ON SOME GENERALIZED DIFFERENCE SEQUENCE SPACES DEFINED BY A MODULUS FUNCTION

MIKÂIL ET, YAVUZ ALTIN AND HIFSI ALTINOK

ABSTRACT. The idea of difference sequence spaces was introduced by Kızmaz [9] and generalized by Et and Çolak [6]. In this paper we introduce the sequence spaces $[V,\lambda,f,p]_0$ (Δ^r,E), $[V,\lambda,f,p]_1$ (Δ^r,E), $[V,\lambda,f,p]_\infty$ (Δ^r,E), $S_\lambda(\Delta^r,E)$ and $S_{\lambda_0}(\Delta^r,E)$, where E is any Banach space, examine them and give various properties and inclusion relations on these spaces. We also show that the space $S_\lambda(\Delta^r,E)$ may be represented as a $[V,\lambda,f,p]_1$ (Δ^r,E) space.

1. Introduction

Let w be the set of all sequences real or complex numbers and ℓ_{∞} , c and c_0 be respectively the Banach spaces of bounded, convergent and null sequences $x = (x_k)$ with the usual norm $||x|| = \sup |x_k|$, where $k \in \mathbb{N} = \{1, 2, \dots\}$, the set of positive integers.

Let $\lambda = (\lambda_n)$ be a non-decreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \leq \lambda_n + 1$, $\lambda_1 = 1$.

The generalized de la Vallée-Poussin mean is defined by

$$t_n\left(x\right) = \frac{1}{\lambda_n} \sum_{k \in I} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$ for n = 1, 2,

A sequence $x = (x_k)$ is said to be (V, λ) –summable to a number L [11] if $t_n(x) \to L$ as $n \to \infty$.

If $\lambda_n = n$, then (V, λ) –summability and strongly (V, λ) –summability are reduced to (C, 1) –summability and [C, 1] –summability, respectively.

The idea of difference sequence spaces was introduced by Kızmaz [9]. In 1981, Kızmaz [9] defined the sequence spaces

¹⁹⁹¹ Mathematics Subject Classification. 40A05, 40C05, 46A45 .

Key words and phrases. Difference sequence, statistical convergence, modulus function.

$$X(\Delta) = \{x = (x_k) : \Delta x \in X\}$$

for $X = \ell_{\infty}$, c and c_0 , where $\Delta x = (x_k - x_{k+1})$.

Then Et and Çolak [6] generalized the above sequence spaces to the sequence spaces

$$X\left(\Delta^{r}\right) = \left\{x = (x_{k}) : \Delta^{r} x \in X\right\}$$

for
$$X = \ell_{\infty}$$
, c and c_0 , where $r \in \mathbb{N}$, $\Delta^0 x = (x_k)$, $\Delta x = (x_k - x_{k+1})$,

$$\Delta^r x = (\Delta^r x_k - \Delta^r x_{k+1})$$
, and so $\Delta^r x_k = \sum_{v=0}^r (-1)^v {r \choose v} x_{k+v}$.

Later on difference sequence spaces were studied by Malkowsky and Parashar [15], Et and Başarır [4], Et and Bektas [5].

We recall that a modulus f is a function from $[0,\infty)$ to $[0,\infty)$ such that

- i) f(x) = 0 if and only if x = 0,
- ii) $f(x+y) \le f(x) + f(y)$ for $x, y \ge 0$,
- iii) f is increasing,
- iv) f is continuous from the right at 0.

It follows that f must be continuous everwhere on $[0, \infty)$. A modulus may be unbounded or bounded. Ruckle [17] and Maddox [14], used a modulus f to construct some sequence spaces.

Subsequently modulus function has been discussed in [1], [16], [19] and many others.

Let $X, Y \subset w$. Then we shall write

$$M\left(X,Y\right) = \bigcap_{x \in X} x^{-1} * Y = \left\{a \in w : ax \in Y \quad \text{ for all } x \in X\right\} [20].$$

The set $X^{\alpha}=M\left(X,\ell_{1}\right)$ is called Köthe-Toeplitz dual space or $\alpha-$ dual of X.

