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MATRIX TRANSFORMATIONS IN THE SETS X(Npﬁq)
(c

WHERE y IS OF THE FORM s¢, OR s;, OR s,

BRUNO DE MALAFOSSE AND EBERHARD MALKOWSKY

ABSTRACT. In this paper we deal with matrix transformations
mapping in either of the sets s.(N,), sa(N,) or st (Ng). Then
we study some properties of the sets so(N,N,) and s.(N,N,)
and give a characterization of matrix transformations in these

spaces. These results generalize those given in [11, 14, 16].

1. NOTATIONS AND PRELIMINARY RESULTS.

For a given infinite matrix A = (anm);,,—1 we define the operators A,
for any integer n > 1, by

(1.1) An(X) = Z ApmTm
m=1

where X = ()22, the series being assumed convergent. So we are led to

the study of the infinite linear system
(1.2) Ap(X)=b, n=12,..

where B = (b,,)72; is a one-column matrix and X the unknown, see [5, 6,
7, 8,9, 11]. The ssytem (1.2) can be written in the form AX = B, where
AX = (Ap(X))22,. In this paper we shall also consider A as an operator
from a sequence space into another sequence space.

A Banach space E of complex sequences with the norm ||-|| g is a BK space
if each projection P, : X — P, X = x, is continuous. A BK space E is said
to have AK if every sequence X = (2,)2°; € E has a unique representation
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X =302 xpe, where e, is the sequence with 1 in the n-th position and 0
otherwise.

We write s for the set of all complex sequences, f, ¢, cg for the sets
of bounded, convergent and null sequences, respectively. By c¢s and ¢, we
denote the sets of convergent and absolutely convergent series respectively.
We use the set

Ut = {(un)$1 € 5:u, >0 for all n}.

Using Wilansky’s notations [16], given any sequence o = ()%, € U™ and
any subset F of s,we define the sets

(1/a) B = {(xn)gozl €s: <x—")°° € E} .

Qn / n=1
Writing a * E = (1/a)~! * E, we put

Sa if B =/,
ax F = SO ifE:C(],

[0

s&c) if £ =c;
we have for instance
(1.3) axcog =5, =1{(2)%, €5:xp=o0(e) (n— 00)}.

Each of the spaces a * E, where E € {{, ¢y, c}, is a BK space normed by
x

(1.4 I, = sup (221,
> (&%

and s, has AK, see [11].

Now let o = ()22 and 3 = (6,)52, € UT. By S, 3 we denote the set
of infinite matrices A = (anm )7 m=1 such that sup,>; (35— [anm|F*) < oo;
Sa,p is a Banach space normed by [[Al|s, , = sup,>1 (X 5=1 [anm|%*). Let
E and F be any subsets of s. When A maps F into F' we write A € (E, F),
see [4]. So A € (E,F) if and only if the series y, = > oo_| GpmTm, converge
for all n and all X € F and AX = (y,)p>, € F for all X € E. It was proved
in [14] that A € (sq,sp) if and only if A € S, 3. So we have (sq4,s3) = Sa. 8-

When s, = sg we obtain the Banach algebra with identity S, 3 = Sa.,
(see [6, 7, 8, 10, 11]) normed by || Al/s, = [|A]|sa.q-

If a = (r")22, for r > 0, then S, Sq, s; and s((;) are denoted by S, sy, s,

T
and s\9, respectively (see [5, 10]). When 7 = 1, we obtain s1 = £o, 51 = o

and sgc) = ¢, and putting e = (1,1, ...) we have S; = S..
For any subset E of s, we put A(E) ={Y : Y = AX for some X € E}.
If F is a subset of s, then Fy ={X € s:Y = AX € F} denotes the matriz

domain of A in X.
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2. THE OPERATOR A MAPPING IN THE SETS Sq, S, OR s

Now recall that the operator of first difference [5], [7]-[12] is defined by
A = (Vpm)nm>1, with vy, =1 for all n > 1, v, -1 = —1 for all n > 2 and
Vpan = 0 otherwise. An infinite matrix T' = (tnm)%’jmzl is said to be a triangle
if tpm = 0 for m > n and t,, # 0 for all n. If £ is the set of all triangles, it
can easily be seen that £ is a group with respect to matrix multiplication.

