ON SOME SECOND ORDER CESÀRO DIFFERENCE SPACES OF NON-ABSOLUTE TYPE

MIKAIL ET AND EBERHARD MALKOWSKY

Abstract

The second order Cesàro sequence spaces of non-absolute type $X_{p}\left(\Delta^{2}\right)$ for $1 \leq p \leq \infty$ were defined and studied in [1]. It seems, however, that the characterizations of their β-duals given there do not hold for $1<p \leq \infty$. In this paper, we determine the β-duals $\left(X_{p}\left(\Delta^{2}\right)\right)^{\beta}$ for $1 \leq p \leq \infty$.

1. Introduction

Let ω denote the set of all complex sequences $x=\left(x_{k}\right)_{k=1}^{\infty}$. We write ℓ_{∞}, c, c_{0} and $c s$ and ℓ_{1} for the sets of all bounded, convergent, null sequences and for the sets of all convergent and absolutely convergent series, respectively, and $\ell_{p}=\left\{x \in \omega: \sum_{k=1}^{\infty}\left|x_{k}\right|^{p}<\infty\right\}$ for $1<p<\infty$. As usual, e and $e^{(n)}$ $(n=1,2, \ldots)$ are the sequences with $e_{k}=1(k=1,2, \ldots)$, and $e_{n}^{(n)}=1$ and $e_{k}^{(n)}=0(k \neq n)$. We write $\mathbf{n}^{\lambda}=\left(n^{\lambda}\right)_{n=1}^{\infty}, \mathbf{k}^{\lambda}=\left(k^{\lambda}\right)_{k=1}^{\infty}$ for $\lambda \in \mathbb{R}$ and $\mathbf{1} / \mathbf{n}=(1 / n)_{n=1}^{\infty}$.

Let $x, y \in \omega$ and $X \subset \omega$. We write $x y=\left(x_{k} y_{k}\right)_{k=1}^{\infty}, x^{-1} * Y=\{a \in \omega$: $a x \in Y\}, x^{\beta}=x^{-1} * c s$ and

$$
X^{\beta}=\bigcap_{x \in X} x^{\beta}=\left\{a \in \omega: \sum_{k=1}^{\infty} a_{k} x_{k} \text { converges for all } x \in X\right\}
$$

for the β-dual of X.
Given any infinite matrix $A=\left(a_{n k}\right)_{n, k=1}^{\infty}$ of complex numbers and any sequence x, we write $A_{n}=\left(a_{n k}\right)_{k=1}^{\infty}$ for the sequence in the n-th row of $A, A_{n}(x)=\sum_{k=1}^{\infty} a_{n k} x_{k}(n=1,2, \ldots)$ and $A(x)=\left(A_{n}(x)\right)_{n=1}^{\infty}$, provided $A_{n} \in x^{\beta}$ for all n. Furthermore, $X_{A}=\{x \in \omega: A(x) \in X\}$ denotes the matrix domain of A in X. We define the matrices Σ, Δ and E by $\Sigma_{n k}=1$ $(1 \leq k \leq n), \Sigma_{n k}=0(k>n), \Delta_{n n}=1, \Delta_{n, n+1}=-1, \Delta_{n k}=0$ (otherwise), $e_{n k}=1(k \geq n+1)$ and $e_{n k}=0(1 \leq k \leq n)$ for all n, and write $\Delta^{2}=\Delta \Delta$. Then the sets $X_{p}\left(\Delta^{2}\right)=\left((\mathbf{1} / \mathbf{n})^{-1} * \ell_{p}\right)_{\Sigma \Delta^{2}}$ are the second order Cesàro

[^0]difference sequence spaces of non-absolute type (cf. [1]). Throughout, let $q=\infty$ for $p=1, q=p /(p-1)$ for $1<p<\infty$ and $q=1$ for $p=\infty$. We write $R=E(a)$ for $a \in c s$, that is $R_{n}=\sum_{k=n+1}^{\infty} a_{k}(n=1,2 \ldots)$. For any subset X of ω, we write $S(X)=\left\{x \in X: x_{1}=x_{2}=0\right\}$. Since $(\Delta \Sigma)(x)=$ $\left(-x_{n+1}\right)_{n=1}^{\infty}$ for all $x \in S(X)$, we have $\left.S\left(X_{p}\left(\Delta^{2}\right)\right)=S\left((\mathbf{1} / \mathbf{n})^{-1} * \ell_{p}\right)_{\Delta}\right)$. Furthermore, obviously $\left(X_{p}\left(\Delta^{2}\right)\right)^{\beta}=\left(S\left(X_{p}\left(\Delta^{2}\right)\right)\right)^{\beta}$. In [1], it was stated that
\[

