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GEODESIC MAPPINGS BETWEEN KÄHLERIAN SPACES

Josef Mikeš, Olga Pokorná1 and Galina Starko

Abstract

Geodesic mappings from a Kählerian space Kn onto a Kählerian
space K̄n will be investigated in this paper. We present a construction
of Kählerian space Kn which admits non-trivial geodesic mapping onto
Kählerian space K̄n.

1 Introduction

Geodesic mappings of special Riemannian spaces were studied by many au-
thors (see e.g. [9], [13], [15]). Geodesic mappings of Kählerian spaces were
investigated namely by N. Coburn [1], K. Yano [17], V.J. Westlake [16], K.
Yano, T. Nagano [18] and others. In these works the authors prove that in
the case of preserving the structure of Kählerian spaces by geodesic map-
pings these mappings are trivial (i.e. affine). Koga Mitsuru [5] has found
more general conditions for the structure of Kählerian spaces forcing any
geodesic mapping to be trivial. Similar questions for geodesic mappings of
almost Hermitian spaces were investigated by A. Karmazina and I.N. Kur-
batova [3].

The geodesic mappings from a Kählerian space Kn onto a Riemannian
space V̄n were studied by J. Mikeš (see [6], [7], [8], [9]).

Papers of J. Mikeš, G. Starko, M. Shiha were devoted to geodesic map-
pings of hyperbolical and parabolical Kählerian spaces which are general-
izations of classical Kählerian spaces (see [9], [11],[12]).

In the sequel, by Kählerian space we mean both classical (i.e. elliptical)
as well as hyperbolical and parabolical Kählerian space.

In this paper, we investigate geodesic mappings from a Kählerian space
Kn onto a Kählerian space K̄n. We present a construction of non-trivial
Kählerian spaces Kn which are geodesically mapped onto Kählerian spaces
K̄n.
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2 Geodesic mappings of Kählerian spaces

A diffeomorphism f from a Riemannian space Vn onto a Riemannian space
V̄n is called a geodesic mapping if f maps any geodesic line of Vn into a
geodesic line of V̄n (see [2], [9], [13], [15]).

A mapping from Vn onto V̄n is geodesic if and only if, in the common
coordinate system x with respect to the mapping the conditions

Γ̄h
ij(x) = Γh

ij(x) + δh
i ψj + δh

j ψi (1)

hold, where ψi(x) is a covector, Γh
ij and Γ̄h

ij are the Christoffel’s symbols of
Vn and V̄n, respectively, δh

i is the Kronecker symbol.
Conditions (1) are equivalent to

ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik, (2)

where ḡij is the metric tensor of V̄n and ”,” denotes the covariant derivative
with respect to the connection of the space Vn.

Conditions (1) and (2) are called the Levi-Civita equations. The covector
ψi is gradient-like, i.e. ψi = ψ,i. If ψi 6≡ 0 then a geodesic mapping is called
non-trivial; otherwise it is said to be trivial or affine.

If a mapping f : Vn → V̄n is geodesic then the following conditions hold:

a) R̄h
ijk = Rh

ijk + δh
kψij − δh

j ψik,

b) R̄ij = Rij + (n + 1)ψij ,
c) W̄ h

ijk = W h
ijk,

(3)

where
ψij ≡ ψi,j − ψiψj , (4)

Rh
ijk (R̄h

ijk) are the Riemannian tensors ofVn (V̄n), Rij (R̄ij) are the Ricci
tensors of Vn (V̄n), W h

ijk (W̄ h
ijk) are the Weyl tensors of the projective curva-

ture of Vn (V̄n). The Weyl tensor of the projective curvature is an invariant
object of the geodesic mapping.

In the present paper, by a Kählerian space we mean a wide class of spaces
defined as follows [9]: a Riemannian space is called a Kählerian space Kn if,
together with the metric tensor gij(x), an affine structure F h

i (x) is defined
on Kn which satisfies the relations

F h
αFα

i = e δh
i ; Fα

i gαj + Fα
j gαi = 0; F h

i,j = 0, (5)
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where e = ±1, 0. If e = −1 then Kn is said to be an elliptic Kählerian space
K−

n , if e = +1 then Kn is said to be a hyperbolic Kählerian space K+
n , and if

e = 0 and Rg‖F h
i ‖ = m ≤ 2 then Kn is said to be an m-parabolic Kählerian

space K
o(m)
n . The space K

o(n/2)
n is called the parabolic Kählerian space Ko

n.
As in Kn the structure F is covariantly constant, from [6] follows that on

a Kählerian space Kn admitting a nontrivial geodesic mapping, there exists
a nonzero convergent vector field (see [6], [7], [8], [9], [12], [11]).

