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SEVERAL MODIFICATIONS OF SIMPLEX METHOD

NEBOJŠA V. STOJKOVIĆ, PREDRAG S. STANIMIROVIĆ

AND MARKO D. PETKOVIĆ

Abstract. 1 We analyze the problem of finding the first basic

solution in the two phases simplex algorithm. Also, a modi-

fication and several improvements of the simplex method are

introduced. We report computational results on numerical ex-

amples from Netlib test set.

1. Introduction

Consider the linear program

Maximize f(x) = f(xN,1, . . . , xN,n1
) =

n1
∑

i=1

cixN,i − d

subject to N
(1)
i :

n1
∑

j=1

aijxN,j ≤ bi, i = 1, . . . , r

N
(2)
i :

n1
∑

j=1

aijxN,j ≥ bi, i = r + 1, . . . , s(1.1)

Ji :
n1
∑

j=1

aijxN,j = bi, i = s + 1, . . . ,m

xN,j ≥ 0, j = 1, . . . , n1.

Every inequality of the form N
(1)
i (LE constraint) we change into the equality

by adding a slack variable xB,i:

N
(1)
i :

n1
∑

j=1

aijxN,j + xB,i = bi, i = 1, . . . , r.
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Also, every inequality of the form N
(2)
i (GE constraint) we transform into

the equality by subtracting a surplus variable xB,i:

N
(2)
i :

n1
∑

j=1

aijxN,j − xB,i = bi, i = r + 1, . . . , s.

Formally, we add slack variables xB,i, i = s + 1, . . . ,m with the fixed value
zero in every equality constraint. In a such way we get the equivalent linear
program into the standard form

(1.2)

Maximize c1xN,1 + · · · + cn1
xN,n1

− d

subject to Ax = b,

b = (b1, . . . , bm), x=(xN,1, . . . , xN,n1
, xB,1, . . . , xB,m),

xN,j ≥ 0, j = 1, . . . , n,

xB,i ≥ 0, i = 1, . . . , s, xB,i = 0, i = s + 1, . . . ,m,

where the matrix A is in R
m×(n1+m).

In the second section we consider the transformation of the standard form
into the equivalent canonical form and restate known algorithms. In the
third section we accelerate the process of finding the first basic solution in
the simplex algorithm, improving the choice of basic and nonbasic variables.
Also, we introduce several improvements of two phases simplex method.
Several numerical examples are reported in the last section.

2. The simplex method

Without loss of generality we assume that the matrix A is of full rank
( rank(A)=m), i.e. that equalities in Ji are linearly independent. Otherwise,
we apply Gauss-Jordan algorithm for the elimination of redundant equalities.
After that, we apply the next algorithm to obtain the canonical form of the
problem (1.2).

Algorithm 1.

Step 1. If Ji = ∅ (the empty set), perform Algorithm 4.

Step 2. Find the first p such that pth constraint is equality and choose the
last apj 6= 0 for the pivot element. (If bp 6= 0 and there not exist apj 6= 0,
the problem is not feasible; if bp = 0, then we can drop pth constraint.)
Step 3. Applying Algorithm 2 replace basic variable xB,p = 0 and nonbasic
variable xN,j, and drop jth column (because of xB,p = 0).
Step 4. If there exists the next p such that pth constraint is equality then
perform Step 2. Otherwise, apply Algorithm 4. After the substitution n =
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n1 + s − m, the canonical form of problem (1.2) could be written in the
following tableau form

xN,1 xN,2 . . . xN,n −1
a11 a12 . . . a1n b1 = −xB,1

. . . . . . . . . . . . . . . . . .
am1 am2 . . . amn bm = −xB,m

c1 c2 . . . cn d = f

(2.1)

where xN,1, . . . , xN,n is the set of nonbasic variables and xB,1, . . . , xB,m are
basic variables. Transformed coefficients of the matrix A and the vector c
are denoted by aij and cj , respectively, without loss of generality.

For the sake of completeness we restate one version of the classical two
phases maximization algorithms from [1], [3], [5] and [6] with respect to
linear problem (1.1), which is presented in the tableau form (2.1).

Algorithm 2. (Replacing a basis variable xB,p and nonbasis variable xN,j.)

a1
pl =



























1
apj

, q = p, l = j
apl

apj
, q = p, l 6= j

−
aqj

apj
, q 6= p, l = j

aql −
aplaqj

apj
, q 6= p, l 6= j

b1
l =







bp

apj
, l = j

bl −
bp

apj
alj, l 6= p

c1
l =







cl −
cjapl

apj
, l 6= j,

−
cj

apj
, l = j

,

d1 = d −
bpcj

apj
.

Algorithm 3. (Simplex method for basic feasible solution.)