$$
\begin{equation*}
\left(X_{p}\left(\Delta^{2}\right)\right)^{\beta}=\left(\mathbf{n}^{-1} * \ell_{q}\right)_{E} \text { for } 1 \leq p \leq \infty \tag{1.1}
\end{equation*}
$$

\]

First we observe that (1.1) does not hold for $1<p \leq \infty$. To see this, we put,

$$
R_{k}=\left\{\begin{array}{ll}
\frac{1}{n^{2 / q}} \frac{1}{2^{n}} & \left(k=2^{n}\right) \\
0 & \left(k \neq 2^{n}\right)
\end{array} \text { and } x_{k}= \begin{cases}0 & (k=1,2) \\
k^{1+\frac{1}{2 q}} & (k=3,4, \ldots) .\end{cases}\right.
$$

This yields

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left|k R_{k}\right|^{q}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty, \text { that is } R \in \mathbf{n}^{-1} * \ell_{q}, \\
\left|\Delta_{k}(x)\right|=(k+1)^{1+\frac{1}{2 q}}-k^{1+\frac{1}{2 q}} \leq\left(1+\frac{1}{2 q}\right)(k+1)^{\frac{1}{2 q}} \quad(k=3,4, \ldots)
\end{gathered}
$$

by the mean value theorem, hence, for $1<p<\infty$ with $M=(1+1 /(2 q))^{p}$,
$\sum_{k=3}^{\infty}\left(\frac{\left|\Delta_{k}(x)\right|}{k}\right)^{p} \leq 2^{p} M \cdot \sum_{k=1}^{\infty} \frac{1}{(k+1)^{(1-1 / q) p+\frac{p}{2 q}}}=2^{p} M \cdot \sum_{k=1}^{\infty} \frac{1}{(k+1)^{1+\frac{p}{2 q}}}<\infty$,
that is $x \in S\left(X_{p}\left(\Delta^{2}\right)\right)$, and we have for $p=\infty$, that is $q=1$

$$
\frac{\left|\Delta_{k}(x)\right|}{k} \leq \frac{3}{2} \frac{\sqrt{k+1}}{k}(k=3,4, \ldots), \text { that is } x \in S\left(X_{\infty}\left(\Delta^{2}\right)\right),
$$

but

$$
\left|a_{2^{n}} x_{2^{n}}\right|=\left|\left(R_{2^{n}-1}-R_{2^{n}}\right) x_{2^{n}}\right|=\frac{1}{n^{2 / q}} \frac{1}{2^{n}} 2^{n\left(1+\frac{1}{2 q}\right)}=\frac{2^{\frac{n}{2 q}}}{n^{2 / q}} \rightarrow \infty(n \rightarrow \infty)
$$

that is $a x \notin c s$.
In this paper, we determine the β-duals of $X_{p}\left(\Delta^{2}\right)$ for $1 \leq p \leq \infty$.

2. The β-Duals of the sets $X_{p}\left(\Delta^{2}\right)$

Now we determine $\left(S\left(X_{p}\left(\Delta^{2}\right)\right)\right)^{\beta}$ for $1 \leq p \leq \infty$. We start with

Remark 2.1. We put

$$
D_{p}^{(1)}=\left(\mathbf{n}^{-1} * \ell_{q}\right)_{E} \text { and } D_{p}^{(2)}= \begin{cases}\left(\left(\mathbf{n}^{2-1 / p}\right)^{-1} * \ell_{\infty}\right)_{E} & (1 \leq p<\infty) \\ \left(\left(\mathbf{n}^{2}\right)^{-1} * c_{0}\right)_{E} & (p=\infty) .\end{cases}
$$

Then $D_{1}^{(1)}=D_{1}^{(2)}$, but if $1<p \leq \infty$ then neither $D_{p}^{(1)} \subset D_{p}^{(2)}$ nor $D_{p}^{(2)} \subset$ $D_{p}^{(1)}$.