Let X be a sequence space. Then X is called

- i) Solid (or normal), if $(\alpha_k x_k) \in X$ for all sequences (α_k) of scalars with $|\alpha_k| \leq 1$ for all $k \in \mathbb{N}$, whenever $(x_k) \in X$.
- ii) Symmetric, if $(x_k) \in X$ implies $(x_{\pi(k)}) \in X$, where $\pi(k)$ is a permutation of \mathbb{N} .
 - iii) Perfect if $X = X^{\alpha\alpha}$.
 - iv) Sequence algebra if $x, y \in X$, whenever $x, y \in X$.

It is well known that if X is perfect then X is normal [8].

The following inequality will be used throughout this paper.

$$(1) |a_k + b_k|^{p_k} \le C\{|a_k|^{p_k} + |b_k|^{p_k}\},$$

where $a_k, b_k \in \mathbb{C}$, $0 < p_k \le \sup_k p_k = H$, $C = \max(1, 2^{H-1})$ [13].

2. Main Results

In this section we prove some results involving the sequence spaces

$$[V, \lambda, f, p]_0(\Delta^r, E)$$
, $[V, \lambda, f, p]_1(\Delta^r, E)$ and $[V, \lambda, f, p]_{\infty}(\Delta^r, E)$.

Definition 2.1. Let E be a Banach space. We define w(E) to be the vector space of all E-valued sequences that is $w(E) = \{x = (x_k) : x_k \in E\}$. Let f be a modulus function and $p = (p_k)$ be any sequence of strictly positive real numbers. We define the following sequence sets

$$\begin{split} \left[V,\lambda,f,p\right]_1(\Delta^r,E) &= \\ \left\{x \in w(E): \lim_n \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\|\Delta^r x_k - L\|\right)\right]^{p_k} = 0, \text{ for some } L\right\}, \end{split}$$

$$\begin{split} \left[V,\lambda,f,p\right]_0\left(\Delta^r,E\right) &= \left\{x\in w(E): \lim_n \frac{1}{\lambda_n} \sum_{k\in I_n} \left[f\left(\|\Delta^r x_k\|\right)\right]^{p_k} = 0\right\}, \\ \left[V,\lambda,f,p\right]_\infty\left(\Delta^r,E\right) &= \left\{x\in w(E): \sup_n \frac{1}{\lambda_n} \sum_{k\in I_n} \left[f\left(\|\Delta^r x_k\|\right)\right]^{p_k} < \infty\right\}. \end{split}$$

If $x \in [V, \lambda, f, p]_1(\Delta^r, E)$ then we will write $x_k \to L[V, \lambda, f, p]_1(\Delta^r, E)$ and L will be called λ_E — difference limit of x with respect to the modulus f.

Throughout the paper Z will denote any one of the notation $0, 1, \text{ or } \infty$. In the case f(x) = x, $p_k = 1$ for all $k \in \mathbb{N}$ and $p_k = 1$ for all $k \in \mathbb{N}$, we shall write $[V, \lambda]_Z(\Delta^r, E)$ and $[V, \lambda, f]_Z(\Delta^r, E)$ instead of $[V, \lambda, f, p]_Z(\Delta^r, E)$, respectively.

Theorem 2.2. Let the sequence (p_k) be bounded. Then the sequence spaces $[V, \lambda, f, p]_Z(\Delta^r, E)$ are linear spaces.

Proof. We shall prove it for $[V, \lambda, f, p]_0(\Delta^r, E)$. The others can be proved by the same way. Let $x, y \in [V, \lambda, f, p]_0(\Delta^r, E)$ and $\beta, \mu \in \mathbb{C}$. Then there exist positive numbers M_β and N_μ such that $|\beta| \leq M_\beta$ and $|\mu| \leq N_\mu$. Since f is subadditive and Δ^r is linear

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\| \Delta^{r} (\beta x_{k} + \mu y_{k}) \| \right) \right]^{p_{k}} \\
\leq \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(|\beta| \| \Delta^{r} x_{k} \| \right) + f \left(|\mu| \| \Delta^{r} y_{k} \| \right) \right]^{p_{k}} \\
\leq C \left(M_{\beta} \right)^{H} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \left(\| \Delta^{r} x_{k} \| \right) \right]^{p_{k}} + C \left(N_{\mu} \right)^{H} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f \| \Delta^{r} y_{k} \| \right]^{p_{k}} \to 0$$

as $n \to \infty$. This proves that $[V, \lambda, f, p]_0(\Delta^r, E)$ is a linear space.

