(\Delta c_{0}(p)\right)^{\beta}$ then

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} y_{k}=-\sum_{k=1}^{\infty} R_{k} \Delta y_{k}+y_{1} \sum_{k=1}^{\infty} a_{k} \text { for all } y \in \Delta c_{0}(p) \tag{1}
\end{equation*}
$$

(b) $(\Delta c(p))^{\beta}=\left(\Delta c_{0}(p)\right)^{\beta} \cap M(p)$, and if $a \in(\Delta c(p))^{\beta}$ then identity (1) holds for all $y \in \Delta c(p)$;
(c) $\left(\Delta \ell_{\infty}(p)\right)^{\beta}=M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$, and if $a \in\left(\Delta \ell_{\infty}(p)\right)^{\beta}$ then identity (1) holds for all $y \in \Delta \ell_{\infty}(p)$.

Proof. (a) We write $Y=\Delta c_{0}(p)$ and $X=c_{0}(p)$.
First we assume $a \in M_{0}^{(1)}(p) \cap M_{0}^{(2)}(p)$. Let $y \in Y$ be given. Then $x=\Delta y \in X$. Abel's summation by parts yields

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} y_{k}=-\sum_{k=1}^{n-1} R_{k} x_{k}-R_{n} y_{n}+y_{1} R_{0}(n=1,2, \ldots) \tag{2}
\end{equation*}
$$

First $a \in M_{0}^{(1)}(p)$, that is $R \in X^{\beta}$ by [6, Theorem 6] implies $R x \in c s$. Furthermore

$$
\begin{equation*}
R_{n}\left(y_{n}-y_{1}\right)=-\sum_{k=1}^{n-1} R_{n} x_{k} \text { for } n=1,2, \ldots \tag{3}
\end{equation*}
$$

and we note that $y \in Y$ if and only if $y-y_{1} e^{(1)} \in Y$, since Y is a linear space for bounded sequences p. We define the matrix A by

$$
a_{n k}=\left\{\begin{array}{ll}
-R_{n} & (1 \leq k \leq n-1) \tag{4}\\
0 & (k>n)
\end{array} \quad(n=1,2, \ldots)\right.
$$

Then $a \in M_{0}^{(2)}(p)$ implies
$\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right| N^{-1 / p_{k}}=\sup _{n}\left|R_{n}\right| \sum_{k=1}^{n-1} N^{-1 / p_{k}}<\infty$ for some $N \in I N \backslash\{1\}$.
Furthermore $R_{n}=\sum_{k=n+1}^{\infty} a_{k} \rightarrow 0(n \rightarrow \infty)$, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} a_{n k}=0 \text { for each fixed } k \tag{6}
\end{equation*}
$$

By [4, Corollary 3], conditions (5) and (6) together imply $A \in(X, c)$, that is $R\left(y-y_{1} e^{(1)}\right) \in c$, and so $R y \in c$. Finally, by (2), we conclude $a y \in c s$. Thus we have shown

$$
\begin{equation*}
M_{0}^{(1)}(p) \cap M_{0}^{(2)}(p) \subset Y^{\beta} \tag{7}
\end{equation*}
$$

Now we assume $a \in Y^{\beta}$. Then $a y \in c s$ for all $y \in Y$. Since $\Delta e=0 \in X$, it follows that $e \in Y$, and so $a=a e \in c s$, hence the sequence R is defined. If $y \in Y$ then $x=\Delta y \in X$, and

$$
\sum_{k=1}^{n} a_{k}\left(y_{k}-y_{1}\right)=-\sum_{k=1}^{n-1} x_{k} \sum_{j=k+1}^{n} a_{j}(n=1,2, \ldots)
$$

We define the matrix $B=\left(b_{n k}\right)_{n, k=1}^{\infty}$ by $b_{n k}=-\sum_{j=k+1}^{n} a_{j}$ for $1 \leq k \leq n-1$ and $b_{n k}=0$ for $k \geq n(n=1,2, \ldots)$. Then $B \in(X, c)$, and again, by [4, Corollary 3], there are $N \in I N \backslash\{1\}$ and a constant K such that

$$
\sum_{k=1}^{\infty}\left|b_{n k}\right| N^{-1 / p_{k}}=\sum_{k=1}^{n-1}\left|\sum_{j=k+1}^{n} a_{j}\right| N^{-1 / p_{k}} \leq K \text { for all } n
$$

