
FILOMAT 17 (2003), 135–141

MATRIX MULTIPLICATION ON BIDIRECTIONAL

LINEAR SYSTOLIC ARRAYS

I. Ž. MILOVANOVIĆ, E. I. MILOVANOVIĆ, B. M. RANDJELOVIĆ,
AND I. Č. JOVANOVIĆ

Abstract. This paper addresses the problem of rectangular matrix
multiplication on bidirectional linear systolic arrays (SAs). We ana-
lyze all bidirectional linear SAs in terms of efficiency. We conclude that
the efficiency depends on the relation between the loop boundaries in
the systolic algorithm (i.e. matrix dimensions). We point out which
SA is the best choice depending on the relation between matrix dimen-
sions. We have designed bidirectional linear systolic arrays suitable for
rectangular matrix multiplication.

1. Introduction

Matrix multiplication plays a central role in numerical linear algebra, since
one has to compute this product at several stages of almost all numerical
algorithms, as well as in many technical problems, especially in the area of
digital signal processing, pattern recognition, plasma physics, weather pre-
diction, etc. Therefore, finding an efficient algorithm for performing these
computations is at the focus of interest of many researchers. Matrix multi-
plication is a very regular computation and lends itself well to parallel imple-
mentation. Regular structures, such as systolic arrays (SAs), are well suited
for matrix multiplication and are also amenable to VLSI implementation
because of their simple and regular design, and nearest-neighbor communi-
cations. A systolic system is a network of processing elements (PEs) that
rhythmically compute and pass data through the system. Once a data item
is brought from the memory, it can be used effectively in each PE as it passes
while being “pumped” from cell to cell along the array.

Systolic arrays have been designed for a wide variety of computationally
intensive problems in signal processing, numerical problems, pattern recog-
nition, database and dictionary machines, graph algorithms etc. Systolic
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arrays implemented in silicon chips are typically laid out in a linear array
or bidimensional grid of cells. One dimensional or linear systolic arrays are
especially popular because of the low number of I/O pins required for the
interconnection with the ”outside world”.

To handle matrix multiplication, 2D and 1D systolic arrays have been
proposed. Matrix multiplication on 2D arrays has been extensively stud-
ied. Most of the 1D arrays proposed for matrix multiplication are with
one-dimensional links. However, these arrays require delay elements between
successive processing elements, since input data have to pass through the ar-
ray with different speed. This paper deals with multiplication of rectangular
matrices on bidirectional linear systolic arrays (BLSA) with two-dimensional
links. These arrays do not require delay elements for the implementation of
matrix multiplication.

2. Background

Let A = (aik)N1×N3
and B = (bkj)N3×N2

be two rectangular matrices.
For the systolic implementation of their product, C = A · B, the following
algorithm can be used.

Algorithm 1
for k := 1 to N3 do
for j := 1 to N2 do
for i := 1 to N1 do

a(i, j, k) := a(i, j − 1, k);
b(i, j, k) := b(i − 1, j, k);
c(i, j, k) := c(i, j, k − 1) + a(i, j, k) ∗ b(i, j, k);

where a(i, 0, k) ≡ aik, b(0, j, k) ≡ bkj, c(i, j, 0) ≡ 0, cij ≡ c(i, j,N3).
The matrix multiplication problem, and consequently, Algorithm 1, is a

three-dimensional one. According to Algorithm 1, orthogonal two-dimen-
sional (2D) SAs can be synthesized (see, for example [3, 4, 9, 10, 15, 17]).
Orthogonal 2D SAs are obtained by the following projection direction vec-
tors ~µ = [1 0 1]T , ~µ = [0 1 1]T and ~µ = [1 1 0]T . In order to obtain orthogonal
SAs with an optimal number of processing elements (PEs) for a given prob-
lem size, Algorithm 1 has to be adjusted to the direction projection vectors
either on the index variable i or j, depending on the relation between N1

and N2 (i.e N1 > N2 or N1 < N2) [1, 2, 16]. If we put N1 = 1 (or N2 = 1)
2D orthogonal SAs degrade to 1D bidirectional SAs suitable for the imple-
mentation of matrix-vector products (see, for example [10, 11, 12, 13]. This
is valid only for the direction projections ~µ = [0 1 1]T and ~µ = [1 0 1]T . This
fact can be used to compute matrix products on 1D bidirectional SAs iter-
atively, by repeating the procedure N1 (i.e. N2) times. Details concerning
the synthesis of 1D bidirectional SAs for matrix-vector multiplication can
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be found in [10, 11, 12, 13]. Here we will give some performance measures
of bidirectional 1D SAs when used for computing matrix products.

Denote by SA1 and SA2 bidirectional 1D arrays synthesized for the case
i = 1 and ~µ = [0 1 1]T and j = 1 and ~µ = [1 0 1]T , respectively. Both of these
SAs are optimal with respect to the number of PEs for a given problem size
and consist of Ω = N3 PEs. The total computation time of SA1 in the case

of matrix multiplication is T
(1)
tot = N1(N2 + 2N3 − 2), whereas for SA2 it is

T
(2)
tot = N2(N1 + 2N3 − 2). Consequently, we conclude that when N2 > N1

the array SA1 is the better choice and SA2 otherwise. The data flow in SA2
for the case N1 = 3, N2 = 2 and N3 = 5 is depicted in Fig. 1. The efficiency
of the arrays SA1 and SA2 are

E(1) =
N2

N2 + 2N3 − 2
and E(2) =

N1

N1 + 2N3 − 2
,(2.1)

respectively. According to (2.1) one can conclude that when N3 >> N2 (or
N3 >> N1) the efficiency of the array SA1 (i.e. SA2) is very low despite the
fact that these arrays are optimal with respect to the number of PEs. Having
this in mind the goal of this paper is to synthesize 1D bidirectional SAs which
are efficient for a computing matrix product in the case N3 > N1, N2.