Theorem 2.3. Let f be a modulus function, then

$$[V, \lambda, f, p]_0(\Delta^r, E) \subset [V, \lambda, f, p]_1(\Delta^r, E) \subset [V, \lambda, f, p]_\infty(\Delta^r, E)$$
.

Proof. The first inclusion is obvious. We establish the second inclusion. Let $x \in [V, \lambda, f, p]_1(\Delta^r, E)$. By definition of f we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\| \Delta^r x_k \| \right) \right]^{p_k} = \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\| \Delta^r x_k - L + L \| \right) \right]^{p_k} \\
\leq C \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\| \Delta^r x_k - L \| \right) \right]^{p_k} + C \frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(\| L \| \right) \right]^{p_k}.$$

There exists a positive integer K_L such that $||L|| \leq K_L$. Hence we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^r x_k\|)]^{p_k} \le \frac{C}{\lambda_n} \sum_{k \in I_n} [f(\|\Delta^r x_k - L\|)]^{p_k} + \frac{C}{\lambda_n} [K_L f(1)]^H \lambda_n.$$

Since $x \in [V, \lambda, f, p]_1(\Delta^r, E)$ we have $x \in [V, \lambda, f, p]_{\infty}(\Delta^r, E)$ and this completes the proof.

Theorem 2.4. $[V, \lambda, f, p]_0(\Delta^r, E)$ is a paranormed (need not total paranorm) space with

$$g_{\Delta}(x) = \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta^{r} x_{k} \right\| \right) \right]^{p_{k}} \right)^{\frac{1}{M}}$$

where $M = \max(1, \sup p_k)$.

Proof. From Theorem 2.3, for each $x \in [V, \lambda, f, p]_0(\Delta^r, E)$, $g_{\Delta}(x)$ exists. Clearly $g_{\Delta}(x) = g_{\Delta}(-x)$. It is trivial that $\Delta^r x_k = 0$ for x = 0. Since f(0) = 0, we get $g_{\Delta}(x) = 0$ for x = 0. Since $p_k/M \le 1$ and $M \ge 1$, using the Minkowski's inequality and definition of f, for each n, we have

$$\left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\|\Delta^{r} x_{k} + \Delta^{r} y_{k} \| \right) \right]^{p_{k}} \right)^{\frac{1}{M}} \\
\leq \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\|\Delta^{r} x_{k} \| \right) + f\left(\|\Delta^{r} y_{k} \| \right) \right]^{p_{k}} \right)^{\frac{1}{M}} \\
\leq \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\|\Delta^{r} x_{k} \| \right) \right]^{p_{k}} \right)^{\frac{1}{M}} + \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\|\Delta^{r} y_{k} \| \right) \right]^{p_{k}} \right)^{\frac{1}{M}}$$

Hence $g_{\Delta}(x)$ is subadditive. Finally, to check the continuity of multiplication, let us take any complex number β . By definition of f we have

$$g_{\Delta}\left(\beta x\right) = \sup_{n} \left(\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\|\Delta^{r}(\beta x_{k}\right\|)\right) \right]^{p_{k}} \right)^{\frac{1}{M}} \leq K_{\beta}^{\frac{H}{M}} g_{\Delta}(x)$$

where K_{β} is a positive integer such that $|\beta| < K_{\beta}$. Now, let $\beta \to 0$ for any fixed x with $g_{\Delta}(x) \neq 0$. By definition of f for $|\beta| < 1$, we have

(2)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\|\beta \Delta^r x_k\| \right) \right]^{p_k} < \varepsilon \quad \text{for } n > n_0(\varepsilon).$$

Also, for $1 \le n \le n_0$, taking β small enough, since f is continuous we have

(3)
$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\|\beta \Delta^r x_k\| \right) \right]^{p_k} < \varepsilon.$$

(2) and (3) together imply that
$$g_{\Delta}(\beta x) \to 0$$
 as $\beta \to 0$.