We fix $m \in \mathbb{N}$. Then

$$
\sum_{k=1}^{m-1}\left|\sum_{j=k+1}^{n} a_{j}\right| N^{-1 / p_{k}} \leq K \text { for all } n \geq m
$$

Since $R_{k}=\lim _{n \rightarrow \infty} \sum_{j=k+1}^{n} a_{j}$ exists for each k, this implies $\sum_{k=1}^{m-1}\left|R_{k}\right| N^{-1 / p_{k}}$ $\leq K$, and since $m \in \mathbb{N}$ was arbitrary, we conclude $\sum_{k=1}^{\infty}\left|R_{k}\right| N^{-1 / p_{k}} \leq K$, that is $R \in X^{\beta}$ by [6, Theorem 6], and so $a \in M_{0}^{(1)}(p)$. Defining the matrix A as in (4), we have $A \in(X, c)$, and this yields (5) by [4, Corollary 3], hence $a \in M_{0}^{(2)}(p)$. Thus we have shown $Y^{\beta} \subset M_{0}^{(1)}(p) \cap M_{0}^{(2)}(p)$. This and (7) together yield $Y^{\beta}=M_{0}^{(1)}(p) \cap M_{0}^{(2)}(p)$.
Finally, we assume $a \in Y^{\beta}$ Then, by what we have just shown, there is $N \in$ $I N \backslash\{1\}$ such that, for the matrix A defined in (4),

$$
D=\sup _{n} \sum_{k=1}^{\infty}\left|a_{n k}\right| N^{-1 / p_{k}}=\sup _{n}\left|R_{n}\right| \sum_{k=1}^{n-1} N^{-1 / p_{k}}<\infty
$$

and condition (6) holds. Let $\varepsilon>0$ be given. We put $P=\sup _{k} p_{k}<\infty$ and $M_{0}=\max \left\{N((2 D+1) / \varepsilon)^{P}, N\right\}$. Then for all $M \geq M_{0}$ and for all $n \in \mathbb{N}$,

$$
\begin{aligned}
& \left|R_{n}\right| \sum_{k=1}^{n-1} M^{-1 / p_{k}} \leq\left|R_{n}\right| \sum_{k=1}^{n-1} M_{0}^{-1 / p_{k}}=\left|R_{n}\right| \sum_{k=1}^{n-1} N^{-1 / p_{k}}\left(\frac{N}{M_{0}}\right)^{1 / p_{k}} \\
& \quad \leq\left(\left|R_{n}\right| \sum_{k=1}^{n-1} N^{-1 / p_{k}}\right)\left(\frac{N}{M_{0}}\right)^{1 / P} \leq D\left(\frac{N}{M_{0}}\right)^{1 / P} \leq D \frac{N \varepsilon}{(2 D+1) N} \leq \varepsilon / 2
\end{aligned}
$$

and so

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \sup _{n}\left|a_{n k}\right| M^{-1 / p_{k}}=0 \tag{8}
\end{equation*}
$$

By [2, Theorem 5.1, 5.], conditions (6) and (8) together imply $A \in\left(X, c_{0}\right)$, hence $R y \in c_{0}$, and (1) follows from (2).
(b) First we assume $a \in(c(p))^{\beta}$. Since $\Delta c_{0}(p) \subset \Delta c(p)$ implies $(\Delta c(p))^{\beta} \subset$ $\left(\Delta c_{0}(p)\right)^{\beta}$, we have $a \in\left(\Delta c_{0}(p)\right)^{\beta}$. Furthermore, $\mathbf{n} \in \Delta c(p)$, since $\Delta \mathbf{n}-(-1) e \in$ $c_{0}(p)$. Thus $a \mathbf{n} \in c s$, that is $a \in M(p)$. Thus we have shown

$$
\begin{equation*}
(\Delta c(p))^{\beta} \subset\left(\Delta c_{0}(p)\right)^{\beta} \cap M(p) \tag{9}
\end{equation*}
$$

