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ON SOME SECOND ORDER CESÀRO DIFFERENCE
SPACES OF NON–ABSOLUTE TYPE

MIKAIL ET AND EBERHARD MALKOWSKY

Abstract. The second order Cesàro sequence spaces of non–absolute
type Xp(∆2) for 1 ≤ p ≤ ∞ were defined and studied in [1]. It seems,
however, that the characterizations of their β–duals given there do not
hold for 1 < p ≤ ∞. In this paper, we determine the β–duals (Xp(∆2))β

for 1 ≤ p ≤ ∞.

1. Introduction

Let ω denote the set of all complex sequences x = (xk)∞k=1. We write `∞,
c, c0 and cs and `1 for the sets of all bounded, convergent, null sequences and
for the sets of all convergent and absolutely convergent series, respectively,
and `p = {x ∈ ω :

∑∞
k=1|xk|p < ∞} for 1 < p < ∞. As usual, e and e(n)

(n = 1, 2, . . . ) are the sequences with ek = 1 (k = 1, 2, . . . ), and e
(n)
n = 1

and e
(n)
k = 0 (k 6= n). We write nλ = (nλ)∞n=1, kλ = (kλ)∞k=1 for λ ∈ IR and

1/n = (1/n)∞n=1.
Let x, y ∈ ω and X ⊂ ω. We write xy = (xkyk)∞k=1, x−1 ∗ Y = {a ∈ ω :

ax ∈ Y }, xβ = x−1 ∗ cs and

Xβ =
⋂

x∈X

xβ = {a ∈ ω :
∑∞

k=1akxk converges for all x ∈ X}

for the β–dual of X.
Given any infinite matrix A = (ank)∞n,k=1 of complex numbers and any

sequence x, we write An = (ank)∞k=1 for the sequence in the n–th row of
A, An(x) =

∑∞
k=1ankxk (n = 1, 2, . . . ) and A(x) = (An(x))∞n=1, provided

An ∈ xβ for all n. Furthermore, XA = {x ∈ ω : A(x) ∈ X} denotes the
matrix domain of A in X. We define the matrices Σ, ∆ and E by Σnk = 1
(1 ≤ k ≤ n), Σnk = 0 (k > n), ∆nn = 1, ∆n,n+1 = −1, ∆nk = 0 (otherwise),
enk = 1 (k ≥ n + 1) and enk = 0 (1 ≤ k ≤ n) for all n, and write ∆2 = ∆∆.
Then the sets Xp(∆2) = ((1/n)−1 ∗ `p)Σ∆2 are the second order Cesàro
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difference sequence spaces of non–absolute type (cf. [1]). Throughout, let
q = ∞ for p = 1, q = p/(p − 1) for 1 < p < ∞ and q = 1 for p = ∞. We
write R = E(a) for a ∈ cs, that is Rn =

∑∞
k=n+1 ak (n = 1, 2 . . . ). For any

subset X of ω, we write S(X) = {x ∈ X : x1 = x2 = 0}. Since (∆Σ)(x) =
(−xn+1)∞n=1 for all x ∈ S(X), we have S(Xp(∆2)) = S((1/n)−1 ∗ `p)∆).
Furthermore, obviously (Xp(∆2))β = (S(Xp(∆2)))β. In [1], it was stated
that

(Xp(∆2))β = (n−1 ∗ `q)E for 1 ≤ p ≤ ∞. (1.1)

First we observe that (1.1) does not hold for 1 < p ≤ ∞. To see this, we
put,

Rk =





1
n2/q

1
2n

(k = 2n)

0 (k 6= 2n)
and xk =

{
0 (k = 1, 2)

k
1+ 1

2q (k = 3, 4, . . . ).