The infinite matrix X = (v,,,,)5%,=; defined by v, = 1 for all m < n and

v}~ = 0 otherwise is the inverse of A in £, and we may write ¥ = A~L,
see [3]. For any given sequence & = (£,)521, we put D& = (§n0nm)mom=1
where 0, = 0 if m # n and 0, = 1 for m = n. If U is the set of all
sequences X = (x,)52, such that x,, # 0 for all n, we define the triangle
c(\) = D%E = (Cam)mom=1 for A = (A\y)p2; € U. We have cum = 1/A, for
m < n and ¢y = 0 otherwise. Writing C(AM)A = ((3F—; M)/ An)oe,, we
define the sets

Ci={acUt:Cla)acls}t, C={acU":Cla)acc}

T:{a€U+: lim (an_1> <1}.
n—00 o'

Recall that o € I' if and only if there is an integer ¢ > 1 such that v,(a) =
SUP,,>g41(an—1/an) < 1 (see [7]). The following result was given in [10].

and

Lemma 2.1. We have
i) Sa(A) = sq if and only if a € 6'\1;
ii) so(A) = 2 if and only if a € Cy;
i11) S((;)(A) = s if and only if o € C;
iv) Ay = D1 AD,, is bijective from c into itself with lim X = A,—lim X,
if and only (Zf ap—1/an — 0.

f:{a€U+: lim (an1> <1}.
n—o00 o,

In the next proof we shall use the set B (S&C)) of all bounded linear operators

mapping 3((16 ) into itself. Recall that since sgf) is a Banach space with the

norm || - ||s,, the set B(s((f)) of all linear operators A € (sff), sgf)) normed by

AX||s )
| HB(sg)) X£0 X5
(c)

is the Banach algebra of all bounded linear operators that map sg’ into
itself, see [2].

Let us put
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Proposition 2.2. We have C=TcTcC 6’1

Proof. The inclusions C c T and T' C Cl were shown [10] and [7], respec-
tively. It remains to prove that I' ¢ C. Assume that a € I'. Putting
D1ADy = (Enm)pom=1, We get &un = 1 for all n, &, 1 = —ay—1/ay, for all
n> 2, and &, = 0 otherwise. Then from the characterization of (c,c) (cf.
[14, 14 Theorem 1.36 p. 160]), the condition D1 AD, € (c,c) is equivalent

to (ap—1/0m)n>2 € c. Let us show that A is invertible in B(s((f)). Consider
the matrix
s o
k) = 1 for any given integer k > 1,
@)

where A®) is the finite matrix whose entries are those of the k first rows
and columns of A. We get XA = (@nm)pom=1, With an, = 1 for all n;
apn—1 = —1 for all n > k + 1; and an,, = 0 otherwise. We deduce that

- (an1>

= sup .
Sa k2k+1\ Qn
So limy—eo(n—1/an) = limy oo (ap_1/0) < 1 and ||I — E(k)AHB(Sa) <1
and we that ©(®)A is invertible in the Banach algebra B(s((f)) and A =

(2®)=12*) is bijective from s into itself. Thus we have a € C by Lemma

2.1 (ii) and we have shown that T' c C. O

frs0a],,, = 50

3. SETS OF GENERALIZED WEIGHTED MEANS AND MATRIX
TRANSFORMATIONS.

In this section we recall some results given in [15] and apply them to
characterize matrix transformations in either of the sets (N, q)a, (N, q);, or

(N, q)((f). Then we give some properties of the identity ((N,q)a, (N,q)s) =
Sa/“g/.