Figure 1. Data flow in the array SA 2, for N1 = 3, N2 =
2, N3 = 5

Before we proceed with the synthesis of these arrays we will point out
some facts. Namely, in the case of the arrays SA1 and SA2, the pipelining is
achieved across one of the input matrices and the resulting matrix. Since the
index variable k in Algorithm 1 is an iterative one, it is not subject to any
transformation, usually. Therefore we did not discuss the case k = 1. But
if we want to design efficient arrays when N3 > N1, N2, we have to abandon
this rule. This is the subject of the next section.
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3. A new class of 1D bidirectional systolic arrays

Suppose that N3 = 1 in Algorithm 1 (i.e. k = 1). In this case Algorithm 1
represents an algorithm for computing the outer product of two vectors, i.e.
the product of the first column-vector of a matrix A and first row-vector of

a matrix B. The result of this product are the first iterations, C (1) = (c
(1)
ij ),

of the matrix C = A · B. In other words, the computation of C = A ·B can
be performed according to

C =
N3∑

k=1

C(k) =
N3∑

k=1

~A·k
~Bk·

where ~A·k is the k-th column-vector of matrix A, and ~Bk· is the k-th row-
vector of matrix B, for k = 1, 2, . . . , N3.

In order to compute a matrix product on a 1D bidirectional SA we have

to synthesize the array which computes C (1) = ~A·1
~B1· and then repeat the

computation N3 times. This array can be synthesized according to Algo-
rithm 1, by substituting k = 1, and the direction ~µ = [1 1 0]T . The obtained
1D SA represents a degraded 2D orthogonal SA. To obtain an SA with
an optimal number of PEs we have to adjust Algorithm 1 to the direction
~µ = [1 1 0]T .The adjustment can be performed over the index variables i and
j. The adjustment is performed by skewing one index variable with respect
to the other one.

The algorithm adjusted over the index variable i obtained from Algo-
rithm 1 by putting k = 1 has the following form

Algorithm 2
for j := 1 to N2 do
for i := 1 to N1 do

a(i, i + j − 1, 1) := a(i, i + j − 2, 1);
b(i, i + j − 1, 1) := b(i − 1, i + j − 1, 1);
c(i, i + j − 1, 1) := c(i, i + j − 1, 0) + a(i, i + j − 1, 1) ∗ b(i, i + j − 1, 1);

where a(i, j +N2, 1) ≡ a(i, j, 1) ≡ a(i, 0, 1) ≡ ai1, b(i, j +N2, 1) ≡ b(i, j, 1) ≡

b(0, j, 1) ≡ b1j , c(i, j, 0) ≡ 0, c(i, j + N2, 1) ≡ c(i, j, 1) ≡ c
(1)
ij , for i =

1, 2, . . . N1 and j = 1, 2, . . . N2.
The bidirectional SA synthesized according to Algorithm 2, denoted as

SA3, has the following performances: number of PEs, Ω = N2, total execu-

tion time, T
(3)
tot = N3(N1 + 2N2 − 3), and the efficiency

E(3) =
N1

N1 + 2N2 − 2
.(3.1)

As one can see the efficiency of SA3 does not depend on N3. Consequently
it is more efficient than both SA1 and SA2 when N3 > max{N1, N2}. The
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data flow in SA3 for the case N1 = 3, N2 = 2 and N3 = 5 is depicted in Fig.
2. The elements of the input matrices, A and B, are pipelined through the
array.

Figure 2. Data flow in the array SA 3, for N1 = 3, N2 =
2, N3 = 5

Similarly, the algorithm adjusted over the index variable j obtained from
Algorithm 1 by putting k = 1 has the following form

Algorithm 3
for j := 1 to N2 do
for i := 1 to N1 do

a(i + j − 1, j, 1) := a(i + j − 1, j − 1, 1);
b(i + j − 1, j, 1) := b(i + j − 2, j, 1);
c(i + j − 1, j, 1) := c(i + j − 1, j, 0) + a(i + j − 1, j, 1) ∗ b(i + j − 1, j, 1);

where a(i + N1, j, 1) ≡ a(i, j, 1) ≡ a(i, 0, 1) ≡ ai1, b(i + N1, j, 1) ≡ b(i, j, 1) ≡

b(0, j, 1) ≡ b1j, c(i, j, 0) ≡ 0, c(i + N1, j, 1) ≡ c(i, j, 1) ≡ c
(1)
ij , for i =

1, 2, . . . N1 and j = 1, 2, . . . N2.
The corresponding bidirectional SA, denoted as SA4, which implements

Algorithm 3 has the following performances: number of PEs, Ω = N1, total

computation time to find the matrix product, T
(4)
tot = N3(N2 +2N1 −2), and

the efficiency

E(4) =
N2

N2 + 2N1 − 2
.(3.2)

As one can see neither the efficiency of SA4 depends on N3 and it is more
efficient than SA1 and SA2 in the case N3 > max{N1, N2}.

4. Conclusion

In this paper we have designed two new bidirectional linear systolic arrays,
denoted as SA3 and SA4, which can be used to compute matrix products.
This completes the class of bidirectional linear SAs. We have compared the
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arrays SA1, SA2, SA3 and SA4 in term of efficiency. We conclude that the
efficiency depends on the relation between the loop boundaries N1, N2 and
N3. If N1 > N3 > N2 or N3 > N1 > N2 the best choice in term of efficiency
is the array SA3. If N2 > N3 > N1 or N3 > N2N1, the best choice is the
array SA4. If N1 > N2 > N3, the array SA2 is the best choice. Finally, if
N2 > N1 > N3 the best choice is SA1.
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