Theorem 2.5. If $r \geq 1$, then the inclusion

$$[V, \lambda, f]_Z \left(\Delta^{r-1}, E\right) \subset [V, \lambda, f]_Z \left(\Delta^r, E\right)$$

is strict. In general $[V, \lambda, f]_Z(\Delta^i, E) \subset [V, \lambda, f]_Z(\Delta^r, E)$ for all $i = 1, 2, \ldots, r-1$ and the inclusion is strict.

Proof. We give the proof for $Z=\infty$ only. It can be proved in a similar way for Z=0 and Z=1. Let $x\in [V,\lambda,f]_{\infty}\left(\Delta^{r-1},E\right)$. Then we have

$$\sup_{n} \frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\left\| \Delta^{r-1} x_{k} \right\| \right) \right] < \infty$$

By definition of f, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f\left(\|\Delta^r x_k\| \right) \right] \le$$

$$\frac{1}{\lambda_n} \sum_{k \in I_r} \left[f\left(\left\| \Delta^{r-1} x_k \right\| \right) \right] + \frac{1}{\lambda_n} \sum_{k \in I_r} \left[f\left(\left\| \Delta^{r-1} x_{k+1} \right\| \right) \right] < \infty$$

Thus $[V, \lambda, f]_{\infty}$ $(\Delta^{r-1}, E) \subset [\Delta^r, \lambda, f]_{\infty}$ (Δ^r, E) . Proceeding in this way one will have $[V, \lambda, f]_{\infty}$ $(\Delta^i, E) \subset [V, \lambda, f]_{\infty}$ (Δ^r, E) for i = 1, 2, ..., r-1. Let $E = \mathbb{C}$, and $\lambda_n = n$ for each $n \in \mathbb{N}$. Then the sequence $x = (k^r)$, for example, belongs to $[V, \lambda, f]_{\infty}$ (Δ^r, E), but does not belong to $[V, \lambda, f]_{\infty}$ (Δ^{r-1}, E) for f(x) = x. (If $x = (k^r)$, then $\Delta^r x_k = (-1)^r r!$ and $\Delta^{r-1} x_k = (-1)^{r+1} r! (k + 1)^r r!$ $\frac{(r-1)}{2}$) for all $k \in \mathbb{N}$).

The proof of the following result is a routine work.

Proposition 2.6.
$$[V, \lambda, f, p]_1(\Delta^{r-1}, E) \subset [V, \lambda, f, p]_0(\Delta^r, E)$$
.

Theorem 2.7. Let f, f_1 , f_2 be modulus functions. Then we have

$$i) [V, \lambda, f_1, p]_Z (\Delta^r, E) \subset [V, \lambda, f \circ f_1, p]_Z (\Delta^r, E)$$

$$\begin{array}{l} i)\;\left[V,\lambda,f_{1},p\right]_{Z}\left(\Delta^{r},E\right)\subset\left[V,\lambda,f\circ f_{1},p\right]_{Z}\left(\Delta^{r},E\right),\\ ii)\;\left[V,\lambda,f_{1},p\right]_{Z}\left(\Delta^{r},E\right)\cap\left[V,\lambda,f_{2},p\right]_{Z}\left(\Delta^{r},E\right)\subset\left[V,\lambda,f_{1}+f_{2},p\right]_{Z}\left(\Delta^{r},E\right). \end{array}$$

Proof. i) We shall only prove (i). Let $\varepsilon > 0$ and choose δ with $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Write $y_k = f_1(\|\Delta^r x_k\|)$ and consider

$$\sum_{k \in I_n} [f(y_k)]^{p_k} = \sum_1 [f(y_k)]^{p_k} + \sum_2 [f(y_k)]^{p_k}$$

where the first summation is over $y_k \leq \delta$ and second summation is over $y_k > \delta$. Since f is continuous, we have

$$(4) \qquad \sum_{1} [f(y_k)]^{p_k} < \lambda_n \varepsilon^H$$

and for $y_k > \delta$, we use the fact that

$$y_k < \frac{y_k}{\delta} \le 1 + \frac{y_k}{\delta}$$
.

