LACUNARY STRONG CONVERGENCE OF DIFFERENCE SEQUENCES WITH RESPECT TO A MODULUS FUNCTION

RIFAT ÇOLAK

ABSTRACT. A sequence $\theta=(k_r)$ of positive integers is called lacunary if $k_0=0,\ 0< k_r< k_{r+1}$ and $h_r=k_r-k_{r-1}\to\infty$ as $r\to\infty$. The intervals determined by θ are denoted by $I_r=(k_{r-1},k_r]$.

Let ω be the set of all sequences of complex numbers and f be a modulus function. Then we define

$$N_{\theta}(\Delta^{m}, f) = \{x \in \omega : \lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f(|\Delta^{m} x_{k} - l|) = 0 \text{ for some } l\}.$$

$$N_{\theta}^{0}(\Delta^{m}, f) = \{x \in \omega : \lim_{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} f(|\Delta^{m} x_{k}|) = 0\}.$$

$$N_{\theta}^{\infty}(\Delta^m, f) = \{x \in \omega : \sup_{r} \frac{1}{h_r} \sum_{k \in I_r} f(|\Delta^m x_k|) < \infty \}.$$

where $\Delta x_k = x_k - x_{k+1}$, $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and m is a fixed positive integer.

In this study we give various properties and inclusion relations on these sequence spaces.

1. INTRODUCTION

Let w be the set of all sequences of real or complex numbers and ℓ_{∞} , c, and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup_k |x_k|$, where $k \in N = \{1, 2, ...\}$ the set of positive integers.

The difference sequence space $X(\Delta)$ was introduced by Kizmaz [4] as follows:

$$X(\Delta) = \{x = (x_k) \in w : (\Delta x_k) \in X\}$$
 for $X = \ell_{\infty}$, c and c_0 , where $\Delta x_k = x_k - x_{k+1}$, for all $k \in N$.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 40C05, Secondary: 46A45. Key words and phrases. Difference sequence, lacunary sequence, modulus function.

The difference sequence spaces were generalized by Et and Çolak [2] as follows:

$$X(\Delta^m) = \{x = (x_k) \in w : \Delta^m x = (\Delta^m x_k) \in X\} \text{ for } X = \ell_\infty, c \text{ and } c_0,$$

where $\Delta^m x_k = \Delta^{m-1} x_k - \Delta^{m-1} x_{k+1}$ and so $\Delta^m x_k = \sum_{v=0}^m (-1)^v \binom{m}{v} x_{k+v}$. By a lacunary sequence $\theta = (k_r)$; r = 0, 1, 2, ..., where $k_0 = 0$, we mean an increasing sequence of non-negative integers with $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. We denote by $I_r = (k_{r-1}, k_r]$ the intervals determined by θ and $q_r = \frac{k_r}{k_{r-1}}$ for r = 0, 1, 2, The space of lacunary convergent sequences N_θ

(1.1)
$$N_{\theta} = \left\{ x = (x_k) : \lim_{r} h_r^{-1} \sum_{k \in I_r} |x_k - \ell| = 0, \text{ for some } \ell \right\}.$$

The space N_{θ} is a BK-space with the norm

was defined by Freedman et all [3] as follows:

(1.2)
$$||x||_{\theta} = \sup_{r} h_r^{-1} \sum_{k \in I_r} |x_k|.$$

 N_{θ}^{0} denotes the subset of N_{θ} those sequences for which $\ell = 0$ in the definition of N_{θ} . $(N_{\theta}^{0}, \|\cdot\|_{\theta})$ is also a BK-space. There is a relation (see for instance [3]) between N_{θ} and the space $|\sigma_{1}|$ of strongly Cesaro summable sequences defined by

(1.3)
$$|\sigma_1| = \left\{ x = (x_k) : \lim_{n \to \infty} n^{-1} \sum_{k=1}^n |x_k - \ell| = 0, \text{ for some } \ell \right\}.$$

In the special case $\theta = (2^r)$ we have $N_{\theta} = |\sigma_1|$.

The notion of a modulus function was introduced by Nakano [7]. We recall that a modulus f is a function from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(x) = 0 if and only if x = 0
- (ii) $f(x+y) \le f(x) + f(y)$, for all $x \ge 0, y \ge 0$
- (iii) f increasing,
- (iv) f continuous from the right at zero.

