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VISUALISATION OF ISOMETRIC MAPS

EBERHARD MALKOWSKY AND VESNA VELIČKOVIĆ

Abstract. We give use our own software for differential geom-
etry and geometry and its extensions [4, 3, 1, 5] and apply it to
the visualisation and animation of isometries between certain
surfaces.

1. Notations

Let D ⊂ IR2 be a domain and S be a surface given by a parametric repre-
sentation ~x(ui) = (x1(u1, u2), x2(u1, u2), x3(u1, u2)) for (ui) = (u1, u2) ∈ D

with coordinate functions xk ∈ Cr(D) (r ≥ 1) and ~x1 × ~x2 6= ~0 on D where
~xk = ∂~x/∂uk for k = 1, 2. By

~N(ui) =
~x1(u

i) × ~x2(u
i)

‖~x1(ui) × ~x2(ui)‖

we denote the surface normal vector of S at (ui) ∈ D, and the functions

gik, Lik : D → IR with gik = ~xi•~xk and Lik = ~xik• ~N where ~xik = ∂2~x/∂ui∂uk

for i, k = 1, 2 are called the first and second fundamental coefficients of S.
We write g = det((gik)i,k=1,2) and L = det((Lik)i,k=1,2). The functions
K,H : D → IR with

K = L/g and H =
1

2
(g11L22 − 2g12L12 + g22L11)

are called the Gaussian and mean curvature of S.
Let S and S∗ be surfaces with parametric representations ~x(ui) and ~x∗(ũi)

and F : S → S∗ a map onto S∗ given by functions hi ∈ Cr(D) with

ũi = hi(u1, u2) (i = 1, 2)
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and non vanishing Jacobian. We may introduce new parameters u∗i for S∗

by putting

ũi = hi(u∗1, u∗2) (i=1,2).

Then the map F is given by u∗i = ui (i = 1, 2), and S and S∗ are said to
have the same parameters.

A map F : S → S∗ is called isometric if the length of every arc on S is
the same as that of its corresponding image.

2. Isometric Maps

There are well–known, simple necessary and sufficient conditions for a
map F : S → S∗ to be isometric; the conditions involve relations between
the first fundamental coefficients gik and g∗ik of S and S∗.

Theorem 2.1. ([2, Sätze 57.1, 57.2, pp. 213, 214])
A map F : S → S∗ is isometric if and only if their first fundamental coeffi-

cients gik and g∗ik with respect to the same parameters (uj) and (u∗j) satisfy

gik(u
j) = g∗ik(u

∗j) for i, k = 1, 2. In particular, the Gaussian and geodesic

curvature of a surface are invariant under isometric maps.

Since a sphere of radius r and a plane have Gaussian curvature K = 1/r
and K = 0, respectively, it is obvious from Theorem 2.1 that no part of a
sphere can be mapped isometrically into a plane.

Ruled surfaces play an important role in the theory of isometric maps; a
ruled surface is a surface that contains a family of straight line segments.
It is generated by moving vectors along a curve. Let γ be a curve with a
parametric representation ~y(s) for s in some interval I where s is the arc
length along γ, and, for every s ∈ I, let ~z(s) be a unit vector. Then a ruled
surface generated by moving the vectors ~z(s) along the curve γ. Writing
u1 = s and u2 for the parameter along the vectors ~z, we obtain a parametric
representation

~x(ui) = ~y(u1) + u2~z(u1).(2.1)

Examples for ruled surfaces are planes, cylinders, cones, hyperboloids of
one sheet and hyperbolic paraboloids. The first three surfaces are so–called
torses. A torse is a ruled surface which has the same tangent plane at every
point of each of its generating straight lines. It is known that a surface is a
torse if and only if it is a plane, cylinder, cone or tangent surface [2, Satz
58.3, p. 223].

The following result shows that torses are the only surfaces that can be
mapped isometrically into a plane.
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Figure 1. Torses: Tangent surface, Cone, Cylinder

Theorem 2.2. ([2, Satz 59.3, p. 228])
A sufficiently small part of a surface of class C r (r ≥ 3) can be mapped

isometrically into a plane if it is part of a torse.

Now we consider two more classes of surfaces that can also be mapped
isometrically to one another, namely surfaces of revolution and screw sur-

faces.
Let γ be a curve in a plane, e. g. the x1x3–plane, and be given by a para-

metric representation ~x(t) = (r(t), 0, h(t)) for t in some interval I where r(t)
> 0 and |r′(t)| + |h′(t)| > 0 on I. Then a surface of revolution RS is gener-
ated by rotating γ about the x3–axis. If we write u1 = t and u2 for the angle
of rotation measured anti–clockwise from the positive x1–axis then RS has
a parametric representation

~x(ui) = (r(u1) cos u2, r(u1) sinu2, h(u1))
for (u1, u2) ∈ D ⊂ I × (0, 2π).