By the definition of f we have for $y_k > \delta$,

$$f(y_k) < 2f(1)\frac{y_k}{\delta}.$$

Hence

(5)
$$\frac{1}{\lambda_n} \sum_{j=1}^n \left[f(y_k) \right]^{p_k} \le \max \left(1, \left(2f(1)\delta^{-1} \right)^H \right) \frac{1}{\lambda_n} \sum_{k \in I_n} y_k.$$

From (4) and (5), we obtain $[V, \lambda, f, p]_0(\Delta^r) \subset [V, \lambda, f \circ f_1, p]_0(\Delta^r)$. The proof of (ii) follows from the following inequality

$$[(f_1 + f_2) (\|\Delta^r x_k\|)]^{p_k} \le C [f_1 (\|\Delta^r x_k\|)]^{p_k} + C [f_2 (\|\Delta^r x_k\|)]^{p_k}.$$

The following result is a consequence of Theorem 2.7 (i).

Proposition 2.8. Let f be a modulus function. Then $[V, \lambda, p]_Z(\Delta^r, E) \subset [V, \lambda, f, p]_Z(\Delta^r, E)$.

3. Statistical Convergence

The notion of statistical convergence was introduced by Fast [3] and studied by various authors ([2],[7],[10],[12],[16],[18]).

In this section we give some inclusion relations between $S_{\lambda}(\Delta^r, E)$ and $[V, \lambda, f, p]_1(\Delta^r, E)$.

Definition 3.1. A sequence $x = (x_k)$ is said to be λ_E^r – statistically convergent to the number L if for every $\varepsilon > 0$,

$$\lim_{n} \frac{1}{\lambda_n} |\{k \in I_n : ||\Delta^r x_k - L|| \ge \varepsilon\}| = 0.$$

In this case we write $S_{\lambda}(\Delta^r, E) - \lim x = L$ or $x_k \to LS_{\lambda}(\Delta^r, E)$.

In the case $\lambda_n = n$ and L = 0 we shall write $S(\Delta^r, E)$ and $S_{\lambda_0}(\Delta^r, E)$ instead of $S_{\lambda}(\Delta^r, E)$.

Theorem 3.2. Let $\lambda = (\lambda_n)$ be the same as in Section 1, then

- i) If $x_k \to L[V, \lambda]_1(\Delta^r, E)$ then $x_k \to LS_{\lambda}(\Delta^r, E)$,
- ii) If $x \in \ell_{\infty}(\Delta^r, E)$ and $x_k \to LS_{\lambda}(\Delta^r, E)$, then $x_k \to L[V, \lambda]_1(\Delta^r, E)$,
- iii) $S_{\lambda}(\Delta^r, E) \cap \ell_{\infty}(\Delta^r, E) = [V, \lambda]_1 (\Delta^r, E) \cap \ell_{\infty}(\Delta^r, E).$ where $\ell_{\infty}(\Delta^r, E) = \{x \in w(E) : \sup_k \|\Delta^r x_k\| < \infty\}.$

Proof. i) Let $\varepsilon > 0$ and $x_k \to L[V,\lambda]_1(\Delta^r, E)$. Then we have

$$\sum_{k \in I_n} \|\Delta^r x_k - L\| \ge \varepsilon \left| \left\{ k \in I_n : \|\Delta^r x_k - L\| \ge \varepsilon \right\} \right|.$$

Hence $x_k \to LS_{\lambda}(\Delta^r, E)$.

In fact the set $[V, \lambda]_1$ (Δ^r, E) is a proper subset of $S_{\lambda}(\Delta^r, E)$. To show this, let $E = \mathbb{C}$ and define $x = (x_k)$ such that

$$\Delta^r x_k = \begin{cases} k, & \text{for } n - [\sqrt{n}] + 1 \le k \le n \\ 0, & \text{otherwise.} \end{cases}$$

Then $x \notin \ell_{\infty}(\Delta^r, E)$, $x_k \to 0S_{\lambda}(\Delta^r, E)$, and $x \notin [V, \lambda]_1(\Delta^r, E)$.

ii) Suppose that $x_k \to LS_{\lambda}(\Delta^r, E)$ and $x \in \ell_{\infty}(\Delta^r, E)$, say $||\Delta^r x_k - L|| \le M$. Given $\varepsilon > 0$, we have

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \|\Delta^r x_k - L\| = \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ \|\Delta^r x_k - L\| \ge \varepsilon}} \|\Delta^r x_k - L\| + \frac{1}{\lambda_n} \sum_{\substack{k \in I_n \\ \|\Delta^r x_k - L\| < \varepsilon}} \|\Delta^r x_k - L\|$$

$$\leq \frac{M}{\lambda_n} \left\{ k \in I_n : \|\Delta^r x_k - L\| \ge \varepsilon \right\} + \varepsilon$$

Hence x is λ_E^r – statistically convergent to the number L.

iii) This immediately follows from (i) and (ii).