3.1. Matrix transformations in the sets of weighted means. Let u,
v €U and E C s. Then we define

-1 -1
W (u,v; E) =v *(u *E)z’
the set of generalized weighted means. Consider now the following conditions:

> 1 Gnm an,m+1
3.1 sup — (— — 7)‘ < 003
( ) <Z Um \ Um Um+1

n m=1
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(3.2) lim ( G > = 0 for all n;

M—00 \ Uy Um
(3.3) lim ( Gnm ) = [, for all n;

m=00 \ U Uy
(3.4) sup |l,,| < o0;

n

(3.5) sup Gnm D < oo for each n;

m UmUm,

1
(3.6) lim (— (GL - M)) = 0 for each m;

oo \Um Um Um+1

1

(3.7) lim (— (QL - M)) =1/ for each m;
= NUm \ Um Um+1
> 1 1
(3.8) lim <Z fnm <— ~ )) =0;
n—oo m=1 Um Um, Um—1
> 1 1
(3.9) im 3 o (— - ) ~ L.
O\ =1 Um \Um  Um-—1

We have from [15, Theorem 3.3 p. 651]

Lemma 3.1. We have

(i) A e (W(u,v;l),lso) if and only if (3.1) and (3.2) hold;

(ii)) A € (W(u,v;c),ls) if and only if (3.1), (3.3) and (3.4) hold;

(i1i) A € (W(u,v;c0),loo) if and only if (3.1) and (3.5) hold;

(iv) A € (W(u,v;cp),co) if and only if (3.1), (3.5) and (3.6) hold;

(v) A€ (W(u,v;cp),c) if and only if (3.1), (3.5) and (3.7) hold;

(vi) A € (W (u,v;c),co) if and only if (3.1), (3.3), (3.4), (3.6) and (3.8)

hold;

(vit) A € (W (u,v;c),c) if and only if (3.1), (3.3), (3.4), (3.7) and (3.9)

hold.

Then if v = ¢ = (¢,)%2, € UT and v = 1/Q with Q, = >0 _1 qm
(n =1,2,..), we get W(1/Q,q;lc) = (N,q)oo, W(1/Q,q5¢c0) = (N,q)o
and W(1/Q,q;¢) = (N,q). These sets are called sets o weighted means
that are bounded, convergent to zero or convergent. We shall consider ma-
trix transformations in the sets (N, q)a = $a(N,), or (N, q),, = so(N,), or

(N, ) = s'(W,), see [9].
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We put
_ <anm an,erl) A Qm
Ynm = - and
dm dm+1 Bn
a
Yo = (mQm — am—1Qm_1) —— for all n,m
Qm n
and consider the following conditions
oo
(310) sup (Z "Ynm’) < o0
n m=1
(311) nlggo Ynm = 0 for all m;
(3.12) lim Y = Iy, for all m;
n—oo
oo
. ! _ .
(3.13) nlLIgo Zl Yo = 0;
m=
oo
. ' T
(3.14) nlLHgO Zl Yo = L.
m=

We deduce the following

Proposition 3.2. We have (i) A € (N, q)a,53) if and only if (3.10) holds
and

lim (anm aQO) =0 for allmn;

—
m—0o0 'm

(ii) A € ((N, q)&c),s;;) if and only if (3.10) holds,
(3.15)

lim (anmaQO) =1, for allm and sup (|l;)]) < oo

m—00 GmOn

(i1i) A € (N, q)a,83) if and only if (3.10) holds and

(3.16) sup <|anm|aQO) < oo for all n;

(iv) A€ ((N,q),, ) if and only if (3.10), (3.11) and (3.16) hold;

(v) A€ ((N, ); ) if and only if (3.10), (3.12) and (3.16) hold;

(vi) A € ((N, q)a , ﬁ) if and only if (3.10), (3.11), (3.13) and (3.15) hold;
(vii) A€ (N,q)&,s5) if and only if (3.10), (3.12), (3.14) and (3.15) hold.
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Proof. Put u =1/a@Q and v =g € UT. Since A™' =¥ € £, we get
W(U,U;EOO) = W(l/aQ, Qngo) = (Nv Q)a = D%ADanom
W(1/aQ,q;co) = (N,q),, and W(1/aQ,q;c) = (N, q)&c). Now the conclu-
sion follows from Lemma 3.1 and the fact that, for any set of sequences F,
the condition A € (E, F) for F' = sg, s; or s is equivalent to D%A € (E,G)

where G is any of sets £, cg or ¢ respectively. ([

We shall use the following known result given by Malkowsky (cf. [13,
Theorem 1].

Lemma 3.3. Let T € £. Then, for arbitrary subsets E and F of s, A €
(E, Fr) if and only if TA € (E, F).