Since $|f(x) - f(y)| \le f|(x - y)|$, it follows from (iv) that f is continuous on $[0, \infty)$. Furthermore, we have $f(nx) \le nf(x)$ for all $n \in N$ from condition (ii), and so $f(x) = f\left(nx\frac{1}{n}\right) \le nf(x/n)$, hence $\frac{1}{n}f(x) \le f(x/n)$ for all $n \in N$.

A modulus may be bounded or unbounded. For example, $f(x) = x^p$ for $0 is unbounded, but <math>f(x) = \frac{x}{x+1}$ is bounded.

Subsequently modulus function have been studied by Ruckle [9], Connor [1], Maddox [5], Pehlivan and Fisher [8], Malkowsky and Savaş [6].

2. MAIN RESULTS

In this section, we extend Δ^m -lacunary strongly convergent sequences which were defined by B.C. Tripathy, M. Et and S. Mahanta [10], and give the relation between Δ^m -lacunary strong convergence and Δ^m -lacunary strong convergence with respect to a modulus.

Definition 2.1. Let f be a modulus function. We define the following sets

$$N_{\theta}^{0}\left(\Delta^{m},f\right) = \left\{x \in w : \lim_{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(|\Delta^{m} x_{k}|\right) = 0\right\}$$

$$N_{\theta}\left(\Delta^{m},f\right) = \left\{x \in w : \lim_{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(|\Delta^{m} x_{k} - \ell|\right) = 0, \text{ for some } \ell\right\}$$

$$N_{\theta}^{\infty}\left(\Delta^{m},f\right) = \left\{x \in w : \sup_{r} h_{r}^{-1} \sum_{k \in I_{r}} f\left(|\Delta^{m} x_{k}|\right) < \infty\right\}.$$

If we take f(x) = x then we obtain the sequence spaces $N_{\theta}^{0}(\Delta^{m})$, $N_{\theta}(\Delta^{m})$ and $N_{\theta}^{\infty}(\Delta^{m})$ from the above sequence spaces.

Theorem 2.2. The sets $N_{\theta}^{0}(\Delta^{m}, f)$, $N_{\theta}(\Delta^{m}, f)$ and $N_{\theta}^{\infty}(\Delta^{m}, f)$ are linear spaces.

Proof. We consider only $N_{\theta}(\Delta^m, f)$. Let $x, y \in N_{\theta}(\Delta^m, f)$ and $\alpha, \gamma \in C$. Then there exist positive integers K_{α} and M_{γ} such that $|\alpha| \leq K_{\alpha}$ and $|\gamma| \leq M_{\gamma}$. From the definition of f and Δ^m we have

$$h_r^{-1} \sum_{k \in I_r} f\left(\left|\Delta^m \left(\alpha x_k + \gamma y_k\right) - \left(\alpha \ell_1 + \gamma \ell_2\right)\right|\right) \le K_\alpha h_r^{-1} \sum_{k \in I_r} f\left(\left|\Delta^m x_k - \ell_1\right|\right) + M_\gamma h_r^{-1} \sum_{k \in I_r} f\left(\left|\Delta^m y_k - \ell_2\right|\right) \to 0, \quad r \to \infty.$$

Thus $N_{\theta}(\Delta^m, f)$ is a linear space.

Lemma 2.3. [8] Let f be a modulus function and let $0 < \delta < 1$. Then for each $x > \delta$ we have $f(x) \le 2f(1)\delta^{-1}x$.

Theorem 2.4. Let f be a modulus function. Then $N_{\theta}(\Delta^m) \subset N_{\theta}(\Delta^m, f)$.

Proof. Let $x \in N_{\theta}(\Delta^m)$. Then we have

$$(2.1) \tau_r = h_r^{-1} \sum_{k \in I_r} |\Delta^m x_k - \ell| \to 0 as r \to \infty, for some \ell.$$

Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(u) < \varepsilon$ for every u with $0 \le u \le \delta$. Then we can write

$$h_r^{-1} \sum_{k \in I_r} f(|\Delta^m x_k - \ell|) = h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) + h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| > \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|) \le h_r^{-1} \sum_{k \in I_r, |\Delta^m x_k - \ell| \le \delta} f(|\Delta^m x_k - \ell|)$$

$$h_r^{-1}(h_r\varepsilon) + h_r^{-1}2f(1)\delta^{-1}h_r\tau_r$$

from Lemma 2.3. Therefore $x \in N_{\theta}(\Delta^{m}, f)$.

