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ARENS-ROYDEN AND THE SPECTRAL LANDSCAPE

Robin E. Harte

Abstract. In this note we attempt to deconstruct the Arens-Royden Theorem, and to offer an

abstraction of the spectral picture of an operator. We also show dramatically why the invertible

group of operators on certain product Banach spaces is not connected.

Suppose A is a Banach algebra (by default complex, with identity 1): we shall
write

0.1 A−1 = {a ∈ A : 1 ∈ Aa∩aA}

for the open subgroup of invertible elements, and A−1
0 for the connected component

of the identity in A−1: it turns out ([10], [13] Theorem 7.11.4) that

0.2 A−1
0 = Exp(A) = {ec1ec2 . . . eck : k ∈ N, c ∈ Ak}

coincides with the generalized exponentials, the subgroup generated by the exponen-
tials. Exp(A) is open, relatively closed in A−1, connected and a normal subgroup:
thus we can form the quotient group,

0.3 κ(A) = A−1/Exp(A),

the abstract index group [7] of A. Now we can state [2];[7];[8];[22];[24];[25];[26]
1. Theorem (Arens-Royden Mark I) If A is commutative then

1.1 κ(A) ∼= H1(σ(A),Z),

the first Cech cohomology group of the “maximal ideal space” of A.

Specifically we shall interpret elements of the maximal ideal space σ(A) ⊆ A∗

as bounded multiplicative linear functionals on A; this includes sending 1 ∈ A
to 1 ∈ C. We offer no formal definition of Cech cohomology: but if we believe
the Arens-Royden theorem Mark I then it must apply to the algebra C(σ(A)) of
continuous functions on σ(A), which has of course the same maximal ideal space

1.2 σ C(σ(A)) ∼= σ(A) ,
31
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and whose abstract index group therefore offers an interpretation of the Cech co-
homology. We arrive at
2. Theorem (Arens-Royden Mark II) If A is commutative then

2.1 κ(A) ∼= κ C(σ(A)).

We can sharpen the statement a little more: the isomorphism is not any old
isomorphism (remember the James space !), but a specific isomorphism derived
from the Gelfand mapping. Stepping back a little, suppose T : A → B is a bounded
multiplicative linear mapping of Banach algebras: in particular, for arbitrary a, a′ ∈
A,

2.2 T (a′a)− T (a′)T (a) = 0 = T (1)− 1.

For example if B = C then T ∈ σ(A). It is clear - whether or not T is bounded -
that

2.3 T (A−1) ⊆ B−1;

if T is also bounded (or not [21]!) then T (A−1
0 ) ⊆ B−1

0 and also - of course the
same thing -

2.4 T Exp(A) ⊆ Exp(B).

Thus T : A → B induces a mapping of abstract index groups,

2.5 κ(T ) : κ(A) → κ(B) :

κ god bless it is a functor.
All this applies in particular to the Gelfand mapping: we define

2.6 ΓA : A → C(σ(A))

by setting - whether or not A is commutative -

2.7 ΓA(a)(ϕ) = ϕ(a) (ϕ ∈ σ(A), a ∈ A).
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It is this sort of thing that gives abstract linear analysis a bad name!
If σ(A) is empty we will not trouble ourselves about the interpretation of (2.7).

Our sharpened version of the Arens-Royden theorem says that the isomorphism is
induced by the Gelfand mapping:
3. Theorem (Arens-Royden Mark III) If A is commutative then

3.1 κ(ΓA) : κ(A) → κ C(σ(A)) is one-one onto.

Stepping back again, suppose T : A → B is a homomorphism of Banach algebras.
From (2.3) it follows that there is inclusion

3.2 A−1 ⊆ T−1(B−1) ⊆ A.

It is natural - think of the Calkin homomorphism and Atkinson’s theorem - to
describe ([11];[12];[13] Definition 7.6.1) T−1(B−1) ⊆ A as the T -Fredholm elements
of A. We are tempted to make a definition: we shall say that a homomorphism
T : A → B has the Gelfand property ([13] (9.6.0.1)) iff

3.3 T−1(B−1) ⊆ A−1.

Thus Gelfand’s theorem can be succinctly stated:
4. Theorem (Gelfand) If A is commutative then ΓA : A → C(σ(A)) has the
Gelfand property.

