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DERIVATIVE FREE COMBINED METHOD FOR THE

SIMULTANEOUS INCLUSION OF POLYNOMIAL ZEROS

M. S. PETKOVIĆ AND D. MILOŠEVIĆ

Abstract. A combined method for the simultaneous inclusion

of complex zeros of a polynomial, composed of two circular

arithmetic methods, is presented. This method does not use

polynomial derivatives and has the order of convergence equals

four. Computationally verifiable initial conditions that guar-

antee the convergence are also stated. Two numerical example

are included to demonstrate the convergence speed of the pre-

sented method.

1. Introduction

A great importance of the problem of finding polynomial zeros in the the-
ory and practice (e.g., in the theory of control systems, stability of systems,
analysis of transfer functions, various mathematical models, differential and
difference equations, eigenvalue problems and other branches) has led to
the development of a great number of root-finding methods. As stressed
by Wilkinson [11], the aim of any numerical algorithm is to improve the
approximate result and also to give error bound for the improved approx-
imation. During the last four decades, various techniques for a posteriori
error estimates for the determination of polynomial zeros were developed,
for instance, procedures based on Gerschgorin’s theorem, Rouché’s theorem,
rational approximations, fixed point relations, and so on.

Gargantini and Henrici proposed in [4] a quite different approach to error
estimates for a given set of approximate zeros, developing an algorithm in
circular complex interval arithmetic. Resulting disks contain the wanted ze-
ros, which automatically provides the information about upper error bounds
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of approximations to the zeros. After this fundamental paper, a lot of itera-
tive methods for the simultaneous inclusion of complex zeros of polynomials
were constructed (for more details, see the books [2], [7], [9]).

In this paper our attention will be devoted to a derivative free combined
method for the simultaneous inclusion of complex zeros. A detailed conver-
gence analysis, including computationally verifiable initial conditions for the
convergence, and numerical results will be presented.

In Section 1 we give a short review of definitions and operations of circu-
lar arithmetic. Cubically convergent combined algorithm, consisting of the
second order method of Weierstrass’ type and the third order Börsch-Supan-
like inclusion method, are presented in Section 2. Convergence analysis of
this algorithm is the subject of Section 3. To demonstrate the convergence
rate of the proposed method, we present numerical results in Section 4.

First, we give some properties of circular complex arithmetic, which are
necessary to carry out the convergence analysis of the presented combined
method. A disk Z with center c := mid Z and radius r := rad Z will be
denoted by the parametric notation Z = {c; r}. The basic circular arithmetic
operations are defined as follows:

{c1; r1} ± {c2; r2} = {c1 ± c2; r1 + r2},
{c1; r1} · {c2; r2} := {c1c2; |c1|r2 + |c2|r1 + r1r2},(1.1)

Z−1 = {c; r}−1 =
{c̄; r}

|c|2 − r2
(|c| > r, i.e. 0 /∈ Z) (exact inversion),(1.2)

ZI := {c; r}I =
{1

c
;

r

|c|(|c| − r)

}

(|c| > r, i.e. 0 /∈ Z)(1.3)

(centered inversion).

Using (1.2) and (1.3) the division is defined as

Z1 : Z2 := Z1 · Z−1
2 or Z1 : Z2 := Z1 · ZI

2 (0 /∈ Z2).

It is easy to show that Z−1 ⊂ ZI . In the sequel, INV (Z) will denote one
of the two inversions Z−1, ZI . We will use the following estimates

|mid (INV (Z))| ≤ |z|
|z|2 − r2

,(1.4)

rad (INV (Z)) ≤ r

|z|(|z| − r)
.(1.5)

Using (1.1) it can be proved that the product of n disks is given by

n
∏

k=1

{ck; rk} =
{

n
∏

k=1

ck;
n
∏

k=1

(|ck| + rk) −
n
∏

k=1

|ck|
}

.(1.6)
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2. Cubically convergent combined method

Let us consider a monic complex polynomial P of degree n ≥ 3 with
simple zeros ζ1, . . . , ζn,

P (z) =
n
∏

j=1

(z − ζj),

wherefrom we obtain the fixed point relations

ζi = z − P (z)
n
∏

j=1

j 6=i

(z − ζj)

= z − P (z)
n
∏

j=1

j 6=i

1

z − ζj
.(2.1)