Conversely we assume $a \in\left(\Delta c_{0}(p)\right)^{\beta} \cap M(p)$. Let $y \in \Delta c(p)$ be given. Then $x=\Delta y \in c(p)$, hence there is $l \in \mathbb{C}$ such that $x-l e \in c_{0}(p)$. Let $z=y+l \mathbf{n}$. Then $\Delta z=\Delta y+l \Delta \mathbf{n}=x-l e \in c_{0}(p)$, hence $z \in \Delta c_{0}(p)$, and, as in (2),

$$
\begin{align*}
& \sum_{k=1}^{n} a_{k} y_{k}=\sum_{k=1}^{n} a_{k} z_{k}+l \sum_{k=1}^{n} k a_{k}= \\
& -\sum_{k=1}^{n-1} R_{k} \Delta z_{k}-R_{n} z_{n}+z_{1} R_{0}+l \sum_{k=1}^{n} k a_{k} \text { for all } n \tag{10}
\end{align*}
$$

Since $z \in \Delta c_{0}(p)$, we have $R \Delta z \in c s$ and $R z \in c$ by Part (a). Furthermore $a \mathbf{n} \in c s$, since $a \in M(p)$. Thus $a y \in c s$, and we have shown $\left(\Delta c_{0}(p)\right)^{\beta} \cap M(p) \subset$ $(\Delta c(p))^{\beta}$. Together with (9) this yields $(\Delta c(p))^{\beta}=\left(\Delta c_{0}(p)\right)^{\beta} \cap M(p)$.
Finally, let $a \in(\Delta c(p))^{\beta}$ and $y \in c(p)$ be given. By (2),

$$
\begin{aligned}
& \sum_{k=1}^{n} a_{k} y_{k}=-\sum_{k=1}^{n-1} R_{k} \Delta y_{k}-R_{n} y_{n}+y_{1} R_{0}= \\
& -\sum_{k=1}^{n-1} R_{k} \Delta y_{k}-R_{n} z_{n}+R_{n} n+y_{1} R_{0}(n=0,1, \ldots)
\end{aligned}
$$

Since $z \in \Delta c_{0}(p)$ and $a \in M_{0}^{(2)}(p), R z \in c_{0}$ by Part (a). Furthermore $a \in M(p)$ implies $\mathbf{n} R \in c_{0}$ by Lemma 1. So $a y \in c s$ implies $R \Delta y \in c s$, and (2) holds.
(c) We write $Y=\Delta \ell_{\infty}(p)$ and $X=\ell_{\infty}(p)$. By Lemma 1 and Lemma 2,

$$
\begin{equation*}
Y^{\beta} \subset M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p) \tag{11}
\end{equation*}
$$

Conversely we assume $a \in M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$. Let $y \in Y$ be given. Then $x=\Delta y \in X$. First $a \in M_{0}^{(1)}(p)$, that is $R \in X^{\beta}$ by [5, Theorem 2] implies $R x \in c s$. We define the matrix A as in (4). Then $a \in M_{\infty}^{(2)}(p)$ implies

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{n k}\right| N^{1 / p_{k}}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n-1}\left|R_{n}\right| \sum_{k=1}^{n-1} M^{1 / p_{k}}=0 \text { for all } N \in I N \backslash\{1\}
$$

that is $A \in\left(X, c_{0}\right)$ by [2, Theorem 5.1, 7.]. Therefore we conclude from (3) that $R\left(y-y_{1} e^{(1)}\right) \in c_{0}$, and so $R y \in c_{0}$. By (2), ay $\in c s$. Thus we have shown $M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p) \subset Y^{\beta}$. This and (11) together yield $Y^{\beta}=M_{\infty}^{(1)}(p) \cap M_{\infty}^{(2)}(p)$. The last part is obvious.

3 Matrix transformations

Let $p=\left(p_{k}\right)_{k=1}^{\infty}$ and $q=\left(q_{k}\right)_{k=1}^{\infty}$ be bounded sequences of positive reals throughout.

If $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ is an infinite matrix then we write R^{A} for the matrix with $r_{n k}^{A}=\sum_{j=k+1}^{\infty} a_{n j}$ for all n and k, provided the series converge.