It is now tempting to try and deconstruct the Arens-Royden theorem, and to
divide the statement into an “Arens theorem” and a “Royden theorem”. Let us -
tentatively - suggest that a homomorphism T : A → B have the Arens property if
the index mapping κ(T ) is one-one, and the Royden property if κ(T ) is onto. Thus
we say that T : A → B has the Arens property provided there is inclusion

4.1 A−1∩T−1Exp(B) ⊆ Exp(A),

and that T : A → B has the Royden property provided

4.2 B−1 ⊆ T (A−1) · Exp(B).

The Arens-Royden theorem therefore says that if A is commutative then the
Gelfand mapping has both the Arens and the Royden properties.
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5. Example A = Holo(S) ⊆ C(S) = B the algebra of functions holomorphic in
a neighbourhood of the circle S = ∂D, embedded T : A → B in the continuous
functions.

It is familiar ([17];[13] Theorem 7.10.7) that the abstract index group κ(B) ∼= Z
is essentially the integers. Now the “Arens condition” (4.1) says that if a function
b ∈ B invertible on S is holomorphic near S and has a continuous logarithm on S
then that logarithm is holomorphic there.

In contrast the “Royden condition” (4.2) says that every continuous function
b ∈ B−1 invertible on the circle has holomorphic functions in its coset bExp(B).
Indeed if b ∈ B−1 we can take a = zn with n ∈ Z given by the topological degree
or “winding number” of b/|b| : S → S.
6. Example The Calkin homomorphism T : A → B, where A = B(X) is the
bounded operators on a Banach space and B = B(X)/K(X) is its quotient by the
ideal of compact operators.

Generally if T : A → B is onto there is ([10];[25] §4.8;[13] Theorem 7.11.5)
equality

6.1 T Exp(A) = Exp(B);

for such T the “Arens condition” (4.1) takes the form

6.2 A−1∩(Exp(A) + T−1(0)) ⊆ Exp(A),

while the “Royden condition” reduces to

6.3 B−1 ⊆ T (A−1).

For example if A = B(X) for a Hilbert space X then Kuiper’s theorem ([4]
Theorem I.6.1) says that the invertible group of A = B(X) is connected: A−1 =
Exp(A). This makes the “Arens property” (4.1) a triviality. The “Royden property”
in this case reduces to the connectedness of B−1, which never happens. If instead
B−1 = Exp(B) is connected then the “Royden property” (4.2) becomes a triviality,
and the “Arens property” only happens when A−1 is also connected.

By a spectrum K we shall understand, in the first instance, a nonempty compact
subset K ⊆ C of the complex plane: this works because every compact set is the
spectrum of something. If K ⊆ C is a spectrum then so is its topological boundary
∂K and so is its connected hull

6.4 ηK = K ∪
⋃
{H : H ∈ Hole(K)},
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where [10],[15] we write Hole(K) for the (possibly empty) set of bounded compo-
nents of the complement of K in C: thus C\ηK is the unique unbounded component
of C \K.
7. Definition By a “spectral picture” we shall understand an ordered pair (K, ν)
in which K is a spectrum and ν is a mapping from Hole(K) to the integers Z.

If K ⊆ C is a spectrum and if f : U → C is a continuous mapping whose domain
U ⊆ C includes K then it is clear that f(K) is again a spectrum, where of course

7.1 f(K) = {f(λ) : λ ∈ K}.

We shall pay particular attention to functions

7.2 f ∈ Holo(ηK),

for which U ⊇ ηK is open in C and on which f is holomorphic. Recall ([15]
Proposition 2.2)

7.3 ∂f(K) ⊆ f(∂K) and f(ηK) ⊆ ηf(K);

also if L ∈ Hole f(K) and H ∈ Hole K then ([5] Proposition 3.1; Lemma 3.5)

7.4 either L∩f(H) = ∅ or L ⊆ f(H).