Theorem 3.3. If $\liminf \frac{\lambda_n}{n} > 0$, then $S(\Delta^r, E) \subseteq S_{\lambda}(\Delta^r, E)$.

Proof. For given $\varepsilon > 0$, we get

$$\{k \le n : \|\Delta^r x_k - L\| \ge \varepsilon\} \supset \{k \in I_n : \|\Delta^r x_k - L\| \ge \varepsilon\}.$$

Hence

$$\frac{1}{n} |\{k \le n : \|\Delta^r x_k - L\| \ge \varepsilon\}| \ge \frac{1}{n} |\{k \le n : \|\Delta^r x_k - L\| \ge \varepsilon\}|
\ge \frac{\lambda_n}{n} \cdot \frac{1}{\lambda_n} |\{k \in I_n : \|\Delta^r x_k - L\| \ge \varepsilon\}|.$$

Therefore $x \in S_{\lambda}(\Delta^r, E)$.

Theorem 3.4. Let f be a modulus function and $\sup_k p_k = H$. Then $[V, \lambda, f, p]_1(\Delta^r, E) \subset S_{\lambda}(\Delta^r, E)$.

Proof. Let $x \in [V, \lambda, f, p]_1(\Delta^r, E)$ and $\varepsilon > 0$ be given. Let Σ_1 denote the sum over $k \leq n$ such that $\|\Delta^r x_k - L\| \geq \varepsilon$ and Σ_2 denote the sum over $k \leq n$ such that $\|\Delta^r x_k - L\| < \varepsilon$. Then

$$\frac{1}{\lambda_{n}} \sum_{k \in I_{n}} \left[f\left(\| \Delta^{r} x_{k} - L \| \right) \right]^{p_{k}} =$$

$$\frac{1}{\lambda_{n}} \sum_{1} \left[f\left(\| \Delta^{r} x_{k} - L \| \right) \right]^{p_{k}} + \frac{1}{\lambda_{n}} \sum_{2} \left[f\left(\| \Delta^{r} x_{k} - L \| \right) \right]^{p_{k}}$$

$$\geq \frac{1}{\lambda_{n}} \sum_{1} \left[f\left(\| \Delta^{r} x_{k} - L \| \right) \right]^{p_{k}} \geq \frac{1}{\lambda_{n}} \sum_{1} \left[f\left(\varepsilon \right) \right]^{p_{k}}$$

$$\geq \frac{1}{\lambda_{n}} \sum_{1} \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_{k}}, \left[f\left(\varepsilon \right) \right]^{H} \right)$$

$$\geq \frac{1}{\lambda_{n}} \left[\left\{ k \in I_{n} : \| \Delta^{r} x_{k} - L \| \geq \varepsilon \right\} \right] \min \left(\left[f\left(\varepsilon \right) \right]^{\inf p_{k}}, \left[f\left(\varepsilon \right) \right]^{H} \right).$$

Hence $x \in S_{\lambda}(\Delta^r, E)$.

Theorem 3.5. Let f be bounded and $0 < h = \inf_k p_k \le p_k \le \sup_k p_k = H < \infty$. Then $S_{\lambda}(\Delta^r, E) \subset [V, \lambda, f, p]_1(\Delta^r, E)$.