First we reduce the characterizations of the classes $(\Delta X, Y)$ to those of (X, Y) for arbitrary subspaces Y of ω and $X=c_{0}(p), c(p)$ and $l_{\infty}(p)$.

Theorem 2 Let Y be an arbitrary subspace of ω. Then (a) $A \in\left(\Delta c_{0}(p), Y\right)$ if and only if

$$
\begin{align*}
& R \in\left(c_{0}(p), Y\right), \tag{12}\\
& A(e) \in Y \tag{13}
\end{align*}
$$

and

$$
\left\{\begin{array}{c}
\text { for each } n \text { there is } N_{n} \in I N \backslash\{1\} \text { such that } \tag{14}\\
\sup _{k}\left|r_{n k}^{A}\right| \sum_{j=1}^{k-1} N^{-1 / p_{j}}<\infty
\end{array}\right.
$$

(b) $A \in(\Delta c(p), Y)$ if and only if

$$
\begin{equation*}
A \in\left(\Delta c_{0}(p), Y\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
A(\mathbf{k}) \in Y \tag{16}
\end{equation*}
$$

(c) $A \in\left(\Delta l_{\infty}(p), Y\right)$ if and only if condition (13) holds and

$$
\begin{equation*}
R \in\left(l_{\infty}(p), Y\right) \tag{17}
\end{equation*}
$$

and

$$
\left\{\begin{array}{c}
\sup _{k}\left|r_{n k}^{A}\right| \sum_{j=1}^{k-1} N^{1 / p_{j}}<\infty \tag{18}\\
\text { for all } n=1,2, \ldots \text { and for all } N \in I N \backslash\{1\} .
\end{array}\right.
$$

Proof. (a) We put $X=c_{0}(p)$ and $Z=\Delta X$, and observe that $z \in Z$ if and only if $x=\Delta z \in X$. Furthermore we write $R=R^{A}$.
First we assume $A \in(Z, Y)$. Condition (13) is obvious, since $e \in Z$. Furthermore $A_{n} \in Z^{\beta}$ implies $R_{n} \in M_{0}^{(2)}(p)$ for each n by Theorem 1 (a), and so condition (14) holds. Let $x \in X$ be given. We define the sequence z by $z_{k}=\sum_{j=1}^{k-1} x_{j}(k=1,2, \ldots)$. Then $z \in Z$ and

$$
R_{n}(x)=-A_{n}(z)+z_{1} r_{n 0}=-A_{n}(z) \text { for all } n
$$

by identity (1), and $A(z) \in Y$ implies $R(x) \in Y$. Thus condition (12) holds.
Conversely, we assume that conditions (12), (13) and (14) hold. First $R_{n} \in X^{\beta}$
for all n and condition (14) together imply $A_{n} \in Z^{\beta}$ for all n by Theorem 1 (a). Let $z \in Z$ be given. Then by (1)

$$
A_{n}(z)=-R_{n}(x)+z_{1} r_{n 0}=R_{n}(x)+z_{1} A_{n}(e) \text { for all } n
$$

and $R(x) \in Y$ and condition (13) together imply $A(z) \in Y$, since Y is a linear space.
(b) First we assume $A \in(\Delta c(p), Y)$. Then obviously $A \in\left(\Delta c_{0}(p), Y\right)$. Furthermore $\mathbf{k} \in \Delta c(p)$ implies condition (16).
Conversely, we assume that conditions (15) and (16) hold. First, condition (16) implies $A_{n} \in \mathbf{k}^{-1} * c s$, that is $A_{n} \in M(p)$ for all n, and since also $A_{n} \in\left(\Delta c_{0}(p)\right)^{\beta}$ for all n by condition (15), we conclude $A_{n} \in(\Delta c(p))^{\beta}$ by Theorem 1 (b). Let $z \in \Delta c(p)$ be given. Then $\Delta z-l e \in c_{0}(p)$ for some $l \in \mathbb{C}$. We put $x=z+l \mathbf{k}$. Then $x \in \Delta c_{0}(p)$, and

$$
A_{n}(z)=A_{n}(x)-l A_{n}(\mathbf{k}) \text { for all } n
$$

Now $A(x) \in Y$ and condition (16) together imply $A(z) \in Y$, since Y is a linear space.
(c) Part (c) is proved in the same way as Part (a) by applying Theorem 1 (c) instead of Theorem 1 (a).