8. Definition If (K, ν) is a spectral picture and if f ∈ Holo(ηK) then

8.1 f(K, ν) = (f(K), νf ),

where for each hole L ∈ Hole f(K) we set

8.2 νf (L) =
∑

{Nf (L,H)ν(H) : L ⊆ f(H)},

where if µ ∈ L ⊆ f(H) the equation f(λ) = µ has exactly Nf (L,H) solutions
λ ∈ H:

8.3 Nf (L,H) = #{λ ∈ H : f(λ) = µ} = # f−1(µ)∩H.
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Of course, via Rouché’s theorem [17] from complex analysis, the number
Nf (L,H) is independent of the choice of µ ∈ L. If L ∈ Hole f(K) is not a subset

of f(H) for any hole H ∈ Hole(K) then we interpret the right hand side of (2.2) as
the integer 0 .

The fundamental example of a spectral picture comes from Fredholm theory:
9. Example If X is a Banach space and A = B(X)/K(X) the Calkin algebra on
X and T ∈ B(X) is a bounded linear operator on X then take

9.1 a = [T ]K(X) ; K = σA(a) = σess(T )

and for each H ∈ Hole(K) define

9.2 ν(H) = index(T − λI) with λ ∈ H.

Fredholm theory guarantees that ν(H) is well-defined (independent of the choice
of λ ∈ H); then according to [5](3.7) or [18](8.8) the spectral picture of f(T )
is the image, in the sense of (8.1), of the spectral picture of T . Indeed writing
f(z)− µ = g(z)

∏
j(z − λj) argue

9.3 νf (L) = index(f(T )− µI) = index g(T ) +
∑

j

index(T − λjI).

A “spectral landscape” in a Banach algebra A will be an ordered pair (K, ν) in
which K is a spectrum and ν is a mapping from Hole(K) to the abstract index
group κ(A); as a favour we ask that the cosets ν(H) mutually commute. Then the
“spectral landscape” of an element a ∈ A is what we would expect:
10. Definition The spectral landscape of an element a ∈ A of a Banach algebra
A is the ordered pair (K, ν) = (σA(a), ισ(a)) where ισ(a) : Hole(σ(a)) → κ(A) is
defined by setting

10.1 ισ(a)(λ) = Exp(A)(a− λ) if λ ∈ H ∈ Hole(A).

The image of a spectral landscape (K, ν) by a polynomial f : C → C, or more
generally a holomorphic function f ∈ Holo(ηK), will be the ordered pair (f(K), νf ),
where

10.2 νf (L) =
∏
{ν(H)Nf (L,H) : L ⊆ f(H)}.
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The spectral mapping theorem follows by the argument of (9.3):
11. Theorem If a ∈ A and f ∈ Holo(ησ(a)) then the spectral landscape of f(a) is
the image of the spectral landscape of a:

11.1 (σf(a), ισf(a)) = (fσ(a), (ισa)f ).

Proof. If f : U → C is holomorphic on an open set U ⊇ ησ(a)) containing the
spectrum and all its holes and if µ ∈ L ∈ Hole σf(a) then

11.2 f(z)− µ = g(z)
∏

j

(z − λj),

where g : U → C is holomorphic and nonvanishing on ησ(a), giving

11.3 (f(a)− µ)Exp(A) =
∏

j

Exp(A)(a− λj) •

The spectral landscape also co-operates with passage to a subalgebra: if T : A →
B is a homomorphism we recall (2.5) κ(T ) : κ(A) → κ(B). If T is bounded, and also
bounded below, so that effectively A is a closed subalgebra of B, then for arbitrary
a ∈ A

11.4 ∂σA(a) ⊆ σB(Ta) ⊆ σA(a) ⊆ ησB(Ta)

with

11.5 Hole σA(a) ⊆ Hole σB(Ta).

Now the behaviour of the spectral landscape under passage to a closed subalgebra
A ⊆ B is that for arbitrary a ∈ A

11.6 ιBσ(Ta)J = κ(T )ιAσ(a),

where J is the restriction mapping.
If for example A = B(X) for a Banach space X then the spectral picture of an

operator a ∈ A is what we might call the essential spectral landscape of the element
a, or rather the combination (K, ν) where K = σess(a) and ν = Index◦ιess

σ : there is
a well defined mapping Index : κ(B(X)/K(X)) → Z from the abstract index group
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of a Calkin algebra to the integers. The actual spectral landscape of a ∈ A maps
holes in the actual spectrum of A into the quotient group κ(A): when A = B(X)
for a Hilbert space X then A−1 = Exp(A) is connected, so that this becomes trivial.