Proof. The identity $D_{1}^{(1)}=D_{1}^{(2)}$ is obvious from the definition of the sets $D_{p}^{(1)}$ and $D_{p}^{(2)}$. Let $1<p \leq \infty$. We define the sequence a by $a_{1}=a_{2}=0$ and

$$
a_{n}=\frac{1}{(\log (n-1))^{1 / q}} \frac{1}{(n-1)^{1+1 / q}}-\frac{1}{(\log n)^{1 / q}} \frac{1}{n^{1+1 / q}} \text { for } n \geq 3 .
$$

Since $1 / p+1 / q=1$ for $1<p<\infty$ and $1 / p=0$ for $p=\infty$, we obtain

$$
\begin{gathered}
R_{n}=\frac{1}{(\log n)^{1 / q}} \frac{1}{n^{1+1 / q}} \text { for } n \geq 2, \\
\left|n^{2-1 / p} R_{n}\right|=\left|n^{1+1 / q} R_{n}\right|=\frac{1}{(\log n)^{1 / q}} \rightarrow 0(n \rightarrow \infty) \text { and } \\
\sum_{n=2}^{\infty}\left|n R_{n}\right|^{q}=\sum_{n=2}^{\infty} \frac{1}{n \log n}=\infty, \text { hence } a \in D_{p}^{(2)} \backslash D_{p}^{(1)} .
\end{gathered}
$$

We define the sequence a by $a_{2^{n}}=-a_{2^{n}+1}=-n^{-2} 2^{-n}(n=1,2, \ldots)$ and $a_{k}=0$ otherwise. This yields $R_{2^{n}}=n^{-2} 2^{-n}(n=1,2, \ldots)$ and $R_{k}=0$ otherwise, $\sum_{k=1}^{\infty}\left|k R_{k}\right|^{q}=\sum_{n=1}^{\infty} n^{-2 q}<\infty$ and

$$
\left|\left(2^{n}\right)^{2-1 / p} R_{2^{n}}\right|=\left(2^{n}\right)^{1+1 / q} \frac{1}{n^{2} 2^{n}}=\frac{2^{n / q}}{n^{2}} \rightarrow \infty(n \rightarrow \infty),
$$

hence $a \in D_{p}^{(1)} \backslash D_{p}^{(2)}$.
Theorem 2.1. We put $M_{1}=D_{1}^{(1)}$ and $M_{p}=D_{p}^{(1)} \cap D_{p}^{(2)}$ for $1<\leq \infty$. Then we have $\left(S\left(X_{p}\left(\Delta^{2}\right)\right)\right)^{\beta}=M_{p}$. Moreover, if $a \in\left(S\left(X_{p}\left(\Delta^{2}\right)\right)\right)^{\beta}$ then

$$
\begin{equation*}
\sum_{k=1}^{\infty} a_{k} x_{k}=\sum_{k=1}^{\infty} R_{k} \Delta\left(x_{k}\right) \text { for all } x \in S\left(X_{p}\left(\Delta^{2}\right)\right) . \tag{2.1}
\end{equation*}
$$

Proof. We write $Y=S\left(X_{p}\left(\Delta^{2}\right)\right)$.
First we assume $a \in M_{p}$. Let $y \in Y$. Then $x=(\mathbf{n})^{-1} \Delta(y) \in \ell_{p}$, and $a \in D_{p}^{(1)}$, that is $\mathbf{n} R \in \ell_{q}$, implies $\|R \Delta(y)\|_{1} \leq\|\mathbf{n} R\|_{q}\|x\|_{p}<\infty$, hence

$$
\begin{equation*}
R \Delta(y) \in c s . \tag{2.2}
\end{equation*}
$$

We define the matrix A and the sequence z by

$$
a_{m k}=\left\{\begin{array}{ll}
-k R_{m} & (1 \leq k \leq m) \tag{2.3}\\
0 & (k>m)
\end{array} \quad \text { and } z_{m}=A_{m}(x)(m=1,2, \ldots)\right.
$$