Theorem 2.5. Let f be a modulus function, if $\lim_{t\to\infty} \frac{f(t)}{t} = \beta > 0$, then $N_{\theta}\left(\Delta^{m},f\right)=N_{\theta}\left(\Delta^{m}\right).$

Proof. By Theorem 2.4, we need only show that $N_{\theta}(\Delta^m, f) \subset N_{\theta}(\Delta^m)$. Let $\beta > 0$ and $x \in N_{\theta}(\Delta^m, f)$. Since $\beta > 0$, we have $f(t) \geq \beta t$ for all $t \geq 0$.

$$h_r^{-1} \sum_{k \in I_r} f(|\Delta^m x_k - \ell|) \ge h_r^{-1} \sum_{k \in I_r} \beta |\Delta^m x_k - \ell| = \beta h_r^{-1} \sum_{k \in I_r} |\Delta^m x_k - \ell|.$$

Therefore we have $x \in N_{\theta}(\Delta^m)$.

In Theorem 2.5, the condition $\beta > 0$ can not be omitted. For this consider the following example.

Example 2.6. Let $f(x) = \ln(1+x)$. Then $\beta = 0$. Define $\Delta^m x_k$ to be h_r at the $(k_{r-1}+1)$ -th term in I_r for every $r \geq 1$ and $x_i = 0$ otherwise. Note that $x \notin \ell_{\infty}(\Delta^m)$. Then we have

$$h_r^{-1} \sum_{k \in I_r} f\left(|\Delta^m x_k|\right) = h_r^{-1} \ln\left(1 + h_r\right) \to 0, \quad as \quad r \to \infty$$

and so $x \in N_{\theta}(\Delta^m, f)$, but

$$h_r^{-1} \sum_{k \in I_r} |\Delta^m x_k| = h_r^{-1} h_r \to 1, \quad as \quad r \to \infty,$$

and so $x \notin N_{\theta}(\Delta^m)$.

Theorem 2.7. Let $m \ge 1$ be a fixed integer, then

- (i) $N_{\theta}^{0}\left(\Delta^{m-1},f\right)\subset N_{\theta}^{0}\left(\Delta^{m},f\right);$ (ii) $N_{\theta}\left(\Delta^{m-1},f\right)\subset N_{\theta}\left(\Delta^{m},f\right);$ (iii) $N_{\theta}^{\infty}\left(\Delta^{m-1},f\right)\subset N_{\theta}^{\infty}\left(\Delta^{m},f\right);$

and the inclusions are strict

Proof. The proof of the inclusions follows from the following inequality

$$h_r^{-1} \sum_{k \in I_r} f(|\Delta^m x_k|) \le h_r^{-1} \sum_{k \in I_r} f(|\Delta^{m-1} x_k|) + h_r^{-1} \sum_{k \in I_r} f(|\Delta^{m-1} x_{k+1}|).$$

To show the inclusions are strict, let $\theta = (2^r)$ and $x = k^m$. Then $x \in N_{\theta}^{\infty}(\Delta^m, f)$, but $x \notin N_{\theta}^{\infty}(\Delta^{m-1}, f)$. If $x = (k^m)$, then $\Delta^m x = (-1)^m m!$ and $\Delta^{m-1}x_k = (-1)^{m+1}r!\left(k + \frac{(m-1)}{2}\right)$.

Theorem 2.8. Let $\theta = (k_r)$ be a lacunary sequence. If $1 < \liminf_r q_r \le \limsup_r q_r < \infty$, then $|\sigma_1|(\Delta^m, f) = N_\theta(\Delta^m, f)$, where

$$|\sigma_1|\left(\Delta^m, f\right) = \left\{x \in w : \frac{1}{n} \sum_{k=1}^n f\left(|\Delta^m x_k - \ell|\right) = 0, \text{ for some } \ell\right\}.$$