Step S1A. If c1, . . . , cn ≤ 0, then the basic solution is an optimal solution.
Step S1B. Choose an arbitrary cj > 0. (We use the maximal cj).
Step S1C. If a1j , . . . , amj ≤ 0, stop the algorithm. Maximum is +∞.

Otherwise, go to the next step.
Step S1D. Compute

min
1≤i≤m

{

bi

aij
| aij > 0

}

=
bp

apj

and replace nonbasic and basic variables xN,j and xB,p, respectively, applying
Algorithm 2.
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If the condition b1, . . . , bm ≥ 0 is not satisfied, we use the following algo-
rithm to search for the first basic feasible solution from [6]. With respect
to analogous algorithms from [1], [3] and [5] this algorithm does not use
artificial variables, and does not increase dimensions of the problem.

Algorithm 4. (Find the first basic feasible solution).

Step S2. Select the last bi < 0.
Step S3. If ai1, . . . , ain ≥ 0 then STOP. Linear program can not be solved.
Step S4. Otherwise, find aij < 0, compute

min
k>i

({

bi

aij

}

∪

{

bk

akj
| akj > 0

})

=
bp

apj

and replace nonbasic and basic variables xN,j and xB,p, respectively, using
Algorithm 2 . We use the last aij < 0.

3. Modifications

The problem of the replacement of a basic and a nonbasic variable
in the general simplex method is contained in Step S1D and Step S4. We
observed two drawbacks of Step S4.

1. If p = i and if there exists index t < i = p such that

bt

atj
<

bp

apj
, bt > 0, atj > 0

in the next iteration xB,t becomes negative:

x1
B,t = b1

t = bt −
bp

apj
atj < bt −

bt

atj
atj = 0.

2. If p>i, in the next iteration b1
i is negative:

bp

apj
<

bi

aij
⇒ b1

i = bi −
bp

apj
aij < 0.

But, there may exists bt <0, t < i such that

min
k>t

({

bt

atj
, atj < 0

}

∪

{

bk

akj
| akj > 0, bk > 0

})

=
bt

atj
.

In this case, it is possible to choose atj for the pivot element and obtain

xB,t = b1
t =

bt

atj
≥ 0.

Also, since bt

atj
≤ bk

akj
, each bk > 0 remains convenient for the basic feasible

solution:

xB,k = b1
k = bk −

bt

atj
akj ≥ 0.
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For this purpose, we propose a modification of Step S4 . This modification
follows from the following lemma.

Lemma 3.1. Let the problem (2.1) be feasible and let x be the basic infeasible

solution with bi1 , . . . , biq < 0. Consider the set I = {i1, . . . , iq}.
In the following two cases:

a) q = m, and

b) q < m and there exists r ∈ I and s ∈ {1, . . . , n} such that

min
h/∈I

{

bh

ahs
| ahs > 0

}

≥
br

ars
, ars < 0,(3.1)

it is possible to produce the new basic solution x1 = {x1
B,1, . . . , x1

B,m} with

at most q − 1 negative coordinates in only one iterative step of the simplex

method, if we choose ars for the pivot element, i.e. replace nonbasic variable

xN,s with the basic variable xB,r.

Proof. a) If q = m, for an arbitrary pivot element ajs < 0 we get a new
solution with at least one coordinate positive:

x1
B,j = b1

j =
bj

ajs
> 0.

b) Assume now that the conditions q < m and (3.1) are satisfied. Choose
ars for the pivot element. For k 6= r, k /∈ I and aks < 0 it is obvious that

x1
B,k = bk −

br

ars
aks ≥ bk ≥ 0.

For k 6= r, k /∈ I and aks > 0, using bk

aks
≥ br

ars
, we conclude immediately

x1
B,k = b1

k = bk −
br

ars
aks ≥ 0.

Hence, all positive bk remain positive. Moreover, for br < 0 we get

b1
r =

br

ars
≥ 0,

which completes the proof. 2

In accordance with these considerations, we propose the following im-
provement of Algorithm 4.

Algorithm 5. (Modification of Algorithm 4 ).

Step 1. If b1, . . . , bm ≥ 0 perform Algorithm 3 . Otherwise, construct the set

B = {bi1 , . . . , biq} = {bik | bik < 0, k = 1, . . . , q}.

Step 2. Select the first bis < 0.
Step 3. If ais,1, . . . , ais,n ≥ 0 then STOP. Linear program is not solvable.
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Otherwise, construct the set

Q = {ais,jp < 0, p = 1, . . . , t},

set p = 1 and continue.
Step 4. Compute

min
1≤k≤m

{

bk

ak,jp

| ak,jp
> 0, bk > 0

}

=
bh

ah,jp

.