In every space K−
n with a covariantly nonconstant convergent vector field

there exists a coordinate system x with the following metrics and structure
(see [7], [8], [9]):

gab = ga+m b+m = ∂abf + ∂a+m b+mf ; ga b+m = ∂a b+mf − ∂a+m bf ;

F a+m
b = −F a

b+m = δa
b ; F a

b = F a+m
b+m = 0,

where a, b = 1,m, m = n/2,

f = exp(2x1) G(x2, x3, ..., xm, x2+m, x3+m, ..., xn).

If G ∈ C3, then these formulas generate (provided |gij | 6= 0) the metric of a
Kählerian space K−

n , where a non-constant convergent vector field exists.
A similar property holds (see [12]) for the hyperbolic Kählerian spaces

K+
n with metrics and structure of the type

gab = ga+m b+m = 0; ga b+m = ∂a b+mf ;

F a+m
b = F a

b+m = 0; F a
b = −F a+m

b+m = δa
b ,

where a, b = 1,m, m = n/2,

f = exp(x1 + x1+m) G(x2 + x2+m, x3 + x3+m, ..., xm + xn).

Metrics of parabolically Kählerian spaces Ko
n, admitting covariantly non-

constant convergent vector fields were found by J. Mikeš and M. Shiha [11].

3 Geodesic mappings onto Kählerian spaces

In this section, we determine conditions which are necessary and sufficient
for a Riemannian space Vn to admit a nontrivial geodesic mapping onto
a Kählerian space K̄n satisfying the formulas (5). The following theorem
holds:
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Theorem 1 The Riemannian space Vn admits a nontrivial geodesic map-
ping onto a Kählerian space K̄n if and only if, in the common coordinate
system x with respect to the mapping, the conditions

a) ḡij,k = 2ψkḡij + ψiḡjk + ψj ḡik,
b) F̄ h

i,k = F̄ h
k ψi − δh

k F̄α
i ψα

(6)

hold, where ψi 6≡ 0 and tensors ḡij and F̄ h
i satisfy the following conditions:

ḡij = ḡji, det‖ḡij‖ 6= 0, F̄ h
α F̄α

i = ēδh
i , F̄α

i ḡαj + F̄α
j ḡαi = 0. (7)

Then ḡij and F̄ h
i are the metric tensor and the structure of K̄n, respectively.

Proof. The Levi-Civita equation (6a)≡(2) guarantees the existence of
geodesic mappings from a Riemannian space Vn onto a Riemannian space
V̄n with metric tensor ḡij .

The formula (6b) implies that the structure F̄ h
i in V̄n is covariantly con-

stant. Further, the algebraic conditions (7) guarantee that ḡij and F̄ h
i are

the metric tensor and the structure of the same Kählerian space K̄n, respec-
tively.

The system (6) is a system of partial differential equations with respect
to the unknown functions ḡij(x), F̄ h

i (x) and ψi(x) which moreover must
satisfy algebraic conditions (7).

4 Geodesic mappings between Kählerian spaces

As was said in the introduction, a geodesic mapping between Kählerian
spaces Kn and K̄n which preserves the structure (i.e. in the common coor-
dinate system x with respect to the mapping the conditions F̄ h

i (x) = F h
i (x)

hold, where F h
i and F̄ h

i are structures of Kn and K̄n, respectively) is trivial
(i.e. affine).

Since the structures F h
i and F̄ h

i are covariantly constant in Kn and K̄n,
respectively, we can deduce from the results of [6], [9] that for the tensor ψij

under a geodesic mapping Kn onto K̄n the relation ψij = 0 holds, i.e.

ψi,j = ψiψj . (8)

It follows from the relations (3) and (8) that the Riemannian tensor for
a geodesic mapping of Kn onto K̄n is invariant.