If $p=1$, then $\mathbf{n} R \in \ell_{\infty}$ implies that there is a constant C such that

$$
\begin{equation*}
\left|a_{m k}\right|=k\left|R_{m}\right| \leq \frac{k}{m} C \text { for all } m \tag{2.4}
\end{equation*}
$$

and since obviously $D_{p}^{(1)} \subset D_{1}^{(1)}$ for all $p \geq 1$, this inequality holds for all p. Thus

$$
\begin{equation*}
\lim _{m \rightarrow \infty} a_{m k}=0 \text { for each fixed } k \tag{2.5}
\end{equation*}
$$

Now (2.4) and (2.5) together imply $A \in\left(l_{1}, c_{0}\right)$ by [2, Example 8.4.1A, p. 126].
If $1<p<\infty$, then $a \in D_{p}^{(2)}$ yields

$$
\sup _{m} \sum_{k=1}^{\infty}\left|a_{m k}\right|^{q}=\sup _{m}\left(\left|R_{m}\right|^{q} \sum_{k=1}^{m} k^{q}\right) \leq \sup _{m}\left|m^{1+1 / q} R_{m}\right|^{q}<\infty
$$

This and (2.5) together imply $A \in\left(\ell_{p}, c_{0}\right)$ by [2, Example 8.4.5D, p. 129]. If $p=\infty, a \in D_{\infty}^{(2)}$ yields

$$
\lim _{m \rightarrow \infty} \sum_{k=1}^{\infty}\left|a_{m k}\right|=\lim _{m \rightarrow \infty} R_{m} \frac{m(m+1)}{2}=0
$$

This and (2.5) together imply $A \in\left(\ell_{\infty}, c_{0}\right)$ by [2, Theorem 1.7.19, p. 17]. Finally, (2.2), $A \in\left(\ell_{p}, c_{0}\right)$ and Abel's summation by parts

$$
\begin{equation*}
\sum_{k=1}^{m} a_{k} y_{k}=-\sum_{k=1}^{m} R_{k} \Delta_{k}(y)-R_{m} y_{m+1}=-\sum_{k=1}^{m} R_{k} \Delta_{k}(y)-z_{m} \text { for all } m \tag{2.6}
\end{equation*}
$$

together imply $a y \in c s$, that is $a \in Y^{\beta}$. Thus we have shown $M_{p} \subset Y^{\beta}$. Conversely we assume $a \in Y^{\beta}$. Then $a x \in c s$ for all $x \in Y$. First $b=$ $(0,0,1, \ldots) \in Y$ implies $a b \in c s$, and so the sequence R is defined. Let $y \in Y$ be given. Then $x=\Delta(y) \in(\mathbf{1} / \mathbf{n})^{-1} * \ell_{p}, y_{k}=-\sum_{j=1}^{k-1} x_{j}$ for $k=1,2, \ldots$, and we have

$$
\begin{equation*}
\sum_{k=1}^{n} a_{k} y_{k}=-\sum_{k=1}^{n-1}\left(\sum_{j=k+1}^{n} a_{j}\right) x_{k} \text { for } n=1,2, \ldots \tag{2.7}
\end{equation*}
$$

Defining the matrix $B=\left(b_{n k}\right)_{n, k=1}^{\infty}$ by

$$
b_{n k}=\left\{\begin{array}{ll}
-\sum_{j=k+1}^{n} a_{j} & (1 \leq k \leq n-1) \\
0 & (k>n)
\end{array} \quad(n=1,2, \ldots),\right.
$$

we conclude $B \in\left((\mathbf{1} / \mathbf{n})^{-1} * \ell_{p}, c\right) \subset\left((\mathbf{1} / \mathbf{n})^{-1} * \ell_{p}, \ell_{\infty}\right)$. Now $B \in\left((\mathbf{1} / \mathbf{n})^{-1} *\right.$ $\left.\ell_{p}, \ell_{\infty}\right)$ if and only if $\tilde{B} \in\left(\ell_{p}, \ell_{\infty}\right)$ where $\tilde{b}_{n k}=k b_{n k}$ for all n and k, and so

$$
\begin{equation*}
S_{q}=\sup _{n}\left\|\tilde{B}_{n}\right\|_{q}<\infty \tag{2.8}
\end{equation*}
$$

by [2, Example 8.4 .1 A, p. $126(p=1), 8.4 .5 \mathrm{D}$, p. $129(1<p<\infty)$ and 8.4.5A, p. $129(p=\infty)$].

