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ON SOME GENERALIZED DIFFERENCE SEQUENCE
SPACES DEFINED BY A MODULUS FUNCTION

MIKAIL ET, YAVUZ ALTIN AND HIFSI ALTINOK

ABSTRACT. The idea of difference sequence spaces was intro-
duced by Kizmaz [9] and generalized by Et and Colak [6]. In
this paper we introduce the sequence spaces [V, A, f,p], (A", E),
[V7 )‘7f7p]1 (ArvE)? [Vv)‘>f7p]oo (AT7E)? SA(AT7E) and S)\O(Arv E)a
where FE is any Banach space, examine them and give var-
ious properties and inclusion relations on these spaces. We
also show that the space S\(A",E) may be represented as a
VoA f,p], (A", E) space.

1. INTRODUCTION

Let w be the set of all sequences real or complex numbers and £, ¢ and ¢g
be respectively the Banach spaces of bounded, convergent and null sequences
x = (x) with the usual norm ||z|| = sup |zg|, where k € N = {1,2, ...},
the set of positive integers.

Let A = (\,) be a non-decreasing sequence of positive numbers tending
to oo such that Ay < A +1, Ay = 1.

The generalized de la Vallée-Poussin mean is defined by

128 ('T) = )\i Z Lk,
" kel

where I, = [n— A\, +1,n] forn=1,2,... .

A sequence x = (xy) is said to be (V, \) —summable to a number L [11] if
tn (x) — L as n — oc.

If A\;, = n, then (V; \) —summability and strongly (V, A\) —summability are
reduced to (C, 1) —summability and [C, 1] —summability, respectively.

The idea of difference sequence spaces was introduced by Kizmaz [9]. In
1981, Kizmaz [9] defined the sequence spaces
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X (A)={z = (zx) : Az € X}

for X =l ¢ and ¢, where Az = (zp — zp11) .
Then Et and Colak [6] generalized the above sequence spaces to the sequence
spaces

X (A")={x=(zx): A"z € X}
for X = lo, c and cg, where r € N, A%z = (z3), Az = (2 — Tpp1)
ATz = (A"z — A"xpqq), and so ATz = Y (—1)" (0)Tpto-

T
v

Later on difference sequence spaces Werev studied by Malkowsky and Para-
shar [15], Et and Bagarir [4], Et and Bektas [5].

We recall that a modulus f is a function from [0,00) to [0,00) such that

i) f(x) =0 if and only if z =0,

i) f(0 +y) < f(2) + F(y) for 2,y > 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everwhere on [0, 00). A modulus may
be unbounded or bounded. Ruckle [17] and Maddox [14], used a modulus f
to construct some sequence spaces.

Subsequently modulus function has been discussed in [1], [16], [19] and
many others.

Let X,Y C w. Then we shall write

M(X,Y)= Nz '*Y={acw:az €Y forall z € X}20]
rzeX

The set X* = M (X, ¢;) is called K6the-Toeplitz dual space or a—dual of
X.

Let X be a sequence space. Then X is called

i) Solid (or normal), if (agxy) € X for all sequences (ay) of scalars with
lag] <1 for all k € N, whenever (zj) € X.

ii) Symmetric, if (z)) € X implies (z,(x)) € X, where 7(k) is a permuta-
tion of N.

iii) Perfect if X = X .

iv) Sequence algebra if x.y € X, whenever z,y € X.

It is well known that if X is perfect then X is normal [8].

The following inequality will be used throughout this paper.

(1) lag + b ["* < C {|ar"™ + [be[*},
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where ag, b, € C, 0 < p, < supy px = H, C = max (1,2H_1) [13].

2. MAIN RESULTS

In this section we prove some results involving the sequence spaces
[V7 >‘7 fap](] (AT7E) ) [Va )\7 fap]l (AT7E) and [‘/7 A7 f7p]oo (AT7E) .