Remark 1 Condition (13) in Theorem 2 (a) and (c) may be replaced by

$$
\begin{equation*}
A\left(e^{(1)}\right) \in Y \tag{19}
\end{equation*}
$$

Proof. Let $X=c_{0}(p)$ or $X=l_{\infty}(p)$ and $Z=\Delta X$.
First we assume that conditions (12), (13) and (14) or (17), (13) and (18) hold. Then $A \in(Z, Y)$ by Theorem 2 (a) or (c), respectively. Now $e^{(1)} \in Z$ implies $A\left(e^{(1)}\right) \in Y$, that is condition (19) holds.
Conversely, we assume that conditions (12), (19) and (14) or (17), (19) and (18) hold. Then $A_{n}(e)=R_{n}\left(e^{(1)}\right)+A_{n}\left(e^{(1)}\right)$ for all n. Since $e^{(1)} \in X$, we have $R\left(e^{(1)}\right) \in Y$ by condition (12) or condition (17). This and condition (19) together imply $A(e) \in Y$, that is condition (13) holds.

The characterization of $(X, \Delta Y)$ can easily be reduced to that of (X, Y).
Theorem 3 Let X and Y be arbitrary subsets of ω. Then $A \in(X, \Delta Y)$ if and only if

$$
\begin{equation*}
A_{1} \in X^{\beta} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
B \in(X, Y) \text { where } b_{n k}=a_{n k}-a_{n+1, k} \text { for all } n \text { and } k \tag{21}
\end{equation*}
$$

Proof. First we assume $A \in(X, \Delta Y)$. Then $A_{n} \in X^{\beta}$ for all n, in particular, condition (20) holds, and $B_{n}=\Delta_{n} A_{n}=A_{n}-A_{n+1} \in X^{\beta}$ for all n. Furthermore, $A(x) \in \Delta Y$, that is $\Delta_{n} A(x)=B(x) \in Y$ for all $x \in X$, and so (21) holds. Conversely, we assume that conditions (20) and (21) are satisfied. Then $A_{n+1}=$ $A_{n}-B_{n} \in X^{\beta}$ for all $n \geq 2$ by induction. Furthermore, $B(x)=\Delta_{n} A(x) \in Y$, that is $A(x) \in \Delta Y$ for all $x \in X$. Thus we have shown $A \in(X, \Delta Y)$.

Now we apply Theorem 2 and well-known results from [2] to characterize the classes (X, Y) and $(X, \Delta Y)$ where X is any of the spaces $\Delta l_{\infty}(p), \Delta c_{0}(p)$ and $\Delta c(p)$, and Y is any of the spaces $l_{\infty}(p), c_{0}(p)$ and $c(p)$.

Theorem 4 The necessary and sufficient conditions for $A \in(X, Y)$ for $X=$ $\Delta \ell_{\infty}(p), \Delta c_{0}(p), \Delta c(p)$ and $Y=\ell_{\infty}(q), c_{0}(q), c(q), \Delta \ell_{\infty}(p), \Delta c_{0}(q), \Delta c(q)$ can be read from the following table

To From	$\ell_{\infty}(q)$	$c_{0}(q)$	$c(q)$	$\Delta \ell_{\infty}(q)$	$\Delta c_{0}(q)$	$\Delta c(q)$
$\Delta \ell_{\infty}(p)$	(1).	(2).	(3).	(10).	(11).	(12).
$\Delta c_{0}(p)$	(4.)	(5).	(6).	(13).	(14).	(15).
$\Delta c(p)$	(7).	(8).	(9).	(16).	(17).	(18).

