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TWO WAYS TO COMPACTNESS

IVANA DJOLOVIC

ABSTRACT. In this paper we give two different ways of proving
the compactness of some linear operators between certain se-
quence spaces. One of them is based only on the theory of
matrix transformations and the other uses the Hausdorff mea-
sure of noncompactness.

1. INTRODUCTION

The theory of FK and BK spaces is of great importance in the charac-
terization of matrix transformations between certain sequence spaces, so we
will give some necessary definitions and notations which will be used in our
work.

An FK space is a complete linear metric sequence space with the property
that convergence implies coordinatewise convergence; a BK space is normed
FK space.

By ¢, we denote the set of all finite sequences and by e and e(™ (n € Np)
we denote the sequences such that e, = 1 for all £, and eﬁ{‘) =1and e,(cn) =0
for K # n. An FK space X D ¢ is said to have AK if every sequence
x = (21)72, € X has a unique representation x = 72, zre.

Let w be the set of all complex sequences and X and Y be sequence spaces

By (X,Y) we denote the set of all matrices that map X into Y. If we
denote by A = (ank)mzo an infinite matrix with complex entries and by A,
its n-th row, we write

Apx = Z ankrr and Az = (Apx),,
k=0
A€ (X,Y) if and only if A,z converges for all z € X and alln and A(z) € Y

X ={aecw]| Zakxk converges for all z € X}.
k
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For our investigation we also need the next important results.

Theorem 1.1. ([3, Theorem 1.17]) Any matriz map between FK spaces is
continuous.

Theorem 1.2. ([3, Theorem 1.23]) Let X and Y be FK spaces. Then,
(X,Y) C B(X,Y), that is each A € (X,Y) defines an element La €
B(X,Y) where Lax = Az, z € X.

(In this paper, we will write A instead of L4 )

In our work we consider the compact operators in the class (X,Y) and
denote the class of such operators by K(X,Y); that is, we try to find neces-
sary and sufficient conditions for L4 to be a compact operator. Hence, let
us recall that if X and Y are metric spaces and f : X — Y, we say that
f is a compact map if f(Q) is a relatively compact subset of Y for every
bounded subset @ of X (that is, for every bounded sequence (z,), in X, the
sequence (f(zy))n has a convergent subsequence in Y).

2. MATRIX TRANSFORMATIONS AND COMPACTNESS

In this section we will consider matrix transformations between classical
sequence spaces and give necessary and sufficient conditions for A to be a
compact operator in the form of conditions for the entries of the infinite
matrix A. The whole investigation is based on results from [6]. For further
work, the next theorem will be very useful.

Theorem 2.1. ([6, Theorem 3]) Let A € (X,Y) and AT denote the transpose
of A. Then A € K(X,Y) if and only if AT € K(Y?, X5).

We can conclude that if we find conditions for compactness of operators
from B(cg, £p) or B(¢1,4p), 1 < p < oo, we will be able to find all the other
conditions. Hence, let us find the conditions.

We need following notations.

Let xy,,) denote the element of X whose first n coordinates coincide with
those of x and whose remaining coordinates are zero;

Ay = A(z") and AT = (A",
Theorem 2.2. ([6, Corollary]) Let A € (X,Y) and let XP have AK. Then
Ae K(X,Y) if and only if
lim ||A—A™| =o0.

n—oo

Corollary 2.3. We have A € B(co,lp) , 1 < p < oo if and only if A €
K(co, lp) , 1 < p < o0, that is if A is given by an infinite matric A =
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(ank)zf’kzo, then A € K(co,lp) , 1 < p < oo, if and only if

sup (31D anl?)

KCF keK

Al

< 090,

where F denotes the class of all finite sets of positive integers.

It remains to find the conditions for A € (¢1,4,) ,1 < p < oo to be a

compact transformation. Since Ef = l» and f, is not an AK space, we
cannot use Theorem 2.2. Hence, we need following result.

Theorem 2.4. (|6, Theorem 2]) Let A € (X,Y) and Y have AK. Then
Ae K(X,Y) if and only if

n—o0

Corollary 2.5. Let A be given by an infinite matriz A = (ank)pp—o- Then
Ae K(l,¢,), 1<p<ooifand only if

sup (31 S anl?)? < 00

KCcF keK

and
o0
lim sup( Y7 agl?)? =0.
ko j=nt1

Now, using the previous results,we can obtain all the other conditions.
For example, we are interested in transformations A in (¢, ).

Corollary 2.6. We have A € K(c,l) if and only if

o
Jim_sup D lakg| =0.
j=n+1

3. THE HAUSDORFF MEASURE OF NONCOMPACTNESS AND MATRIX
TRANSFORMATIONS

Now, applying the Hausdorff measure of noncompactness, we solve the
problem from the previous section. Let us recall some definitions and well-
known results.