We shall construct a Kählerian space Kn admitting a nontrivial geodesic
mapping; of course, the structure of Kn is not preserved.
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Obviously, the existence of a nontrivial geodesic map between (pseudo-)
euclidean spaces En and Ēn follows from the Beltrami theorem. On the other
hand, under some specific conditions on the dimension and the signature of
metrics, the spaces En and Ēn are Kählerian spaces Kn and K̄n in our sense.

For example, E2m is K−
2m and K+

2m, too, where

g = (I); F =
(

0 I
−I 0

)
and g =

(
0 I
I 0

)
; F =

(
I 0
0 −I

)

hold, respectively.
We now construct a nontrivial example of a geodesic mapping between

Kählerian spaces.
Let Kn be a product of Riemannian spaces with the metric

ds2 = ds̃2 + d˜̃s2, (9)

where ds̃2 is the metric of the euclidean Kählerian space K̃ñ with the metric
tensor g̃ab and the structure F̃ a

b , (a, b, c = 1, 2, ..., ñ);

d˜̃s2 is the metric of a Kählerian space ˜̃K ˜̃n with the metric tensor ˜̃gAB and

the structure ˜̃FA
B, (A,B,C = ñ+1, ... , ñ+˜̃n), and such that a noncovariantly

constant concircular vector field ˜̃
ξh exists on Kn.

This space is a Kählerian space, and

g =
(

g̃ 0
0 ˜̃g

)
and F =

(
F̃ 0
0 ˜̃F

)

are its metrics and structure, respectively.
The spaces K̃ñ and ˜̃K ˜̃n must be of the same type, i.e. both of them must

be either elliptic or hyperbolic or parabolic.
We prove the following result.

Theorem 2 The Kählerian space Kn, constructed above, admits a nontriv-
ial geodesic mapping onto a Kählerian space K̄n.

Proof. In the space K̃ñ we shall investigate the equations (analogical
to (6)):

q̃aboc = 2ψ̃cq̃ab + ψ̃aq̃bc + ψ̃bq̃ac,
B̃a

boc = B̃a
c ψ̃b − δa

c B̃d
b ψ̃d,

ψ̃aob = ψ̃aψ̃b, ψ̃a = ψ̃oa 6= 0,

(10)
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where ”o” is the covariant derivative in K̃ñ; q̃ab, B̃a
b , ψ̃a are some tensors

satisfying the algebraic conditions

B̃a
c B̃

c
b = eδa

b , B̃c
aq̃cb + B̃c

bq̃ca = 0, q̃ab = q̃ba, |q̃ab| 6= 0. (11)

The solution of the equations (10) satisfying (11) exists, because the equa-
tions (10) are completely integrable in the euclidean space K̃ñ.

On the other hand, since there exists a noncovariantly constant concir-
cular vector field in ˜̃K ˜̃n, we can find a function ˜̃

ξ satisfying the conditions

2˜̃ξ = ˜̃
ξA˜̃

ξA,
˜̃
ξA
ooB = δA

B, (12)

where 2˜̃ξA ≡ ˜̃
ξB

˜̃g
AB

, ˜̃
ξA ≡ ˜̃

ξooA, ‖˜̃gAB‖ = ‖˜̃gAB‖−1 and ”oo” denotes

the covariant derivative of ˜̃K ˜̃n.
We put

ḡab = 2 k exp(2ψ̄) ˜̃
ξ ψ̄aψ̄b + q̃ab,

ḡaB = k exp(2ψ̄) ˜̃
ξBψ̄a,

ḡAB = k exp(2ψ̄) ˜̃gAB,
F̄ a

b = B̃a
b ,

F̄ a
B = 0,

F̄A
B = ˜̃FA

B,

F̄A
b = ˜̃FA

B
˜̃
ξψ̄b − ˜̃

ξAB̃c
bξ̃c,

where k is a constant such that |gij | 6= 0.
Putting ψ = ψ̃, we can verify the formulas (6) and (7). Hence the tensors

ḡij and F̄ h
i constructed by Theorem 1 are the metric and structure tensors

of the Kählerian space K̄n, respectively, and K̄n is a geodesic image of Kn.
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