Let us assume that we have found disks Z1, . . . , Zn such that ζi ∈ Zi, i ∈
In = {1, . . . , n}, where In is the index set, and let zi = mid Zi. Setting
z = zi and replacing the exact zero ζj (j 6= i) by its inclusion disk Zj in
(2.1), we obtain the quadratically convergent method for the simultaneous
inclusion of simple complex zeros of the polynomial P,

Ẑi = zi −
P (zi)

n
∏

j=1

j 6=i

(zi − Zj)

(i ∈ In),(2.2)

or in an alternative form

Ẑi = zi − P (zi)
n
∏

j=1

j 6=i

1

zi − Zj
(i ∈ In),(2.3)

where Ẑi is a new inclusion disk for ζi. The last two formulas define the
so-called Weierstrass’ inclusion method in circular complex arithmetic, con-
sidered in details in [5] and [10]. If Z1, . . . , Zn are real intervals containing
real simple zeros, then (2.2) reduces to the interval iterative formula studied
by Alefeld and Herzberger in [1]. The name comes from the similarity with
the classical Weierstrass method

ẑi = zi − Wi, Wi =
P (zi)

n
∏

j=1

j 6=i

(zi − zj)

(i ∈ In)(2.4)

for the simultaneous approximation of polynomial zeros in ordinary com-
plex arithmetic (see [12]). The quantity Wi is often called the Weierstrass
correction.

A faster derivative free algorithm for the simultaneous inclusion of poly-
nomial zeros was developed in [6]. Using the fixed point relation of the
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form

ζi = zi −
Wi

1 +
n
∑

j=1

j 6=i

Wj

ζi − zj

(i ∈ In)(2.5)

(see [3]), and taking the inclusion disk Zi instead of the zero ζi in (2.5), the
following third order inclusion method was obtained [6],

Ẑi = zi −
Wi

1 +
n
∑

j=1

j 6=i

Wj

Zi − zj

(i ∈ In),(2.6)

where Ẑi denotes a new outer circular approximation for ζi, that is, ζi ∈
Ẑi (i ∈ In). Let us note that the iterative methods (2.2), (2.3), (2.4) and
(2.6) do not use the derivatives of the polynomial P.

In this paper we combine the inclusion methods (2.2) and (2.6) to obtain
an efficient two-stage method. In this construction we first apply formula
(1.6) for the product of disks

n
∏

j=1

j 6=i

(zi − Zj) =
n
∏

j=1

j 6=i

{zi − zj ; rj} = {ci; ηi},

and the centered inversion (1.3) to the iterative formula (2.2), and get

Z∗
i = zi −

P (zi)

{ci; ηi}
= zi −

{P (zi)

ci
;

|P (zi)|ηi

|ci|(|ci| − ηi)

}

= zi − {Wi;R
∗
i },

where

ci =
n
∏

j=1

j 6=i

(zi − zj), ηi =
n
∏

j=1

j 6=i

|zi − zj| −
n
∏

j=1

j 6=i

(|zi − zj | − rj),(2.7)

R∗
i =

|P (zi)|ηi

|ci|(|ci| − ηi)
.(2.8)

In this manner we construct the two-stage method for the simultaneous
inclusion of all zeros of P,



















Z∗
i = zi − {Wi;R

∗
i },

Ẑi = zi − Wi

[

1 +
n
∑

j=1

j 6=i

Wj INV (Z∗
i − zj)

]−1

(i ∈ In).

(2.9)



DERIVATIVE FREE COMBINED METHOD FOR POLYNOMIAL ZEROS 159

The combined iterative formula (2.9) can be implemented by employing
either the exact inversion (1.2) or the centered inversion (1.3). From (2.9) we
notice that the already calculated quantities Wj (j ∈ In) are again applied
in the second formula of (2.9), which decreases the computational cost.

For simplicity, in Section 3 we will write
∑

j 6=i

and
∏

j 6=i

instead of
n
∑

j=1

j 6=i

and

n
∏

j=1

j 6=i

, respectively.

3. Convergence of combined method

In the sequel we will assume that n ≥ 3. Also, for any i ∈ In we introduce
the abbreviations

εi = zi − ζi, vij = zi − zj − Wi, ri = rad Zi, R∗
i = rad Z∗

i ,

r = max
i∈In

ri, R∗ = max
i∈In

R∗
i ,

d = min
i,j∈In

i6=j

|mid Zi − mid Zj|,

Hi = 1 +
∑

j 6=i

Wj INV (Z∗
i − zj), hi = mid Hi, Ri = rad Hi.