(2.2)

A screw surface is generated by the simultaneous rotation of a curve γ
about a fixed axis A and the translation along A such that the speed of
translation is proportional to the speed of rotation. The curve of intersection
γ∗ of a screw surface S with a plane through the axis A is called a meridian of
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Figure 2. Surfaces of revolution

S. If γ∗ is subjected to the same movement that generates the screw surface
S then γ∗ also generates S. Thus any screw surface can be generated by
a planar curve which performs a screw movement around a straight line in
its plane. We choose the x3–axis as the axis A. Then γ∗ can locally be
represented by x3 = g(u1) where u1 denotes the distance between the axis
A and the points of γ∗. We assume that γ∗ is in the x1x2–plane at the
beginning of the movement. Let u2 be the angle of rotation. The translation
of γ∗ is parallel to the x3–axis and proportional to u2 by definition. Thus
the screw surface S can be represented by

~x(ui) = (u1 cos u2, u1 sinu2, cu2 + g(u1)).(2.3)

where c 6= 0 is a constant. The u2–lines of a screw surface are helices and
its u1–lines are its meridians.

Figure 3. Screw surfaces
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The concept of screw surfaces can be generalised to obtain surfaces with
a parametric representation ~x(ui) = (u1 cos u2, u1 sinu2, f(u1, u2)) where f :
D ⊂ IR2 → IR is of class Cr(D) for r ≥ 1.

Bour’s well–known theorem states that every screw surface can be mapped
onto a part of a surface of revolution.

Theorem 2.3 (Bour). ([2, Satz 57.4, p. 217])
Every screw surface S can be mapped isometrically onto a surface of revolu-

tion.

We give a complete proof of this result, since it is constructive and gives a
method to find a surface of revolution a given screw surface can be mapped
isometrically onto; it can also be used to make animations for isometric maps
between screw surfaces and surfaces of revolution.

We consider surfaces of revolution and screw surfaces given by parametric
representations

~x(ui) = (u1 cosu2, u1 sinu2, h(u1))(2.4)

and

~̄x(ūi) = (ū1 cos ū2, ū1 sin ū2, cū2 + g(ū1))(2.5)

where c is a constant.
First we introduce orthogonal parameters u∗1 and u∗2 on a screw surface

S with a parametric representation (2.5) such that the u∗1 lines are helices
and the u∗2 lines are their orthogonal trajectories. We put u∗1 = ū1 and
u∗2 = h(ū1, ū2). Then the u∗1 lines are helices and we have to determine the
function h such that the u∗2 lines are their orthogonal trajectories. Since

~̄x1 = (cos ū2, sin ū2, g′(ū2)) and ~̄x2 = (−ū1 sin ū2, ū1 cos ū2, c),

the first fundamental coefficients of S with respect to the parameters ū1 and
ū2 are given by ḡ11 = 1 + (g′(ū1))2, ḡ12 = cg′(ū1) and ḡ22 = (ū1)2 + c2, and
consequently the first fundamental form of S is

ds2 =

(

1 +
(

g′(ū1)
)2
)

(

dū1
)2

+ 2cg′(ū1)dū1dū2 +

(

(

ū1
)2

+ c2

)

(

dū2
)2

=

(

1 +

(

ū1
)2 (

g′(ū1)
)2

(ū1)2 + c2

)

(

dū1
)2

+

(

(

ū1
)2

+ c2

)

(

cg′(ū1)

(ū1)2 + c2
dū1 + dū2

)2

If we put

cg′(ū1)

(ū1)2 + c2
dū1 + dū2 = ηdu∗2 where η is a constant,
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that is, if we use the transformation

u∗1 = ū1 and u∗2 = h(ū1, u2) =
1

η

(

c

∫

g′(ū1)

(ū1)2 + c2
dū1 + ū2

)

for η 6= 0, then the first fundamental form of S with respect to the new
parameters u∗1 and u∗2 is given by

ds2 =

(

1 +

(

u∗1
)2 (

g′(u∗1)
)2

(u∗1)2 + c2

)

(

du∗1
)2

+ η2

(

(

u∗1
)2

+ c2

)