where, with $r_{n k}^{A}=\sum_{j=k+1}^{\infty} a_{n j}$ and $r_{n k}^{B}=\sum_{j=k+1}^{\infty}\left(a_{n j}-a_{n+1, j}\right)(n, k=1,2, \ldots)$,
(1.): (1.1), (1.2), (1.3) where
(1.1) $\sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| N^{1 / p_{k}}\right)^{q_{n}}<\infty$ for all $N \in I N \backslash\{1\}$
(1.2) $\left\{\begin{aligned} \\ \sup _{k}\left|r_{n k}^{A}\right| \sum_{j=1}^{k-1} N^{1 / p_{j}}<\infty\end{aligned}\right.$
for all $N \in I N \backslash\{1\}$ and for all $n=1,2, \ldots$
(1.3) $\sup _{n}\left|a_{n 1}\right|^{q_{n}}<\infty$
(2.): (2.1), (1.2), (2.2) where
(2.1) $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| N^{1 / p_{k}}\right)^{q_{n}}=0$ for all $N \in I N \backslash\{1\}$
(2.2) $\lim _{n \rightarrow \infty}\left|a_{n 1}\right|^{q_{n}}=0$
(3.): (3.1), (3.2), (1.2), (3.3) where
(3.1) $\sup _{n} \sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| N^{1 / p_{k}}<\infty$ for all $N \in I N \backslash\{1\}$
(3.2) $\left\{\begin{array}{c}\text { there is a sequence }\left(\alpha_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}-\alpha_{k}\right| N^{1 / p_{k}}\right)^{q_{n}}=0 \\ \text { for all } N \in I N \backslash\{1\}\end{array}\right.$
(3.3) $\lim _{n \rightarrow \infty}\left|a_{n 1}-\alpha\right|^{q_{n}}=0$ for some $\alpha \in \mathbb{C}$
(4.): (4.1), (4.2), (1.3) where
(4.1) $\sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| N^{-1 / p_{k}}\right)^{q_{n}}<\infty$ for some $N \in I N \backslash\{1\}$
(4.2) $\left\{\begin{array}{r}\text { for each } n \in I N \text { there is } N_{n} \in I N \backslash\{1\} \\ \sup _{k}\left|r_{n k}^{A}\right| \sum_{j=1}^{k-1} N_{n}^{-1 / p_{j}}<\infty\end{array}\right.$
(5.): (5.1), (5.2), (4.2), (2.2) where
(5.1) $\lim _{n \rightarrow \infty}\left|r_{n k}^{A}\right|^{q_{n}}=0$ for all k
(5.2) $\lim _{M \rightarrow \infty} \sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0$
(6.): (6.1), (6.2), (6.3), (4.2), (3.3) where
(6.1) $\sup _{n} \sum_{k=1}^{\infty}\left|r_{n k}^{A}\right| N^{-1 / p_{k}}<\infty$ for some $N \in I N \backslash\{1\}$
(6.2) $\left\{\begin{array}{c}\text { there is a sequence }\left(\alpha_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{M \rightarrow \infty} \sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{A}-\alpha_{k}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0\end{array}\right.$
(6.3) $\left\{\begin{array}{c}\text { there is a sequence }\left(\beta_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{n \rightarrow \infty}\left|r_{n k}^{A}-\beta_{k}\right|^{q_{n}}=0 \text { for all } k\end{array}\right.$
(7.): (7.1), (4.1), (4.2), (1.3) where
(7.1) $\sup _{n}\left|\sum_{k=1}^{\infty} k a_{n k}\right|^{q_{n}}<\infty$
(8.): (8.1), (5.1), (5.2), (4.2), (2.2) where
(8.1) $\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{\infty} k a_{n k}\right|^{q_{n}}=0$
(9.): (9.1), (6.1), (6.2), (6.3), (4.2), (3.3) where
(9.1) $\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{\infty} k a_{n k}-\alpha\right|^{q_{n}}=0$ for some $\alpha \in \mathbb{C}$
(10.): (10.1), (10.2), (10.3), (10.4), (10.5) where
(10.1) $\sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}\right| N^{1 / p_{k}}\right)^{q_{n}}<\infty$ for all $N \in I N \backslash\{1\}$
(10.2) $\left\{\begin{array}{l}\sup _{k}\left|r_{n k}^{B}\right| \sum_{j=1}^{k-1} N^{1 / p_{j}}<\infty \\ \text { for all } N \in I N \backslash\{1\} \text { and for all } n=1,2, \ldots\end{array}\right.$
(10.3) $\sup _{n}\left|a_{n 1}-a_{n+1,1}\right|^{q_{n}}<\infty$
(10.4) $\sum_{k=1}^{\infty}\left|r_{1 k}^{A}\right| N^{1 / p_{k}}<\infty$ for all $N \in I N \backslash\{1\}$
(10.5) $\sup _{k}\left|r_{1 k}^{A}\right| \sum_{j=1}^{k-1} N^{1 / p_{j}}<\infty$ for all $N \in I N \backslash\{1\}$
(11.): (11.1), (10.2), (11.2), (10.4), (10.5) where
(11.1) $\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}\right| N^{1 / p_{k}}\right)^{q_{n}}=0$ for all $N \in I N \backslash\{1\}$
(11.2) $\lim _{n \rightarrow \infty}\left|a_{n 1}-a_{n+1,1}\right|^{q_{n}}=0$
(12.): (12.1), (12.2), (10.2), (12.3), (10.4), (10.5) where
(12.1) $\sup _{n} \sum_{k=0}^{\infty}\left|r_{n k}^{B}\right| N^{1 / p_{k}}<\infty$ for all $N \in I N \backslash\{1\}$
(12.2) $\left\{\begin{array}{c}\text { there is a sequence }\left(\alpha_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{n \rightarrow \infty}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}-\alpha_{k}\right| N^{1 / p_{k}}\right)^{q_{n}}=0 \\ \text { for all } N \in I N \backslash\{1\}\end{array}\right.$
(12.3) $\lim _{n \rightarrow \infty}\left|a_{n 1}-a_{n+1,1}-\alpha\right|^{q_{n}}=0$ for some $\alpha \in \mathbb{C}$
(13.): (13.1), (13.2), (10.3), (13.3), (13.4) where
(13.1) $\sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}\right| N^{-1 / p_{k}}\right)^{q_{n}}<\infty$ for some $N \in I N \backslash\{1\}$
(13.2) $\left\{\begin{array}{r}\text { for each } n \in I N \text { there is } N_{n} \in I N \backslash\{1\} \\ \sup _{k}\left|r_{n k}^{B}\right| \sum_{j=1}^{k-1} N_{n}^{-1 / p_{j}}<\infty\end{array}\right.$
(13.3) $\sum_{k=1}^{\infty}\left|r_{1 k}^{A}\right| N^{-1 / p_{k}}<\infty$ for some $N \in I N \backslash\{1\}$
(13.4) $\sup _{k}\left|r_{1 k}^{A}\right| \sum_{j=1}^{k-1} N^{-1 / p_{j}}<\infty$ for some $N \in I N \backslash\{1\}$
(14.): (14.1), (14.2), (13.2), (11.2), (13.3), (13.4) where
(14.1) $\lim _{n \rightarrow \infty}\left|r_{n k}^{B}\right|^{q_{n}}=0$ for all k
(14.2) $\lim _{M \rightarrow \infty} \sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0$
(15.): (15.1), (15.2), (15.3), (13.2), (12.3), (13.3), (13.4) where
(15.1) $\sup _{n} \sum_{k=1}^{\infty}\left|r_{n k}^{B}\right| N^{-1 / p_{k}}<\infty$ for some $N \in I N \backslash\{1\}$
(15.2) $\left\{\begin{array}{c}\text { there is a sequence }\left(\alpha_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{M \rightarrow \infty} \sup _{n}\left(\sum_{k=1}^{\infty}\left|r_{n k}^{B}-\alpha_{k}\right| M^{-1 / p_{k}}\right)^{q_{n}}=0\end{array}\right.$
(15.3) $\left\{\begin{array}{c}\text { there is a sequence }\left(\beta_{k}\right)_{k=1}^{\infty} \text { such that } \\ \lim _{n \rightarrow \infty}\left|r_{n k}^{B}-\beta_{k}\right|^{q_{n}}=0 \text { for all } k\end{array}\right.$
(16.): (16.1), (13.1), (13.2), (10.3), (13.3), (13.4), (16.2) where
(16.1) $\sup _{n}\left|\sum_{k=1}^{\infty} k\left(a_{n k}-a_{n+1, k}\right)\right|^{q_{n}}<0$
(16.2) $\sum_{k=1}^{\infty} k a_{1 k}$ converges
(17.): ((17.1), (14.1), (14.2), (13.2), (11.2),
(13.3), (13.4), (16.2) where
(17.1) $\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{\infty} k\left(a_{n k}-a_{n+1, k}\right)\right|^{q_{n}}=0$
(18.): (18.1), (15.1), (15.2), (15.3), (13.2), (12.3),
(13.3), (13.4), (16.2) where
(18.1) $\lim _{n \rightarrow \infty}\left|\sum_{k=1}^{\infty} k\left(a_{n k}-a_{n+1, k}\right)-\alpha\right|^{q_{n}}=0$ for some $\alpha \in \mathbb{C}$