Proof. Suppose that f is bounded. Let $\varepsilon > 0$ be given and Σ_1 and Σ_2 be in previous theorem. Since f is bounded there exists an integer K such that f(x) < K, for all $x \ge 0$. Then

$$\frac{1}{\lambda_n} \sum_{k \in I_n} \left[f \left(|\Delta^r x_k - L| \right) \right]^{p_k} =
\frac{1}{\lambda_n} \sum_{1} \left[f \left(||\Delta^r x_k - L|| \right) \right]^{p_k} + \frac{1}{\lambda_n} \sum_{2} \left[f \left(||\Delta^r x_k - L|| \right) \right]^{p_k}
\leq \frac{1}{\lambda_n} \sum_{1} \max \left(K^h, K^H \right) + \frac{1}{\lambda_n} \sum_{2} \left[f \left(\varepsilon \right) \right]^{p_k}
\leq \max \left(K^h, K^H \right) \frac{1}{\lambda_n} \left| \left\{ k \in I_n : ||\Delta^r x_k - L|| \geq \varepsilon \right\} \right|
+ \max \left(f \left(\varepsilon \right)^h, f \left(\varepsilon \right)^H \right).$$

Hence $x \in [V, \lambda, f, p]_1(\Delta^r, E)$.

Theorem 3.6. $S_{\lambda}(\Delta^r, E) = [V, \lambda, f, p]_1(\Delta^r, E)$ if and only if f is bounded. Proof. Let f be bounded. By Theorems 3.4 and 3.5 we have $S_{\lambda}(\Delta^r, E) = [V, \lambda, f, p]_1(\Delta^r, E)$.

Conversely suppose that f is unbounded. Then there exists a sequence (t_k) of positive numbers with $f(t_k) = k^2$, for k = 1, 2, If we choose

$$\Delta^r x_i = \begin{cases} t_k, & i = k^2, i = 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

then we have

$$\frac{1}{\lambda_n} \left| \left\{ k \in I_n : |\Delta^r x_k| \ge \varepsilon \right\} \right| \le \frac{\sqrt{\lambda_{n-1}}}{\lambda_n}$$

for all n and so $x \in S_{\lambda}(\Delta^r, E)$, but $x \notin [V, \lambda, f, p]_1(\Delta^r, E)$ for $E = \mathbb{C}$. This contradicts to $S_{\lambda}(\Delta^r, E) = [V, \lambda, f, p](\Delta^r, E)$.

Theorem 3.7. The sequence spaces $[V, \lambda, f, p]_0$ (Δ^r, E), $[V, \lambda, f, p]_1$ (Δ^r, E), $[V, \lambda, f, p]_{\infty}$ (Δ^r, E), $S_{\lambda}(\Delta^r, E)$ and $S_{\lambda_0}(\Delta^r, E)$ are not solid for $r \geq 1$.

Proof. Let $E = \mathbb{C}$, $p_k = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [V, \lambda, f, p]_{\infty} (\Delta^r, E)$ but $(\alpha_k x_k) \notin [V, \lambda, f, p]_{\infty} (\Delta^r, E)$ when $\alpha_k = (-1)^k$ for all $k \in \mathbb{N}$. Hence $[V, \lambda, f, p]_{\infty} (\Delta^r, E)$ is not solid. The other cases can be proved on considering similar examples.

From the above theorem we may give the following corollary.

Corollary 3.8. The sequence spaces $[V, \lambda, f, p]_0(\Delta^r, E)$, $[V, \lambda, f, p](\Delta^r, E)$ and $[V, \lambda, f, p]_{\infty}(\Delta^r, E)$ are not perfect for $r \geq 1$.

Theorem 3.9. The sequence spaces $[V, \lambda, f, p]_1(\Delta^r, E)$, $[V, \lambda, f, p]_{\infty}(\Delta^r, E)$, $S_{\lambda}(\Delta^r, E)$ and $S_{\lambda_0}(\Delta^r, E)$ are not symmetric for $r \geq 1$.

Proof. Let $E = \mathbb{C}$, $p_k = 1$ for all k, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $(x_k) = (k^r) \in [V, \lambda, f, p]_{\infty} (\Delta^r, E)$. Let (y_k) be a rearrangement of (x_k) , which is defined as follows

$$(y_k) = \{x_1, x_2, x_4, x_3, x_9, x_5, x_{16}, x_6, x_{25}, x_7, x_{36}, x_8, x_{49}, x_{10}, \ldots\}.$$

Then $(y_k) \notin [V, \lambda, f, p]_{\infty} (\Delta^r, E)$.