First, we give some results necessary for the convergence analysis.

Lemma 3.1. Let α = e2/7 (∼= 1.331 < 4/3). Then, under the condition

d >
7

2
(n − 1)r,(3.1)

the following inequalities are valid for every i ∈ In :

(i) |Wi| < α|εi| ≤ αri ≤ αr < 4
3r;

(ii) R∗
i <

ri

2
;

(iii) R∗ <
7αr2

d

(

(7

6

)n−1
− 1

)

.

Proof of (i). The sequence {ak}, defined by ak =
(

1 + 2
7k

)k
, is bounded and

monotonically increasing so that

ak < lim
k→∞

ak = e2/7 = α
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for all k ∈ N. According to this, for any i ∈ In we have

|Wi| =
|P (zi)|

∏

j 6=i

|zi − zj |
= |zi − ζi| ·

∏

j 6=i

|zi − ζj|
|zi − zj |

≤ |εi| ·
∏

j 6=i

|zi − zj | + rj

|zi − zj |
≤ |εi|

(

1 +
r

d

)n−1

< |εi|
(

1 +
2

7(n − 1)

)n−1

< α|εi| ≤ αri ≤ αr <
4

3
r,

which proves (i).

Proof of (ii) and (iii). Using (3.1) and (i) we obtain

R∗
i =

|P (zi)|ηi

|ci|(|ci| − ηi)
= |Wi|

ηi

|ci| − ηi
< αri

(

∏

j 6=i

|zi − zj|
|zi − zj | − rj

− 1

)

= αri

(

∏

j 6=i

(

1 +
rj

|zi − zj| − rj

)

− 1

)

≤ αri

((

1 +
r

d − r

)n−1
− 1

)

=
αrir

d
· 1

1 − r

d

·
(

(

1 +
1

d/r − 1

)n−2
+
(

1 +
1

d/r − 1

)n−3
+ · · · + 1

)

<
αrir

d
· 7

6

(

(

7

6

)n−2

+

(

7

6

)n−3

+ · · · + 1

)

=
7αrir

d

(

(7

6

)n−1
− 1

)

.

Hence, it follows

R∗
i <

ri

2

and

R∗
i ≤ R∗ <

7αr2

d

(

(7

6

)n−1
− 1

)

. 2

Lemma 3.2. If (3.1) holds and ζi ∈ Zi for all i ∈ In, then the inversions in
(2.9) exist, i.e.,

(i) 0 /∈ {ci; ηi};
(ii) 0 6∈ {vij ;R

∗
i };

(iii) 0 6∈ Hi = {hi;Ri}.

Proof of (i). It follows from (2.7) and the fact that the disks Z1, . . . , Zn are
disjoint, that is, |zi − zj | > rj holds for any pair i, j ∈ In.
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Proof of (ii). According to (i) of Lemma 3.1, we have

|vij | = |zi − zj − Wi| ≥ |zi − zj | − |Wi| > d − αr > d − 4

3
r.

(3.2)

Hence, by (3.1) and (ii) of Lemma 3.1,

|vij | > d − 4

3
r > r ≥ ri > R∗

i ,

which proves that 0 6∈ {vij ;R
∗
i }.

Proof of (iii). Using (1.5), (3.1), (3.2) and the assertions of Lemma 3.1, we
find

Ri = rad Hi =
∑

j 6=i

|Wj | rad
(

INV
(

zi − zj − {Wi;R
∗
i }
)

)

≤
∑

j 6=i

|Wj |
R∗

i

|zi − zj − Wi|(|zi − zj − Wi| − R∗
i )

< αr
∑

j 6=i

R∗

(d − αr)(d − αr − R∗)

<

4

3
r · (n − 1)

r

2
(

d − 4r

3

)(

d − 4r

3
− r

2

)

=

2

3
(n − 1)

(d

r
− 4

3

)(d

r
− 11

6

)

<
1

20
.

Let us bound the center hi of the disk Hi. According to (1.4) and (3.1)
we get

|hi| ≥ 1 −
∑

j 6=i

|Wj|
∣

∣mid
(

INV (zi − zj − {Wi;R
∗
i })
)
∣

∣

≥ 1 −
∑

j 6=i

|Wj | · |vij|
|vij |2 − R∗

i
2 > 1 −

4

3
r(n − 1)

(

d − 4r

3

)

(

d − 4r

3

)2
− r2

4

= 1 −
4

3
(n − 1)

(d

r
− 4

3

)

(d

r
− 4

3

)2
− 1

4

>
13

25
.