In real life the “spectral picture” [23] needs to be augmented by the addition of
“pseudo-holes”, and the group of integers extended to include ∞ and −∞. Thus
the spectral landscape might be seen as the superposition of a “left” and a “right”
landscape, while the abstract index group becomes the intersection of a left and a
right semigroup:
12. Definition If A is a Banach algebra then the abstract left index semi-group of
A is the quotient

12.1 κleft(A) = A−1
left/Exp(A) = {Exp(A)a : a ∈ A−1

left},

while the abstract right index semi-group of A is the quotient

12.2 κright(A) = A−1
left/Exp(A) = {aExp(A) : a ∈ A−1

right}.

The left spectral landscape of a ∈ A is the ordered pair (K, ν) where K = σleft
A (a)

is the left spectrum of a in A and ν = ιleft
σ : Hole(K) → κleft(A) takes right cosets:

12.3 ν(H) = Exp(A)(a− λ) if λ ∈ H ∈ Hole(K).

Continuity and the discrete topology ensure that ν is well defined. We should
remark that if 1 ∈ G ⊆ H, G a subgroup of the semigroup H, then the set of left
cosets {xG : x ∈ H} forms a partition of H, in the sense that any two are either
disjoint or coincide; the same is true of right cosets. When we specialise to the
semigroup H = A−1

left ⊆ A of left invertibles then the left cosets are subsets of the
right:
13. Theorem If A is a Banach algebra then κleft(A) and κright(A) are semigroups,
with the discrete topology.

Proof. Suppose x′x = 1: then if 0 6= λ ∈ C

13.1 xA−1x′ ⊆ A−1 + λ(1− xx′) ⊆ x′A−1x :

the inverse of xax′ − λ(1 − xx′) is xa−1x′ − λ−1(1 − xx′). Also (cf [13] Theorem
7.11.2)

13.2 the sets A−1 and A−1
left \A−1 are open in A :
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if a ∈ A−1 then {a(1− x) : ‖x‖ < 1} ⊆ A−1 and if a ∈ A−1
left \A−1 then {a(1− x) :

‖x‖ < 1} ⊆ A−1
left \A−1.

From the first part of (13.1) it follows

13.3 x′x = 1 =⇒ xA−1 ⊆ A−1x.

From (13.3) we are able to successfully multiply right cosets to form the semi-
group A−1

left/A, which by (13.2) acquires the discrete topology.
All this holds equally well with the generalized exponentials Exp(A) in place of

A−1: for example (cf [13] (7.11.3.4)) xecx′ + 1− xx′ = excx′ . In addition

13.4 Exp(A) is the connected component of 1 in A−1
left •

When we specialise to the Calkin algebra A = B(X)/K(X) then there are well-
defined mappings Index : κleft(A) → Z ∪ {−∞} and Index : κright(A) → Z ∪ {∞}.
The argument of Theorem 11 extends to the left spectral landscape:

13.5 (σleftf(a), ιleft
σ f(a)) = (fσleft(a), (ιleft

σ a)f ).

The original Arens-Royden theorem has an extension to operator matrices [3],
[25]: if A is commutative and T = ΓA is the Gelfand homomorphism then

13.6 κ(Tn×n) : κ(An×n) → κ(Cσ(A)n×n)

is an isomorphism.
Gonzalez and Aiena [1],[9] have used operator matrices to throw light on one way

in which the invertible group of Banach space operators can fail to be connected:

14. Theorem If G =
(

A M
N B

)
is a Banach algebra with blocks then

14.1 1−MN ⊆ A−1 and 1−NM ⊆ B−1

if and only if there is equality

14.2 G−1 =
(

A−1 M
N B−1

)
,

in which case
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14.3 Exp(G) ⊆
(

Exp(A) M
N Exp(B)

)
.