Proof. We apply Theorem 2, [2, Theorem 5.1] and Remark 1 to obtain the conditions in (1.) to (9.). By Theorem 2 (b), we have to add condition (16) of Theorem 2 which is (7.1), (8.1) or (9.1) to the conditions in (4.), (5.) of (6.), respectively. Condition (19) in Remark 1 is (1.3) in (1.) and (4.), (2.2) in (2.) and (5.) or (3.3) in (3.) and (6.); condition (18) in Theorem 2 is (1.2) in (1.), (2.) and (3.); condition (14) in Theorem 2 is (4.2) in (4.), (5.) and (6.). The conditions for $R^{A} \in\left(\ell_{\infty}(p), Y\right)$ for $Y=\ell_{\infty}(q), c_{0}(q), c(q)$ are given in [2, Theorem 5.1, (15), (7), (11)] and those for $R^{A} \in\left(c_{0}(p), Y\right)$ for $Y=\ell_{\infty}(q), c_{0}(q), c(q)$ are given in [2, Theorem 5.1, (13), (5), (9)].
By Theorem 3, we have to add condition (20) in Theorem 3 in (10.) to (18.) which is (10.4) and (10.5) in (10.), (11.) and (12.), (13.3) and (13.4) in (13.), (14.) and (15.) and (13.3), (13.4) and (16.2) in (16.), (17.) and (18.) . Furthermore, we have to replace $r_{n k}^{A}$ and $a_{n k}$ in the conditions in (1.) to (9.) by $r_{n k}^{B}$ and $b_{n k}$ in the respective ones in (10.) to (18.).