If $p=1$, then (2.8) yields $\left|k R_{k}\right|=\lim _{n \rightarrow \infty}\left|k \sum_{j=k+1}^{n} a_{j}\right| \leq S_{1}$ for all k, that is $R \in \mathbf{k}^{-1} * \ell_{\infty}$, hence $a \in M_{1}$. Thus we have shown $Y^{\beta} \subset D_{1}^{(1)}=M_{1}$. Now let $p>1$ and $m \in \mathbb{N}$ be given. Then (2.8) yields

$$
\sum_{k=1}^{m-1} k^{q}\left|\sum_{j=k+1}^{n} a_{j}\right|^{q} \leq\left\|\tilde{B}_{n}\right\|_{q}^{q} \leq S_{q}^{q} \text { for all } n \geq m
$$

and so $\sum_{k=1}^{m-1}\left|k R_{k}\right|^{q}=\lim _{n \rightarrow \infty} \sum_{k=1}^{m-1} k^{q}\left|\sum_{j=k+1}^{n} a_{j}\right|^{q} \leq S_{q}^{q}$. Since $m \in \mathbb{N}$ was arbitrary, we have $\mathbf{k} R \in \ell_{q}$. that is $a \in D_{p}^{(1)}$. We define the matrix A and the sequence z as in (2.3). Then we have $z \in c$ by (2.3), that is $A \in\left(\ell_{p}, c\right)$.
For $1<p<\infty$, there is a constant C such that

$$
C\left(\left|R_{m}\right| m^{1+1 / q}\right)^{q} \leq\left|R_{m}\right|^{q} \sum_{k=1}^{m} k^{q}=\sup _{n}\left\|A_{n}\right\|_{q}^{q} \text { for all } m
$$

and $\sup _{n}\left\|A_{n}\right\|_{q}^{q}<\infty$ by [2, Example 8.4 .5 D , p. 129], that is $R \in\left(\mathbf{n}^{1+1 / q}\right)^{-1} *$ ℓ_{∞}, hence $a \in D_{p}^{(2)}$. Thus we have shown $Y^{\beta} \subset D_{p}^{(1)} \cap D_{p}^{(2)}=M_{p}$.
If $p=\infty$, then $\sum_{k=1}^{\infty}\left|a_{m k}\right|=0$ by [2, Theorem 1.7.18 (ii), p. 15], since $\lim _{m \rightarrow \infty} a_{m k}=k \lim _{m \rightarrow \infty} R_{m}=0$ for each fixed k. But we have $\sum_{k=1}^{\infty}\left|a_{m k}\right|=$ $R_{m} \sum_{k=1}^{m} k=R_{m} m(m+1) / 2$ and so $R \in\left(\mathbf{n}^{2}\right)^{-1} * c_{0}$, that is $a \in D_{\infty}^{(2)}$. Thus we have shown $Y^{\beta} \subset D_{\infty}^{(1)} \cap D_{\infty}^{(2)}=M_{\infty}$.
If $a \in\left(S\left(X_{p}\left(\Delta^{2}\right)\right)\right)^{\beta}$, then (2.1) is obvious from (2.6).

References

[1] Mursaleen, Khatib M. A., Qamaruddin, On difference Cesàro sequence spaces of nonabsolute type, Bull. Cal. Math. Soc. 89 (1997), 337-342
[2] Wilansky A., Summability through Functional Analysis, North-Holland Mathematics studies 85 (1984)
E. Malkowsky: Mathematisches Institut, Universität Giessen, Arndtstrasse 2, D35392 Giessen, Germany

Department of Mathematics, Faculty of Science and Mathematics, University of Niš, Višegradska 33, 18000 Niš, Serbia and Montenegro
E-mail: eberhard.malkowsky@math.uni-giessen.de ema@bankerinter.net
M. Et: Department of Mathematics, Faculty of Science and Arts, Firat University, 23169 Elazig, Turkey
E-mail: mikailet@hotmail.com

[^0]: 1991 Mathematics Subject Classification. Primary: 40H05;Secondary: 46A45.
 Key words and phrases. Sequence spaces, dual spaces, matrix transformations.
 The second author's research supported by DAAD (German Academic Exchange Service) and TÜBITAK (Turkish Scientific and Technical Research Foundation) .