Proof. Recall [14] that for G to be a Banach algebra the diagonal blocks A and
B must also be Banach algebras while the off diagonals M and N must be A B
bimodules; products MN and NM lie in A and B respectively. Now if 1−MN ⊆
A−1 and 1−NM ⊆ B−1 then

(
1 m
n 1

)(
1 −m
−n 1

)
=

(
1−mn 0

0 1− nm

)
=

(
1 −m
−n 1

)(
1 m
n 1

)

and then (
a m
n b

)(
a−1 0
0 b−1

)
=

(
1 mb−1

na−1 1

)
;

(
a−1 0
0 b−1

)(
a m
n b

)
=

(
1 a−1m

b−1n 1

)
;

also (
a m
n b

)
∈ G−1 =⇒

(
a 0
0 b

)
=

(
a m
n b

)
+

(
0 −m
−n 0

)

∈
(

a m
n b

) (( 1 0
0 1

)
+

(
A M
N B

)(
0 −m
−n 0

))

=
(

a m
n b

) (
1−Mn −Am
−Bn 1−Nm

)
⊆

(
A M
N B

)−1

.

This shows that (14.1) implies (14.2); conversely

(
1−mn 0

0 1− nm

)
=

(
1 m
n 1

)(
1 −m
−n 1

)
∈

(
A M
N B

)−1

=⇒ 1−mn ∈ A−1 , 1− nm ∈ B−1.

Now if
(

a m
n b

)
is in Exp(G) then there is

(
at mt

nt bt

)

(0≤t≤1)

connecting
(

a m
n b

)
to

(
1 0
0 1

)
, so that (at) and (bt) connect a ∈ A−1 and b ∈ B−1 to

1 ∈ A and 1 ∈ B, giving (14.3) •
In fact each of the two conditions in (14.1) implies the other, and one of the

inclusions in (14.2) implies the other. It is also clear from (14.1) that

14.4 1−MN ⊆ Exp(A) and 1−NM ⊆ Exp(B);
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thus also (cf [22]!) each of the two conditions in (14.4) implies the other.
These arguments can be used to show (cf [20]) that the invertible group on certain

Banach spaces is not connected:
15. Example If X = Y × Z with Y = `p and Z = `q with q 6= p then

15.1 T =
(

u r
0 v

)
∈ BL−1(X, X) \ Exp BL(X, X),

where u and v are the forward and backward shifts on Y and Z respectively and
r : Z → Y is the rank one projection on the first co-ordinate.

Proof. If u′ and v′ are the forward and backward shifts on Z and Y respectively
and r′ : Y → Z the same projection then

15.2 v′u = 1 6= uv′ = 1− rr′ and vu′ = 1 6= u′v = 1− r′r,

so that T is invertible with

15.3 T−1 =
(

v′ 0
r′ u′

)
.

At the same time [1],[9] the whole of BL(Y,Z) and of BL(Z, Y ) consist of inessential
operators. By Theorem 14 therefore, for the Calkin quotient of T to be in the
connected component of the identity it would be necessary for the Calkin quotients
of u and v to be generalized exponentials, and hence in particular for

15.4 index(u) = index(v) = 0.

Since this is not the case T cannot be a generalized exponential •
Alternatively the Calkin mapping

Φ : BL(X,X) =
(

A′ M ′

N ′ B′

)
→

(
A M
N B

)

has the property that for arbitrary a′ ∈ A′ = BL(Y, Y ), b′ ∈ B′ = BL(Z, Z) there
is ([12];[16];[13] Theorem 7.6.2) implication

15.5 Φ(a′) ∈ Exp(A) =⇒ a′ ∈ a′(A′)−1a′ , Φ(b′) ∈ Exp(B) =⇒ b′ ∈ b′(B′)−1b′ ,

and now ([12];[16];[13] (9.3.4.3)) a left invertible element with an invertible gener-
alized inverse must also be right invertible.
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