Consider now the following conditions.

(3.17)
sup (30| ipk@_m_M) 0O | < 00
m m 9
n m=1 Pnﬁn k=1 dm dm+1
(3.18)
1 n
lim Zpk (Clk—m - M) am@Qm| =0 forallm=1,2..;
n—oo | P, 3, =1 dm dm+1
(3.19)
lim M ipkaﬂ =¢' foralln=1,2,..;
m—o00 Om = P, n yEy
(3.20) sup [¢,| < oo;
n
(3.21)
sup A z": Pk <oo foraln=12,..;
m | Bndm =1 P,
(3.22)
1 & | am@m — m—1Qm—1)
lim ( il uk uk ) a = 0;
gy 5 (22 B
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(3.23)

L i l(aQO —am_1Qm—1) zn:pkakm] _

oo nﬁn m=1 dm k=1

Proposition 3.4. We have
(i) A€ ((N,q)a,(N,p)s) if and only if (3.17) holds and

lim lo‘QO (Z M)] —0 foralln=1,2,..

mece | gn  \= P

(iv) A € ((N,q) ,(W,p);) if and only if (3.17), (3.18) and (3.21) hold;
(v) A ((N,q),, (W,p)(ﬁc)) if and only if (3.17), (3.21) hold and
(3.24)

Zpk (Clk—m — M) aQO] =l foralm=1,2,..;

dm dm+1
(vi) A€ (N,q)%,(N,p)3) if and only if (3.17), (3.18), (3.19) and (3.22)

(vii) A € (N, )%, (N,p)$) if and only if (3.17), (3.23), (3.24) and (3.19)

Proof. These results are a direct consequence of Proposition 3.2 and Lemma
3.3. Indeed, for (i) we have A € ((NV,q)a,(IN,p)g) if and only if N,A €
(N, q)a; sp), where

n Pra 00
NpA= (> kZkm .
k=1 n,m=1

Then it is enough to replace the entries of A by those of N,A in Proposition
3.2 (i). The remaining parts can be shown in the same way. O

3.2. Properties of matrix transformations between sets of weighted
means. First we need some additional results on the set S, g. Recall that,
for any subsets F and F of s, ExF is the set of all products XY = (2,y5)02 4,
where X = (z,)52, € E and Y = (yn)52; € F. We can state the following
results.

Theorem 3.5. Let o, 3,a’,3' € Ut. Then
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(i) o, = O(Br) (n — 00) if and only if so C sg;
(ii) o, = O(Bp) and By, = O(ow,) (n — 00) if and only if so = sa;
111) so = Sg if and only if there exist K1 and K9 > 0 such that Ko, <
(i) s if y
On < Kooy, for all n;
(v)  (a) sa = sp if and only if s, = s;;
(b) an/Bn — 1 #0 if and only ifs((f) = sg);
(c) s = s(ﬁc) implies s, = sg and s, = 5;3;
v) the identity S, g = S5/ 1S equivalent to s, = S, and sg = sg:.
B B B B
vl a) The identity (s,,sg) = (s..,,sg/) is equivalent to
(vi)  (a) Y (sa: 88 a’ 58
Sq = 5o/ and sg = sg,
(b) the identity (3&6),3[3) = (3((;,),35/) is equivalent to
Sq = 8o and sg = sg/.
(vii) Sa8 = Sa * 53, széﬁ =5, * s; and sf;ﬁ) = sgf) * s(ﬁc).
Proof. (i) Assume that a,, = O(5,) (n — o0). If X = (2,)52, € Sq, then
we have . . o
n n n
—=——=0(1) (n — o0
and X € sg, hence s, C sg. Conversely, a € s C sg implies o, /3, = O(1)
and o, = O(f,) (n — o).
(ii) is obvious.
iii) The conditions s, C sg and sg C s, are equivalent to a,, = O(G,
B B
and (3, = O(ay) (n — 00). This shows (iii).
(iv) (a) The identity s, = s; is equivalent to I € (s, s;) and I € (3;, 50)-
This means D, /g, Dg/o € (co,c0). From the characterization of the class
co,¢o), we conclude o, /B, = O(1) and 3, /a, = O(1) (n — o), that is
(o, co)
Saq = 85.
(b) Similarly the identity s = 519 is equivalent to D,/g, Dg/q € (¢, ¢). So