This yields
∞∑

k=1

|kRk|q =
∞∑

n=1

1
n2

< ∞, that is R ∈ n−1 ∗ `q,

|∆k(x)| = (k + 1)1+ 1
2q − k

1+ 1
2q ≤

(
1 +

1
2q

)
(k + 1)

1
2q (k = 3, 4, . . . )

by the mean value theorem, hence, for 1 < p < ∞ with M = (1 + 1/(2q))p,
∞∑

k=3

( |∆k(x)|
k

)p

≤ 2pM ·
∞∑

k=1

1

(k + 1)(1−1/q)p+ p
2q

= 2pM ·
∞∑

k=1

1

(k + 1)1+ p
2q

< ∞,

that is x ∈ S(Xp(∆2)), and we have for p = ∞, that is q = 1

|∆k(x)|
k

≤ 3
2

√
k + 1
k

(k = 3, 4, . . . ), that is x ∈ S(X∞(∆2)),

but

|a2nx2n | = |(R2n−1 −R2n) x2n | = 1
n2/q

1
2n

2n(1+ 1
2q

) =
2

n
2q

n2/q
→∞ (n →∞),

that is ax 6∈ cs.
In this paper, we determine the β-duals of Xp(∆2) for 1 ≤ p ≤ ∞.

2. The β–duals of the sets Xp(∆2)

Now we determine (S(Xp(∆2)))β for 1 ≤ p ≤ ∞. We start with
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Remark 2.1. We put

D(1)
p =

(
n−1 ∗ `q

)
E

and D(2)
p =





((
n2−1/p

)−1 ∗ `∞
)

E
(1 ≤ p < ∞)

(
(n2)−1 ∗ c0

)
E (p = ∞).

Then D
(1)
1 = D

(2)
1 , but if 1 < p ≤ ∞ then neither D

(1)
p ⊂ D

(2)
p nor D

(2)
p ⊂

D
(1)
p .

Proof. The identity D
(1)
1 = D

(2)
1 is obvious from the definition of the sets

D
(1)
p and D

(2)
p . Let 1 < p ≤ ∞. We define the sequence a by a1 = a2 = 0

and

an =
1

(log (n− 1))1/q

1
(n− 1)1+1/q

− 1
(log n)1/q

1
n1+1/q

for n ≥ 3.

Since 1/p + 1/q = 1 for 1 < p < ∞ and 1/p = 0 for p = ∞, we obtain

Rn =
1

(log n)1/q

1
n1+1/q

for n ≥ 2,
∣∣∣n2−1/pRn

∣∣∣ =
∣∣∣n1+1/qRn

∣∣∣ =
1

(log n)1/q
→ 0 (n →∞) and

∞∑
n=2

|nRn|q =
∞∑

n=2

1
n log n

= ∞, hence a ∈ D
(2)
p \D

(1)
p .

We define the sequence a by a2n = −a2n+1 = −n−2 2−n (n = 1, 2, . . . ) and
ak = 0 otherwise. This yields R2n = n−2 2−n (n = 1, 2, . . . ) and Rk = 0
otherwise,

∑∞
k=1|kRk|q =

∑∞
n=1 n−2q < ∞ and

∣∣∣(2n)2−1/p R2n

∣∣∣ = (2n)1+1/q 1
n2 2n

=
2n/q

n2
→∞ (n →∞),

hence a ∈ D
(1)
p \D

(2)
p . ¤

Theorem 2.1. We put M1 = D
(1)
1 and Mp = D

(1)
p ∩ D

(2)
p for 1 <≤ ∞.

Then we have (S(Xp(∆2)))β = Mp. Moreover, if a ∈ (S(Xp(∆2)))β then
∞∑

k=1

akxk =
∞∑

k=1

Rk∆(xk) for all x ∈ S(Xp(∆2)). (2.1)

Proof. We write Y = S(Xp(∆2)).
First we assume a ∈ Mp. Let y ∈ Y . Then x = (n)−1∆(y) ∈ `p, and
a ∈ D

(1)
p , that is nR ∈ `q, implies ‖R∆(y)‖1 ≤ ‖nR‖q‖x‖p < ∞, hence

R∆(y) ∈ cs. (2.2)
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We define the matrix A and the sequence z by

amk =

{
−kRm (1 ≤ k ≤ m)
0 (k > m)

and zm = Am(x) (m = 1, 2, . . . ).
(2.3)

If p = 1, then nR ∈ `∞ implies that there is a constant C such that

|amk| = k|Rm| ≤ k

m
C for all m, (2.4)

and since obviously D
(1)
p ⊂ D

(1)
1 for all p ≥ 1, this inequality holds for all p.

Thus

lim
m→∞ amk = 0 for each fixed k. (2.5)

Now (2.4) and (2.5) together imply A ∈ (l1, c0) by [2, Example 8.4.1A, p.
126].
If 1 < p < ∞, then a ∈ D

(2)
p yields

sup
m

∞∑

k=1

|amk|q = sup
m

(
|Rm|q

m∑

k=1

kq

)
≤ sup

m

∣∣∣m1+1/qRm

∣∣∣
q

< ∞.