Definition 2.1. Let E be a Banach space. We define w(F) to be the vector
space of all E—valued sequences that is w (E) = {z = (z) : xp € E}. Let f
be a modulus function and p = (py) be any sequence of strictly positive real
numbers. We define the following sequence sets

VA, f.p), (A", E) =

{x cw(E): liyrln)\i > If(IAzy, — L)P* = 0, for some L} ,

" kel,

[V f.lo (A7, B) = {xew(EmggnAiz[f(HNmka:o},

" kel,

VA Lol (A7 E) = {xew(E)rsup%Z[f(HNmH)]pwoo}.

noAN ker,

If © € [V, f,pl; (A", E) then we will write z, — L[V, A, f,p]; (A", E)
and L will be called Ag— difference limit of x with respect to the modulus
I

Throughout the paper Z will denote any one of the notation 0, 1, or oc.
In the case f (x) =z, pp = 1 for all k € Nand p, = 1 for all £ € N, we shall
write [Vvv A]Z (AT” E) and [‘/7 )‘a f]Z (AT’ E) instead of [V7 )‘7 fap]Z (AT’ E) )

respectively.

Theorem 2.2. Let the sequence (py) be bounded. Then the sequence spaces
V., f,pl, (AT, E) are linear spaces.

Proof. We shall prove it for [V, A, f,p], (A", E). The others can be proved
by the same way. Let x,y € [V, A, f,p], (A", E) and 3, € C. Then there
exist positive numbers Mg and N, such that |3] < Mz and |u| < N,. Since
f is subadditive and A" is linear
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AL Z (A" (B + ) )P
el,
1
A_ STUFUBIIAT@E]) + f (Jpl 1Ay ]1)]P
el,

1 1
C (M) 3 30 [ QAT + O (N £ 3 17 IATwell™
€l " keln

as n — oo. This proves that [V, A, f,p|, (A", E) is a linear space. O
Theorem 2.3. Let f be a modulus function, then
[V7 >‘7 fap]o (AT” E) - [Va )\7 fap]l (AT" E) - [‘/7 A7 f7p]oo (AT7E) .

Proof. The first inclusion is obvious. We establish the second inclusion.

Let z € [V, A, f,p]; (A", E). By definition of f we have

— Z ([[A"z )] = — Z ([[A"xg — L+ LJ|)]P*
An kely, " kel,
1 T
<0+ > F (1A e — L) +C DRIk
" kel, An kel

There exists a positive integer K such that ||L| < K. Hence we have
C

> [f ATz )P Z (172 = LIDP* + = (Ko f(1)]"
)\n h )\n An
el keln
Since z € [V, A, f,p]; (A", E) we have = € [V, A, f,p],, (A", E) and this com-
pletes the proof. O

Theorem 2.4. [V A, f,pl, (A", E) is a paranormed (need not total para-
norm) space with

1

95 (@) = sup (% > If <umku>]pk)

" " kel
where M = max(1,sup py).

Proof. From Theorem 2.3, for each x € [V, A, f,pl, (A", E), g, (x) exists.
Clearly g, (x) = g, (—x). It is trivial that A"z = 0 for z = 0. Since
f(0) =0, we get g, (x) =0 for x = 0. Since pp/M < 1 and M > 1, using
the Minkowski’s inequality and definition of f, for each n, we have
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1

1

(A_ > [f(HA’"karNka)]pk)

" kel,

< (Ai 17 (1A +f<||Nyku>1pk)

" kel,

" kel " kel,

< (Ai > [f(HkaH)]p’“) + (% 2 <!!Aryk“>]pk)

Hence g, (z) is subadditive. Finally, to check the continuity of multiplica-
tion, let us take any complex number 3. By definition of f we have

L

9 () = sup (f > U <||N<ﬁxku>>]pk) < K} g, (@)

" kel,

where Kj is a positive integer such that |5| < K. Now, let 5 — 0 for any
fixed = with g, (x) # 0. By definition of f for || < 1, we have

(2) )\ Z (IBA™zk|)]PF < e for n > ng(e).

" kel,

Also, for 1 < n < nyg, taking § small enough, since f is continuous we have

(3) A > [F(IBATz )™ <
" keln
(2) and (3) together imply that g, (6z) — 0 as 8 — 0. O

Theorem 2.5. Ifr > 1, then the inclusion
V. fl; (AL E) C VA, fl, (A7, E)

is strict. In general [V, \, f], (AL, E) C [V,\, fl, (AT, E) foralli =1,2,...,

r — 1 and the inclusion is strict.