Definition 3.1. Let (X,d) be a metric space and @ a bounded subset of
X. Then the Hausdorff measure of noncompactness of @), denoted by x(Q),
is defined by

X(Q) =inf{e >0 | Q C U K(zj,7i),x; € X,r; <e,i=1,... ,n,n € N}
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If Q, Q1 and Q2 are bounded subsets of the metric space (X, d), then
x(Q) = 0 if and only if @ is a totally bounded set

x(Q) = x(Q),
@1 C Q2 implies x(Q1) < x(Q2),
X(Q1 U Q2) = max{x(Q1), x(Q2)},
X(Q1 N Q2) < min{x(Q1), x(Q2)}-
If Q, Q1 and@2 are bounded subsets of the normed space X, then
X(Q1 + Q2) < x(Q1) + x(Q2),
WQ+2) = x(Q),z € X,

X(AQ) = [Ax(@),vA € C.
Let X and Y be Banach spaces, S = {z € X | ||z = 1}, K = {z € X |
|z]| <1} and A € B(X,Y). Then, the Hausdorff measure of noncompact-
ness of an operator A, denoted by ||A||y, can be obtained by

14l = x(AK) = x(AS).
Furthermore, A is a compact if and only if ||A], = 0. It holds that
1Al < [|A]-

Theorem 3.2 (Goldenstein, Gohberg, Markus). ( [3, Theorem 2.23]) Let X
be a Banach space with Schauder basis {e1, e, ...}, Q a bounded subset of X,
and P, : X — X the projector onto the linear span of {e1,ea,...,en}. Then
we have

L timsup(sup | (I — Po)zll) < x(Q) < limsup(sup [ (I — Po)z])

a4 n—oo zeQ n—oo  ze@
where a = limsup,, o, [[I — Pu]l-

Theorem 3.3. Let A € B(co,{p) , 1 < p < 00 be given by an infinite matriz
A = (ank)—g- Then we have ||Ally = 0.

Corollary 3.4. Let A € B(co,¢p) , 1 < p < oo be given by an infinite
matrix A = (ank)%?kzo- Then, A € B(co,tp) , 1 < p < oo if and only if
A€ K(co, lp) , 1 <p<oo.

Theorem 3.5. Let A € B({1,¢p) , 1 <p < 0o be given by an infinite matriz
A = (ank)S_o- Then we have

(o]
1
Al = Jim sup{ > lajel"}.
j=n+1
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Corollary 3.6. Let A € B({1,4p) , 1 < p < oo be given by an infinite matriz
A= (ank)%?k:o- Then, A is compact if and only if

o
1
lim sup a;ixP}» =0.
sl 3 foaf)

Applying the properties of the Hausdorff measure of noncompactness in
the investigation of matrix transformations in the class (¢, £~ ), we obtain
following result

0 <||4]y £ limsupz |ank-
n—oo k'

Hence, in this case, we cannot give necessary and sufficient conditions for
the compactness of the operator. Actually, we have following corollary.

Corollary 3.7. Let A € B(c,lx) be given by an infinite matric A =
(ank)pk—o- Then A is compact if

lim sup Z |ank| = 0.

n—oo k
Equivalence does not hold in general.

Example 3.8. This example illustrates that equivalence does not hold in
the previous corollary. Let A = (a,k) be an infinite matrix such that
ang) = 1 and apy = 0 for k& # k(0). Using the known characterization
of matrix transformations, we conclude A € (¢, f). In this example, we ob-
tain limsup,, o >k |ank| # 0. Also, if we put x = e = (1,1,...), we obtain
that A is a compact operator.

In the previous corollary, we could not find necessary and sufficient con-
ditions for the compactness of the operator by only applying the Hausdorff
measure of noncompactness. That was not the case in the previous section
where we had a more powerful tool, but in the all other cases we have got
the same conditions, hence here is only the matter of choice.

Proof. Now we prove Theorem 3.3. Set S = {z € ¢¢ | ||| = 1}. By Theorem
3.2 we have

1
0 < [[A]ly = X(AS) = lim sup|(I — P,)Ax| = lim sup{3" [4;2]"}¥ =0,
€S z€eS j>n

hence ||A|, = 0. O
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Proof. Now we prove Theorem 3.5. Set S = {z € {1 | ||| = 1}. By Theorem
3.2, we have

|Ally = x(AS) = hm sup (I — P,)Az| = hm sup{z |A; x]p}P

j>n
p p
= Jlim_sup{ Z |Zajk$k| b <Z{ Z lajezel?}?
j=n+1 j=n+1
—Zlfﬂkl { Z lajsl?}r < ] sup{ Z jaulP}?
Jj=n+1 j=n+1
= sup{ Z lal}>.
Jj=n+1

It remains to prove the converse inequality.
Let @ be the set defined as @ = {Ae;,i = 1,2,... }. Since A(Q) C ¢, we

have

x(Q) = lim sup [|(/ — Pp)z| = lim sup|[(I — F,)Ae||

(e 9]
1
= m supd 3 lail”} .
Jj=n+1
The inequality x(Q) < x(AS) yields

X(A48) = [[Allx = lim sup{ Z lagilP}.
j=n+1

Finally, we can conclude

[A[ly = lim Sup{ Z Jaji [},

n—00
j=n+1
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