(

du∗2
)2

(2.6)

and the parameters u∗1 and u∗2 are orthogonal.
To prove Bour’s theorem, let RS be s surface of revolution given by a

parametric representation (2.4) for (u1, u2) ∈ D ⊂ (0,∞) × (0, 2π). Then

~x1 = (cos u2, sinu2, h′(u1)) and ~x2 = (−u1 sinu2, u1 cos u2, 0)

and the first fundamental form of RS is given by

ds2 =

(

1 +
(

h′(u1)
)2
)

(

du1
)2

+
(

u1
)2 (

du2
)2

.(2.7)

By Theorem 2.1, a screw surface S given by a parametric representation
with respect to the parameters u∗1 and u∗2 introduced above is isometric to
the surface of revolution RS if and only if the first fundamental forms (2.6)
and (2.7) are of the same form. This is the case if we put

u2 = u∗2,(2.8)
(

u1
)2

= η2

(

(

u∗1
)2

+ c2

)

for some constant η 6= 0(2.9)

and

1 +
(

h′(u1)
)2
(

du1

du∗1

)2

= 1 +

(

u∗1
)2 (

g′(u∗1)
)2

(u∗1)2 + c2
.(2.10)

Relations (2.8), (2.9) and (2.10) enable us to find a screw surface isomet-
ric to a given surface of revolution, and conversely, a surface of revolution
isometric to a given screw surface. If a surface of revolution is given, then
we use (2.9) to eliminate the parameter u1 in (2.10) and then solve (2.10)
for g′(u∗1) to find the function g of the screw surface. Conversely, if a screw
surface is given, we use (2.9) to eliminate the parameter u∗1 in (2.10) and
then solve (2.10) for h′(u1) to find the function h of the surface of revolution.

We apply this method to find screw surfaces that are isometric to a
catenoid.
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Example 2.4. We consider a catenoid given by a parametric representation

~x(ui) =

(

u1 cosu2, u1 sinu2, a · Arcosh(
u1

a
)

)

where a > 0 is a constant

for (u1, u2) ∈ D ⊂ (a,∞) × (0, 2π). Now

h′(u1) =
a

√

(u1)2 − a2
and 1 + (h′(u1))2 =

(u1)2

(u1)2 − a2
for u1 > a.

First (2.9) yields u1du1 = η2u∗1du∗1, that is du1/du∗1 = η2 · u∗1/u1. Substi-
tuting this in (2.10), eliminating u1 and solving for g′(u∗1), we obtain

η4 (u∗1)2

η2 ((u∗1)2 + c2) − a2
= 1 +

(u∗1)2(g′(u∗1))2

(u∗1)2 + c2

for u1 >
√

a2/η2 − c2 and c < a/|η|, and

(g′(u1))2 =

(

(u∗1)2 + c2
)

(

(u∗1)2(η2 − 1) − (c2 − a2

η2 )
)

(u∗1)2
(

(u∗1)2 + c2 − a2

η2

) .

We choose η = 1 and put k2 = a2 − c2 for a ≥ c. Then we have

(g′(u∗1))2 =

(

(u∗1)2 + c2
)

k2

(u∗1)2 ((u∗1)2 − k2)
for u∗1 > k > 0,

that is

g′(u∗1) = k

√

(

(u∗1)2 + c2
)

(u∗1)2 ((u∗1)2 − k2)
.

This yields

g(u∗1) = k log

(
√

(u∗1)2 + c2 +
√

(u∗1)2 − k2

)

− c arctan







k

c

√

√

√

√

(

u∗1
)2

+ c2

(u∗1)2 − k2






+ d̃ where d̃ is a constant.

We observe that we may choose d̃ = 0, since a change in d̃ only results in a
movement of the screw surface in the direction of the x3–axis.

For every k with 0 < k ≤ a, that is for every c with 0 ≤ c < a, we obtain
a screw surface Sk with

g(u∗1) = k log

(
√

(u∗1)2 + c2 +
√

(u∗1)2 − k2

)

− c arctan







k

c

√

√

√

√

(

u∗1
)2

+ c2

(u∗1)2 − k2






.
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which is isometric to the catenoid. If k = a, that is c = 0, then we obtain
the original catenoid

g(u∗1) = a log

(

u∗1 +
√

(u∗1)2 − a2

)

= aArsinh

(

u∗1

a

)

for u∗1 > a.

If k = 0, that is c = a, then g′(u∗1) = 0 and we obtain a helikoid.
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Figure 4. Isometric map from a catenoid to a screw surface

Figure 5. Isometric map of the pseudo-sphere
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