Proof. We give the proof for Z = oo only. It can be proved in a similar way
for Z=0and Z =1. Let x € [V, \, f]__ (A""1, E) . Then we have

s [ (Jar )] <o

n
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By definition of f, we have

" Z (A [])]

An keI,
LS ()] 5 [ ()] <

ke, n

Thus [V, A, f], (A1 E) C [AT, ), f]. (A", E) . Proceeding in this way one
will have [V, A, f], (AL E) C [V, A, fl, (AT, E) for i = 1,2,... ,r — 1. Let
E = C, and \,, = n for each n € N. Then the sequence x = (k") , for example,
belongs to [V, A, f].. (A", E), but does not belong to [V, A, f] . (A", E) for
f(x) =z. (If z = (k"), then A"z = (—=1)"r! and A" 1z = (—=1)" !k +
@) for all k € N).

]

The proof of the following result is a routine work.
Proposition 2.6. [V, ), f,p], (AL E) C [V, f,pl, (A", E).

Theorem 2.7. Let f, f1, fo be modulus functions. Then we have

i) VA f1pl, (AT E) C VLA, f o fi,p], (A E),

“) [V7A7f17p]Z (AT7E)H[‘/7 A7.]02717]Z (AT7E) - [Va)\afl + f27p]Z (AT7E) .
Proof. 1) We shall only prove (i). Let ¢ > 0 and choose ¢ with 0 < § < 1
such that f(t) <e for 0 <t <. Write y, = f1 (||A"z||) and consider

Do @l =D ()™ + > [f ()™
kel 1 2

where the first summation is over y; < ¢ and second summation is over
yr > 0. Since f is continuous, we have

(4) DLl < A
1
and for y, > 0, we use the fact that
Yk
kg 2k
Yk < 5 + 5

By the definition of f we have for yi > 9,
Yk
Flyw) <2f(1)75

Hence
1
(5) WO p‘“<maX< (2r(mo7") ) > Uk
no2 An kel,
From (4) and (5), we obtain [V, A, £,plo (A7) C [V.A, f o fr.ply (AT)
The proof of (ii) follows from the following inequality
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[(fr + f2) (1A 2 D17 < C L2 (1A 2 D7 + C [f2 (1A 2k )]

The following result is a consequence of Theorem 2.7 (i).

Proposition 2.8. Let f be a modulus function. Then [V, \,p|, (A", E) C
VA, f.plz (AT, E).

3. STATISTICAL CONVERGENCE

The notion of statistical convergence was introduced by Fast [3] and stud-
ied by various authors ([2],[7],[10],[12],[16],[18]).
In this section we give some inclusion relations between Sy(A”, E) and

VA, f.p)y (AT, E).

Definition 3.1. A sequence z = (xy) is said to be A, — statistically conver-
gent to the number L if for every ¢ > 0,

1
lim = |{k € L : || A"y — || > £} =0,
An

In this case we write Sy(A", E) —limz = L or x, — LS\(A", E).
In the case A\, = n and L = 0 we shall write S(A", E) and S),(A", E)
instead of S)(A", E).

Theorem 3.2. Let A = (\y,) be the same as in Section 1, then
i) If x; — L[V, )], (A", E) then x, — LS\(A", E),
it) If v € loo(A", E) and x, — LS\(A", E), then x, — L[V, )], (A", E),
iii) S\(A",E) Nl (AT, E) = [V,A]; (A", E) Nl (AT, E).

where loo (A", E) = {z € w(E) : supy, ||A"zy|| < co}.

Proof. i) Let ¢ > 0 and z, — L[V, A]; (A", E). Then we have
> ATz — L|| > e|{k € I, : || A"z, — L|| > €}].
keln

Hence 73, — LS\(A", E).
In fact the set [V, A]; (A", E) is a proper subset of S)\(A", E). To show
this, let £ = C and define z = (x},) such that

r [k, forn—[yn+1<k<n
Alay, = { 0, otherwise.
Then z ¢ loo(A", E) , 1, — 0S\(A",E), and x ¢ [V, \]; (A", E).

ii) Suppose that x, — LS\(A", FE) and = € (o (A", E), say ||A"z — L|| <
M. Given € > 0, we have
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1 T
= 3 AT - L) =

" kel,
1 1
o Yo ATz - L+ o Yo ATz - L
" kel, " kel
ATz~ L >e ATz~ L] <e

M
g)\—{keln:Hka—LIIZc”}nLe

n
Hence x is A\, — statistically convergent to the number L.
iii) This immediately follows from (i) and (ii).