Step 5. If
bis

ais,jp
≤ bh

ah,jp
then replace nonbasic and basic variables xN,jp and

xB,is , else go to Step 6.

Step 6. If p > t replace xN,jp and xB,h and go to Step 2. Otherwise, put
p = p + 1 and go to Step 3.

In the sequel we propose an improvement of Algorithm 2. Let us observe
that in the real problems the matrix A is frequently sparse, so the number
of needed nonzero coefficients is relatively small.

Algorithm 6. (The improvement of Algorithm 2.)

It is assumed that

ai,n+1 = bi, i = 1, . . . ,m, am+1,j = cj , j = 1, . . . , n, an+1,n+1 = d.

Step 1. Form the sets

V = {apl|apl 6= 0, l = 1, . . . , n + 1},

K = {aqj |aqj 6= 0, q = 1, . . . ,m + 1}.

Step 2. Apply Algorithm 2 only for aql, aqj and apl satisfying apl ∈ V and
aqj ∈ K.

We also introduce the next improvement of Algorithm 1. Instead dropping
columns, we will mark these columns. More precisely, we introduce logical
sequence outc with values outc(i) = true if the ith column is not dropped,
and outc(i) = false otherwise. Similarly, outr is an indicator for rows.

Algorithm 7. (The improvement of Algorithm 1.)

Step 1. Set outc(p) = true, p = 1, . . . , n, and outr(j) = true, j = 1, . . . ,m.
Step 2. If Ji = ∅, go to Step 7.

Step 3. If the pth constraint is equality, continue.
Step 4. Find apj 6= 0 such that outc(j) = true. (If there is not exists apj 6= 0
with outc(j) = true and bp 6= 0, the problem is not feasible; if bp = 0, then
we can drop the pth constraint and set outr(p) = false.)
Step 5. Put apj for the pivot element and perform Algorithm 2.

Step 6. Go to Step 2.

Step 7. Drop all columns and rows with outc(p) = false and outr(j) =
false, respectively. Set outc(p) = true and outr(j) = true for all p, j and
perform Algorithm 4.
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4. Numerical experience

Example 4.1. We tested the code MarP lex on some Netlib test problems.
We also compare our results with corresponding results produced by robust
code PCx [2].

Problem PCx MarP lex Alg5 Alg4 No5 No4
Adlittle 2.25494963×105 225494.963162 21 77 368 233
Afiro -4.64753143×102 -464.753142 2 17 19 26
Agg 3.59917673×107 -35991767.286576 38 84 83 151
Agg2 -2.0239251×107 -20239252.3559776 31 52 223 140
Agg3 1.03121159×107 10312115.933596 51 141 300 256
Blend -3.08121498×101 -30.812150 - - 439 439
Lotfi -2.5264706062×101 -25.264706 111 339 559 771
Sc105 -5.2202061212×101 -52.202061 - - 59 59
Sc205 -5.22020612×101 -52.202061 - - 172 172
Sc50a -6.4575077059×101 -64.575077 - - 30 30
Sc50b -7.000000000×101 -70 - - 38 38
Scagr25 -1.47534331×107 -14753433.060769 185 290 695 1404
Scagr7 -2.33138982×106 -2331389.824330 69 89 125 186
Scorpion 1.87812482×103 1878.124822 66 118 162 179
Share2b -4.1573224074×102 -415.732241 92 123 167 215
Stocfor1 -4.1131976219×104 -41131.976219 - - 44 44
LitVera 1.999992×10−2 0 - - 1 1
Beaconfd 3.359249×104 33592.4858072 - - 41 41
Israel -8.966448×105 -896644.82 8 23 815 891
Kb2 -1.7499×103 -1749.9001299062 - - 72 72
Recipe -2.66616×102 -266.6160 - - 32 32

Table 1.

From the first two columns in Table 1 we can see that our results are in
accordance with the results obtained by PCx, in all problems beside the
problem LitV era, taken from [4]. Note that our result for the problem
LitV era is quite correct. On the other side, code PCx achieves the near-
optimal value 1.999992 × 10−2 in that case. In the next two columns we
give the number of iterations needed for the construction of the first basis
feasible solution. After the observation of these columns, it is easy to see
that Algorithm 5 is faster with respect to Algorithm 4 in all cases. A streak
in the corresponding position means that there are no iterative steps before
the first basic feasible solution. By No5 and No4 we denote the complete
number of iterations for Algorithm 5 and Algorithm 4, respectively. As we
can see, with respect to measures No5 and No4, Algorithm 5 is faster with
respect to Algorithm 4 almost in all cases. Note that the maximal dimensions
of problems presented in Table are 516× 758 (in problems Agg2 and Agg3).
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