This and (2.5) together imply A ∈ (`p, c0) by [2, Example 8.4.5D, p. 129].
If p = ∞, a ∈ D

(2)
∞ yields

lim
m→∞

∞∑

k=1

|amk| = lim
m→∞Rm

m(m + 1)
2

= 0.

This and (2.5) together imply A ∈ (`∞, c0) by [2, Theorem 1.7.19, p. 17].
Finally, (2.2), A ∈ (`p, c0) and Abel’s summation by parts

m∑

k=1

akyk = −
m∑

k=1

Rk∆k(y)−Rmym+1 = −
m∑

k=1

Rk∆k(y)− zm for all m
(2.6)

together imply ay ∈ cs, that is a ∈ Y β. Thus we have shown Mp ⊂ Y β.
Conversely we assume a ∈ Y β. Then ax ∈ cs for all x ∈ Y . First b =
(0, 0, 1, . . . ) ∈ Y implies ab ∈ cs, and so the sequence R is defined. Let
y ∈ Y be given. Then x = ∆(y) ∈ (1/n)−1 ∗ `p, yk = −∑k−1

j=1 xj for
k = 1, 2, . . . , and we have

n∑

k=1

akyk = −
n−1∑

k=1




n∑

j=k+1

aj


 xk for n = 1, 2, . . . . (2.7)
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Defining the matrix B = (bnk)∞n,k=1 by

bnk =




−

n∑
j=k+1

aj (1 ≤ k ≤ n− 1)

0 (k > n)
(n = 1, 2, . . . ),

we conclude B ∈ ((1/n)−1 ∗ `p, c) ⊂ ((1/n)−1 ∗ `p, `∞). Now B ∈ ((1/n)−1 ∗
`p, `∞) if and only if B̃ ∈ (`p, `∞) where b̃nk = kbnk for all n and k, and so

Sq = sup
n
‖B̃n‖q < ∞ (2.8)

by [2, Example 8.4.1A, p. 126 (p = 1), 8.4.5D, p. 129 (1 < p < ∞) and
8.4.5A, p. 129 (p = ∞)].
If p = 1, then (2.8) yields |kRk| = limn→∞ |k

∑n
j=k+1 aj | ≤ S1 for all k, that

is R ∈ k−1 ∗ `∞, hence a ∈ M1. Thus we have shown Y β ⊂ D
(1)
1 = M1.

Now let p > 1 and m ∈ IN be given. Then (2.8) yields

m−1∑

k=1

kq

∣∣∣∣∣∣

n∑

j=k+1

aj

∣∣∣∣∣∣

q

≤ ‖B̃n‖q
q ≤ Sq

q for all n ≥ m,

and so
∑m−1

k=1 |kRk|q = limn→∞
∑m−1

k=1 kq|∑n
j=k+1 aj |q ≤ Sq

q . Since m ∈ IN

was arbitrary, we have kR ∈ `q. that is a ∈ D
(1)
p . We define the matrix

A and the sequence z as in (2.3). Then we have z ∈ c by (2.3), that is
A ∈ (`p, c).
For 1 < p < ∞, there is a constant C such that

C
(
|Rm|m1+1/q

)q ≤ |Rm|q
m∑

k=1

kq = sup
n
‖An‖q

q for all m,

and supn ‖An‖q
q < ∞ by [2, Example 8.4.5D, p. 129], that is R ∈ (n1+1/q)−1∗

`∞, hence a ∈ D
(2)
p . Thus we have shown Y β ⊂ D

(1)
p ∩D

(2)
p = Mp.

If p = ∞, then
∑∞

k=1|amk| = 0 by [2, Theorem 1.7.18 (ii), p. 15], since
limm→∞ amk = k limm→∞Rm = 0 for each fixed k. But we have

∑∞
k=1|amk| =

Rm
∑m

k=1 k = Rmm(m+1)/2 and so R ∈ (n2)−1 ∗ c0, that is a ∈ D
(2)
∞ . Thus

we have shown Y β ⊂ D
(1)
∞ ∩D

(2)
∞ = M∞.

If a ∈ (S(Xp(∆2)))β, then (2.1) is obvious from (2.6). ¤
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