References

[1] Z. U. Ahmad and Mursaleen, Köthe-Toeplitz duals of some new sequence spaces and their matrix maps, Publ. Inst. Math. (Beograd) 42 (56) (1987), 57-61.
[2] K.-G. Grosse-Erdmann, Matrix transformations between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223-238.
[3] H. Kizmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-175.
[4] C. G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific Journal of Mayhematics 38,2 (1971), 487-500.
[5] C. G. Lascarides and I. J. Maddox, Matrix transformations between some classes of sequences, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
[6] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc. 65 (1967), 431-435.
[7] E. Malkowsky, Absolute and ordinary Köthe-Toeplitz duals of some sets of sequences and matrix transformations, Publ. Inst. Math. (Beograd) 46 (60) (1989), 97-104.
[8] E. Malkowsky, A note on the Köthe-Toeplitz duals of generalized sets of bounded and convergent difference sequences, J. Anal. 4 (1995), 81-91.
[9] E. Malkowsky, Mursaleen and Qamaruddin, Generalized sets of difference sequences, their duals and matrix transformations, Advances in Sequence Spaces and Applications, Narosa Publishing Company, Delhi, 1999, 68-83.
[10] S. Simons, The sequence spaces $l\left(p_{\nu}\right)$ and $m\left(p_{\nu}\right)$, Proc. London Math. Soc. 15 (1965), 422-436.

Department of Mathematics
University of Giessen
Arndtstrasse 2
D-35392 Giessen
Germany
c/o Department of Mathematics
Faculty of Science and Mathematics
Višegradska 33, 18000 Niš
Yugoslavia
ema@pmf.pmf.ni.ac.yu
Department of Mathematics
Aligarh Muslim University
Aligarh-202002
India
mursaleen@postmark.net

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001
 2000 Mathematics Subject Classification: 40H05, 46A45
 Keywords: Sequence spaces, difference sequence spaces, matrix transformations