Hence

|hi|2 − Ri
2 >

(

13

25

)2

−
(

1

20

)2

>
1

4
(3.3)

and |hi| > Ri, which means that 0 6∈ {hi;Ri}. �
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The following assertion is concerned with the convergence of the combined
method (2.9).

Theorem 3.3. Let (Z1, . . . , Zn) = (Z
(0)
1 , . . . , Z

(0)
n ) be initial disks such that

ζi ∈ Zi (i ∈ In), let {Z(m)
i } (i ∈ In) denote the sequences of disks produced

by (2.9), and let

r(m) = max
i∈In

rad (Z
(m)
i ), d(m) = min

i,j∈In
i6=j

|mid (Z
(m)
i ) − mid (Z

(m)
j )|,

where m = 0, 1, 2, . . . is the iteration index. If the condition

d(0) >
7

2
(n − 1)r(0)(3.4)

is satisfied, then for any i ∈ In and m = 0, 1, 2, . . . there holds

ζi ∈ Z
(m)
i

and the sequences of radii
{

rad (Z
(m)
i )

}

(i ∈ In) tend monotonically towards
0.

Proof. We will prove Theorem 3.3 by induction and we start with m = 0.
For simplicity, all indices are omitted and all quantities in the next iteration
are denoted by the additional mark ˆ. We define

r̂ = max
i∈In

r̂i and d̂ = min
i,j∈In

i6=j

|ẑi − ẑj |.

The second formula of (2.9) may be written in the form

Ẑi = zi − WiH
−1
i = zi − Wi{hi;Ri}−1,

whence

r̂i = rad Ẑi = |Wi|
Ri

|hi|2 − Ri
2

and

ẑi = mid Ẑi = zi −
Wih̄i

|hi|2 − R2
i

.

By virtue of Lemma 3.1(i) and the estimates Ri < 1/20 and |hi| > 13/25
(see the proof of Lemma 3.2), we get

r̂i < |Wi|
Ri

|hi|2 − Ri
2 <

4

15
ri,(3.5)

for all i ∈ In.

On the other hand, according to the inclusion property we obtain ζi ∈ Ẑi,
wherefrom

|ẑi − ζi| ≤ r̂i <
4

15
r.
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Since ζi ∈ Zi, that is |zi − ζi| ≤ r, we have

|ẑi − zi| ≤ |ẑi − ζi| + |zi − ζi| <
4

15
r + r =

19

15
r.

Now, for any pair i, j ∈ In, i 6= j, we find

d̂ = |ẑi − ẑj | ≥ |zi − zj | − |zi − ẑi| − |zj − ẑj | > d − 38

15
r.(3.6)

Using (3.4), (3.5) and (3.6), there follows

r̂

d̂
<

4

15
r

d
(

1 − 38

15
· r

d

)

<
1

2
· r

d
<

2

7(n − 1)
.

Hence, we conclude by induction that the initial condition (3.4) implies the
inequality

d(m) >
7

2
(n − 1)r(m)

for every m = 0, 1, . . . . For this reason, the assertions of Lemmas 3.1 and
3.2 are valid for all m = 0, 1, . . . . In particular, following (3.5), we have

r(m+1) <
4

15
r(m)(3.7)

for every m = 1, 2, . . . .

In view of the fixed point relations (2.1) and (2.5), the chain of inclusions

ζi ∈ Z
(m)
i =⇒ ζi ∈ Z∗

i
(m) =⇒ ζi ∈ Z

(m+1)
i ,

and the assumption ζi ∈ Z
(0)
i , by induction we find that ζi ∈ Z

(m)
i for any

i ∈ In and m = 0, 1, . . . if (3.4) holds.

¿From Lemma 3.2 we conclude that the inversions in (2.9) exist in each
iterative step so that the combined method (2.9) is feasible. Besides, since

d(m) > 2r(m) it follows that the disks Z
(m)
1 , . . . , Z

(m)
n are pairwise disjoint.

The inequality (3.7) shows that the sequences of radii
{

r
(m)
i

}

(i ∈ In) con-
verge monotonically to 0. 2

We are now able to determine the order of convergence of the combined
method (2.9).