For the space $S_{\lambda_0}(\Delta^r, E)$, consider the sequence $x = (x_k)$ defined by

$$x_k = \begin{cases} 1, & \text{if } (2i-1)^2 \le k < (2i)^2, & i = 1, 2, ... \\ 4, & \text{otherwise.} \end{cases}$$

Then $(x_k) \in S_0(\Delta)$. Let (y_k) be the same as above, then $(y_k) \notin S_0(\Delta)$.

Remark 3.10. The space $[V, \lambda, f, p]_0(\Delta^r, E)$ is not symmetric for $r \geq 2$.

Theorem 3.11. The sequence spaces $[V, \lambda, f, p]_Z(\Delta^r, E)$, $S_{\lambda}(\Delta^r, E)$ and $S_{\lambda_0}(\Delta^r, E)$ are not sequence algebras.

Proof. Let $E = \mathbb{C}$, $p_k = 1$ for all $k \in \mathbb{N}$, f(x) = x and $\lambda_n = n$ for all $n \in \mathbb{N}$. Then $x = (k^{r-2})$, $y = (k^{r-2}) \in [V, \lambda, f, p]_Z(\Delta^r, E)$, but $x.y \notin [V, \lambda, f, p]_Z(\Delta^r, E)$. The other cases can be proved on considering similar examples.

References

- [1] T. Bilgin, On the statistical convergence, An. Univ. Timişoara Ser. Math. Inform. 32 (1) (1994), 3–7
- [2] J.S. Connor, The statistical and strong p-Cesáro convergence of sequences, Analysis, 8 (1988) 47–63
- [3] H. Fast, Sur la convergence statistique, Collog. Math. 2 (1951), 241–244
- [4] M. Et and M. Başarır, On some new generalized difference sequence spaces, Periodica Mathematica Hungarica 35 (3) (1997), 169–175
- [5] M. Et and Ç. A. Bektaş, Generalized strongly (V, λ) —summable difference sequences defined by Orlicz functions (under communication).
- [6] M. Et and R. Çolak, On some generalized difference sequence spaces, Soochow J. of Math. 21 (1995), 377–386
- [7] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313
- [8] P. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc., New York, 1980
- [9] H. Kızmaz, On certain sequence spaces, Canad. Math. Bull. 24 (1981), 169-176

- [10] E. Kolk, The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu 928 (1991), 41-52
- [11] L. Leindler, Über die la Vallee-Pousinsche Summierbarkeit Allgemeiner Orthogonalreihen, Acta Math. Acad. Sci. Hungar 16 (1965), 375-387
- [12] Mursaleen, λ -statistical convergence, Math. Slovaca **50** (2000), 111-115
- [13] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970
- [14] I. J. Maddox, Sequence spaces defined by a modulus, Mat. Proc. Camb. Phil. Soc. 100 (1986), 161-166
- [15] E. Malkowsky and S.D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis 17 (1997), 87-97
- [16] E. Malkowsky and E. Savaş, Some λ —sequence spaces defined by a modulus, Archivum Mathematicum 36 (2000), 219-228
- [17] W.H. Ruckle, FK spaces in which the sequence of coordinate vectors in bounded, Canad. J. Math. 25 (1973), 973-978
- [18] T. Šalát, On statistically convergent sequences of real numbers, *Math. Slovaca* **30** (1980), 139-150
- [19] E. Savaş, On some generalized sequence spaces defined by a modulus, *Indian J. pure* and appl. Math. **30** (5) (1999), 459-464
- [20] A. Wilansky, Summability Through Functional Analysis, North-Holland Mathematics Studies, (85), North-Holland, 1984

Department of Mathematics, Firat University, 23119, Elaziğ-Turkey

DEPARTMENT OF MATHEMATICS, FIRAT UNIVERSITY, 23119, ELAZIĞ-TURKEY

DEPARTMENT OF MATHEMATICS, FIRAT UNIVERSITY, 23119, ELAZIĞ-TURKEY

E-mail address, Et: met@firat.edu.tr ; mikailet@yahoo.com

E-mail address, Altin: yaltin23@yahoo.com

E-mail address, Altinok: hifsialtinok@yahoo.com