O
Theorem 3.3. If liminf 2= > 0,then S(A", E) C S)\(A", E).
Proof. For given € > 0, we get
{E<n:||A"zp—L|>e} D{kel,: ||ATz, — L|| > ¢}.
Hence
Sk < ATm - Ll 2} > S {k<n:|ATm- L] > &)
> 2 Lifhe qy AT — L] > ).
n A,
Therefore z € Sy(A", E).
U

Theorem 3.4. Let f be a modulus function and supppr = H. Then
[V7>‘7f7p]1 (AT,E) C SA(AT,E).

Proof. Let z € [V, A, f,p]; (A", E) and € > 0 be given. Let ¥; denote the
sum over k < n such that ||A"zy — L|| > & and X denote the sum over
k < n such that ||[A"z — L|| < €. Then

=3 (AT — L =

" kel,

> 1k € T+ A0, = L)) = £ min ([F (17, [f (2)).



GENERALIZED DIFFERENCE SEQUENCE SPACES 31

Hence z € S)\(A", E). O
Theorem 3.5. Let f be bounded and 0 < h = infypr < pr < sup,pr =
H < oco. Then S\(A",E) C [V, \, f,pl; (A", E).

Proof. Suppose that f is bounded. Let € > 0 be given and 7 and X5 be in
previous theorem. Since f is bounded there exists an integer K such that
f(x )<K for all > 0. Then

DN

" kel,

1 T T
A—Z[ (A" = LIDI™ + Z (1A = LI

Ai zlj ax (K", KH) + A—n ? [f ()17

1
< max (K", K*) Ik € Lt | ATz, — L] > €}

+max (£ ()", f(2)").
Hencez € [V, A, f,p], (A", E). O
Theorem 3.6. S\(A",E) = [V, A, f,pl, (A", E) if and only if f is bounded.

Proof. Let f be bounded. By Theorems 3.4 and 3.5 we have S)(A", E) =
[V’ )‘a fap]l (AT, E) .

Conversely suppose that f is unbounded. Then there exists a sequence
(t) of positive numbers with f (¢;) = k2, for k = 1,2, ... . If we choose

rofte, i=k%i=1,2,...
A xz—{ 0, otherwise

then we have

1 An—
o ke I ATy 2 e} < !
for all n and so & € S\(A",E), but = ¢ [V, X, f,p]; (A", E) for E = C. This

contradicts to S\(A", E) = [V, A, f,p] (A", E).
]

Theorem 3.7. The sequence spaces [V, A, f,pl, (A", E), [V, A, f,p]; (A", E),
VA, fipl (AT E), Sx(AT, E) and Sy (A", E) are not solid for r > 1.

Proof. Let E =C, py =1 for all k, f(x) =z and A\,, = n for all n € N. Then
(@x) = (K") € [VIA f,plo (AT, E) but (arzr) ¢ [V, A, f,plo (A7, E) when
o = (—1)F for all k € N. Hence [V, A, f,plo (A", E) is not solid. The other

cases can be proved on considering similar examples.

O
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From the above theorem we may give the following corollary.

Corollary 3.8. The sequence spaces [V, X, f,p], (A", E), [V, A, f,p] (A", E)
and [V, A, f,pl, (A", E) are not perfect for r > 1.

Theorem 3.9. The sequence spaces [V, A, f,pl, (A", E), [V, A, f,pl, (A", E),
SA(AT,E) and Sy, (A", E) are not symmetric for r > 1.

Proof. Let E =C |, pp =1 for all k, f(z) = x and A\, = n for all n € N.
Then (x) = (k") € [V, f,pl (A", E). Let (yx) be a rearrangement of
(zx), which is defined as follows

(yk):: {$1,$2,$4,$37x97x57xlﬁ,wﬁ,$257$77x36,$8,$497xlq-~}-

Then (yk) ¢ [V7 )‘7 fvp]oo (AT’E) .
For the space Sy, (A", E), consider the sequence x = (x},) defined by

1, if (20—1)2<k<(20)? i=12,..
T = .
4, otherwise.

Then (i) € S,(A). Let (yx) be the same as above, then (yi) ¢ S, (A).
U

Remark 3.10. The space [V, X, f,pl, (A", E) is not symmetric for r > 2.

Theorem 3.11. The sequence spaces [V, A, f,p|, (A", E), S\(A",E) and
Sy, (A", E) are not sequence algebras.

Proof. Let E = C, pp = 1 for all kK € N, f(z) = z and A\, = n for all
n € N. Then z = (k" 2), y = (k" 2) € [V,\, f,p], (A", E), but z.y ¢
VA, f.p], (AT, E) . The other cases can be proved on considering similar
examples. Il
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