Theorem 3.4. Let the interval sequences {Z (m)
i } (i ∈ In) be defined by the

iterative formula (2.9). Then, under the condition (3.4), the following is
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valid:

r(m+1) <

112(n − 1)

(

(7

6

)n−1
− 1

)

(r(m))4

(

d(0) − 38

11
r(0)

)3 (m = 0, 1, 2, . . . ).

Proof. We give the proof for the case when the centered inversion is applied
in (2.9). Starting from the disks

Z∗
i − zj = {vij ;R

∗
i } ⊆ {vij ;R

∗},
we find

(Z∗
i − zj)

I ⊆
{

1

vij
;

R∗

|vij |(|vij | − R∗)

}

,

so that, by (1.3) and Lemma 3.1(i),

∑

j 6=i

Wj(Z
∗
i − zj)

I ⊆
{

∑

j 6=i

Wj

vij
;

(n − 1)αrR∗

|vij |(|vij | − R∗)

}

.

Having in mind this inclusion, we start from (2.9) and find that the radius
of the disk

Ẑi = zi − Wi

[

1 +
∑

j 6=i

Wj(Z
∗
i − zj)

I
]−1

is bounded by

r̂i = rad Ẑi ≤

(n − 1)α2r2R∗

|vij |(|vij | − R∗)

∣

∣

∣1 +
∑

j 6=i

Wj

vij

∣

∣

∣

2
−
(

(n − 1)αrR∗

|vij |(|vij | − R∗)

)2 .(3.8)

Now, using Lemma 3.1(iii), we estimate the numerator in (3.8):

(n − 1)α2r2R∗

|vij|(|vij | − R∗)
<

α2r2(n − 1)
7αr2

d

(

(7

6

)n−1
− 1

)

(

d − 4

3
r
)(

d − 11

6
r
)

=

7α3r4(n − 1)

(

(7

6

)n−1
− 1

)

d3
(

1 − 4

3
· r

d

)(

1 − 11

6
· r

d

)

<

28(n − 1)

(

(7

6

)n−1
− 1

)

r4

d3
,

because of
7α3

(

1 − 4

3
· r

d

)(

1 − 11

6
· r

d

)

< 28.
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In regard to (3.3), the inequality (3.8) becomes

r̂i ≤ r̂ <

112(n − 1)

(

(7

6

)n−1
− 1

)

r4

d3
.

By induction we prove that the inequality

r(m+1) <

112(n − 1)

(

(7

6

)n−1
− 1

)

r(m)4

d(m)3
(3.9)

is valid for every m = 0, 1, 2, . . . .

According to the geometric construction and the fact that the disks Z
(m)
i

and Z
(m+1)
i have at least one point in common (the zero ζi), the following

relation can be derived

d(m+1) ≥ d(m) − 2r(m) − 2r(m+1) .(3.10)

Let us put β = 4/15. By successive application of (3.7) and (3.10), one
obtains

1

2
d(m) >

1

2
d(m−1) − r(m−1) − βr(m−1) =

1

2
d(m−1) − r(m−1)(1 + β)

>
1

2
d(m−2) − r(m−2) − r(m−1) − (1 + β)r(m−1)

=
1

2
d(m−2) − r(m−2)(1 + 2β + 2β2 − β2)

...

>
1

2
d(0) − r(0)(1 + 2β + 2β2 + · · · + 2βm − βm)

>
1

2
d(0) − 19

11
r(0),

so that

d(m) > d(0) − 38

11
r(0).

According to the last inequality and (3.9) we finally obtain

r(m+1) <

112(n − 1)

(

(7

6

)n−1
− 1

)

(r(m))4

(

d(0) − 38

11
r(0)

)3 (m = 0, 1, . . . ).

(3.11)

The proof in the case of the exact inversion is derived in a quite similar
way so that will be omitted. Note that the constant 112 in the previous
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relation can be replaced with 104 when the exact inversion is used. The last
relation (3.11) shows that the order of convergence of the method (2.9) is
four. 2

4. Numerical results

To test the convergence properties of the presented combined algorithm
(2.9), we applied this method to polynomials of various degrees. We re-
alized the corresponding algorithms on PC PENTIUM IV using the pro-
gramming package Mathematica 4.1 with multiple precision arithmetic to
save all significant digits. For the comparison purpose, we also tested the
Börsch-Supan-like method with Weierstrass’ correction

Ẑi = zi − Wi ·
[

1 −
n
∑

j=1

j 6=i

Wj · INV (zj − Zi + Wi)

]−1

(i ∈ In),

(4.1)

proposed in [8]. It was proved in [8] that the R-order of convergence of the
method (4.1) is (3 +

√
17)/2 ∼= 3.562 if INV = ()−1 and 4 if INV = ()I .