Proof. Suppose that $\liminf_r q_r > 1$, then there exists $\delta > 0$ such that $q_r = \frac{k_r}{k_{r-1}} \geq 1 + \delta$ for all $r \geq 1$. Furthermore we have $\frac{k_r}{h_r} \leq \frac{(1+\delta)}{\delta}$ and $\frac{k_{r-1}}{h_r} \leq \frac{1}{\delta}$, for all $r \geq 1$. Then we may write

$$(2.2) \quad \frac{1}{h_r} \sum_{i \in I_r} f(|\Delta^m x_i|) = \frac{1}{h_r} \sum_{i=1}^{k_r} f(|\Delta^m x_i|) - \frac{1}{h_r} \sum_{i=1}^{k_{r-1}} f(|\Delta^m x_i|)$$
$$= \frac{k_r}{h_r} \left(k_r^{-1} \sum_{i=1}^{k_r} f(|\Delta^m x_i|) - \frac{k_{r-1}}{h_r} \left(k_{r-1}^{-1} \sum_{i=1}^{k_{r-1}} f(|\Delta^m x_i|) \right) \right).$$

Now suppose that $\limsup_r q_r < \infty$ and let $\varepsilon > 0$ be given. Then there exists j_0 such that for every $j \geq j_0$

$$A_j = \frac{1}{h_j} \sum_{i \in I_j} [f(|\Delta^m x_i|)] < \varepsilon.$$

We can also choose a number M>0 such that $A_j \leq M$ for all j. If $\limsup_r q_r < \infty$, then there exists a number $\beta>0$ such that $q_r < \beta$ for every r. Now let n be any integer with $k_{r-1} < n < k_r$. Then

$$n^{-1} \sum_{i=1}^{n} f(|\Delta^{m} x_{i}|) \leq k_{r-1}^{-1} \sum_{i=1}^{k_{r}} f(|\Delta^{m} x_{i}|)$$

$$= k_{r-1}^{-1} \left\{ \sum_{i \in I_{1}} f(|\Delta^{m} x_{i}|) + \dots + \sum_{i \in I_{r}} f(|\Delta^{m} x_{i}|) \right\}$$

$$= k_{r-1}^{-1} \left\{ \sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f(|\Delta^{m} x_{i}|) + \sum_{j=j_{0}+1}^{r} \sum_{i \in I_{j}} f(|\Delta^{m} x_{i}|) \right\}$$

$$\leq k_{r-1}^{-1} \left\{ \sum_{j=1}^{j_{0}} \sum_{i \in I_{j}} f(|\Delta^{m} x_{i}|) + \varepsilon(k_{r} - k_{j_{0}}) k_{r-1}^{-1} \right\}$$

$$= k_{r-1}^{-1} \left\{ h_{1} A_{1} + h_{2} A_{2} + \dots + h_{j_{0}} A_{j_{0}} \right\}$$

$$+ \varepsilon(k_{r} - k_{j_{0}}) k_{r-1}^{-1}$$

$$\leq k_{r-1}^{-1} \left(\sup_{1 \leq i \leq j_0} A_j \right) k_{j_0} + \varepsilon \left(k_r - k_{j_0} \right) k_{r-1}^{-1}$$

$$< M k_{r-1}^{-1} k_{j_0} + \varepsilon \beta$$

which yields that $x \in |\sigma_1|(\Delta^m, f)$.

References

- [1] J.S. Connor, On strong matrix summability with respect to a modulus and statistical convergence, *Canad. Math. Bull.* (32) (1989), 194–198
- [2] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. of Math. (21) (1995), 377–386
- [3] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, *Proc. London Math. Soc.* (37(3)) (1978), 508–520
- [4] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. (24) (1981), 169–176
- [5] I.J. Maddox, Sequence spaces defined by a modulus, Math. Proc. Camb. Philo. Soc. (100) (1986), 161–166
- [6] E. Malkowsky and E. Savas, Some λ —sequence spaces defined by a modulus, *Archivum Math.* (36) (2000), 219–228
- [7] H. Nakano, Concave modulars, J. Math. Soc. Japan (5) (1953), 29–49
- [8] S. Pehlivan and B. Fisher, Lacunary strong convergence with respect to a sequence of modulus functions, *Comment Math. Univ. Carolin* (36) (1995), 69–76
- [9] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math. (25) (1973), 1973–1978
- [10] B.C. Tripathy, M. Et and S. Mahanata, On a class of generalized lacunary difference sequences defined by Orlicz function (Submitted).

Department of Mathematics, Faculty of Science and Arts, Firat University, 23119 Elazig, TÜRKÍYE

E-mail address: rcolak@firat.edu.tr