In all tested examples the choice of initial disks was carried out under
weaker condition than (3.4). The type of inversion is stressed by the sub-
script indices “E” (exact) and “C” (centered); for instance, (2.9)E and (2.9)C

denote two versions of the inclusion method (2.9) where the exact inver-
sion ()−1 and the centered inversion ()I are applied. For demonstration, we
present two examples.

Example 1. We applied the methods (2.9) and (4.1) for the simultaneous
inclusion of the zeros of the polynomial

P (z) = z9 + 3z8 − 3z7 − 9z6 + 3z5 + 9z4 + 99z3 + 297z2 − 100z − 300.

The exact zeros of this polynomial are −3, ±1, ±2i and ±2± i. The centers

of the initial disks Z
(0)
i = {z(0)

i ; 0.5} were selected to be d(0)/r(0) = 4.7,
which is much less than 7(n − 1)/2 = 28.

The entries of the maximal radii of the disk produced in the first three
iterations are given in Table 1, where the denotation X(−p) means X×10−p.

methods r(1) r(2) r(3)

(2.9)E 3.21(−2) 5.10(−8) 2.49(−35)
(2.9)C 5.58(−2) 4.06(−7) 8.54(−32)
(4.1)E 1.51(−2) 3.22(−7) 8.85(−25)
(4.1)C 2.15(−2) 2.56(−7) 1.80(−28)

Table 1.
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Example 2. The interval methods (2.9) and (4.1) were applied for the deter-
mination of the eigenvalues of Hessenberg’s matrix

H8 =

























2+3i 1 0 0 0 0 0 0
0 4+6i 1 0 0 0 0 0
0 0 6+9i 1 0 0 0 0
0 0 0 8+12i 1 0 0 0
0 0 0 0 10 + 15i 1 0 0
0 0 0 0 0 12 + 18i 1 0
0 0 0 0 0 0 14 + 21i 1
1 0 0 0 0 0 0 16 + 24i

























,

whose characteristic polynomial is

f8(λ) = λ8 − (72 + 108i)λ7 − (2 730 − 6 552i)λ6 + (208 656 − 40 824i)λ5

−(2 671 431 + 2 693 880i)λ4 − (8 208 648 − 40 168 548i)λ3

+(240 382 340 − 97 806 672i)λ2 − (718 213 536 + 487 539 216i)λ

−9 636 481 + 1 151 539 200i.

Gerschgorin’s disks which correspond to the matrix H8 = [hij ] have the
form {hii;Ri} (i = 1, . . . , n), where hii are the diagonal elements of a matrix
H8 and Ri =

∑

j 6=i |hij |. If these disks are mutually nonintersecting, then
each of them contains one and only one eigenvalue. In such case these disks
are very convenient for the application of inclusion methods. In our example
Gerschgorin’s disks {hii;Ri} are given by

Z1 = {2 + 3i; 1}, Z2 = {4 + 6i; 1}, Z3 = {6 + 9i; 1},
Z4 = {8 + 12i; 1}, Z5 = {10 + 15i; 1}, Z6 = {12 + 18i; 1},
Z7 = {14 + 21i; 1}, Z8 = {16 + 24i; 1},

and they are mutually disjoint. For this reason we have taken them as initial
disks containing the eigenvalues of f8 in the implementation of the tested
methods.

The maximal radii r(m) (m = 1, 2) of the produced disks, which enclose
the eigenvalues of H8, are displayed in Table 2.

methods r(1) r(2)

(2.9)E 2.24(−19) 2.68(−97)
(2.9)C 1.34(−20) 9.96(−100)
(4.1)E 1.16(−13) 9.31(−43)
(4.1)C 1.46(−13) 1.03(−53)

Table 2.

From Table 2 we notice that the applied methods converge extremely
fast. Actually, the eigenvalues of Hessenberg’s matrix are very close to the
diagonal elements (the dimension of matrix is greater, the approximation
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hii (∼= ζi) is better). Since the elements hii are the centers of initial inclusion
disks, this closeness causes the very fast convergence of the sequences of radii
of inclusion disks.

The presented examples, and other numerous examples, point to a very
good convergence properties of the presented method (2.9) and high compu-
tational efficiency.
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