s((f ) — s(ﬁc) is equivalent to the following conditions: «,, /B, — [, Bn/can — 1,

an/Bn =0(1) and B, /a, = O(1) (n — o0).
(v) The sufficiency being obvious, we study the necessity.
Suppose that S, 3 = Sy’ /. First, we prove that S, 3 = So/ 3. For this,
denote by ¢ = (cnm)g“jmzl the infinite matrix defined by ¢,1 = 3,/ for all
n > 1 and ¢y, = 0 otherwise. We immediatly see that ¢; € S, g and since
Sa,8 = Sarp, We get €1 € Sy 5/ So cra’ = ((Bn/a1) o )72, € s, that is
B = 3,0(1) (n — o),

and we conclude from (i) that sg C sg/. By a similar argument, taking
ci = (Cpm)oom=1 With ¢}y = B, /af for all n > 1 and ¢}, = 0 otherwise,

we get CN{oz = ((B)/af)o1)p2, € sp and sgr C sg. Thus we have shown
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sg = 58/, 80 Sq3 = Sqr g/ implies Sy 3 = So 3. It remains to show that
the equality S, 3 = S, g implies s, = s,+. For this, we consider the matrix
Ds €S, 3. Since So 3 = So’ 3, we deduce that

(3.25) Dgsa/ :Sga, C sg

and ) /a, = O(1) (n — o). So we have s, C S by (i). Similarly, since
D € Sy g = Sap, we get

(3.26) Dﬁlsa:silaCSﬁ.
So we have o, = O(«)) and s, C s4. Now we conclude s, = so and (v) is
proved.

(vi) (a) Since (co, oo) = S1, we easily deduce (s, $5) = Sa.5 and (s, 55)
= S, /. Then, by (v), the condition (s, sg) = (s,,/,55/) implies s, = 54
and sg = sg/.
Part (b) can be obtained by a similar argument using the fact that (¢, ¢o) =
Si.

(vii) Let Z = (2p)5%; € Sa * S3. There are X = (z,);2; € s, and
Y = (yn)p21 € sg such that 7 = XY € s, * sg.Then 2z, = z,y, =

O0(1)3,0(1) = apfr0(1) (n — o0) and Z € sa3. So we have shown
Sq * 58 C 5q8. Conversely if Z € s,3, there is a sequence h = (hy, )52 € o,
such that z, = «a,B3,h, and since a € s, and Bh € sg, we conclude
Z € 84 * 83. So we have shown s,3 C s, * sg. We conclude s, * 553 = s43.
Let us show SZ{B = s;*s;. IfZ = (2,)52, € s;*s; then z, = a,o(1)By0(1) =
anfno(l) (n — o0) and Z = (2,)02, € 32{6. Thus we have s, * s; C soﬁ.
Conversely let Z € s, op- Then there exists a sequence ¢ = (en)Se; € co

such that Zn = anﬂnen = \/ enlBn|enlkn, with ]k | = 1. ThlS proves
ZGS *86 andsﬁCs *86 Sowehaveshownsﬁ_s *sﬁ The last
case can be shown in a similar way. O

Remark 3.6. It can be easily seen that for cmy given sequences o, 3 € U™,

the property o, /B, — 1 # 0 implies sq = sg, s = sﬁ and 3(6) (C).

Remark 3.7. We can see from Theorem 3.5 (iii) that if we define the relation
aRB if and only if s = sg for any given o, 3 € U™, then R is an equivalence
relation. Note that we also have aRf if and only if 1/aR1/3, and for any
sequence v € UT, aRf3 is equivalent to (ay)R(57).

Theorem 3.8. Let a,a’, 3,8 € UT and assume that aQ,3P € C1. Then
we have

(i) (N, @)a, (N, p)g) = ((N Das (N,P)g) = Saqq.8P/pi
(i) (N,q)a, (N,p)g) = Sar g if and only if Satja = 8Q/q and 8313 = Sp/p-
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(iii) Assume that o'/, B'/B € loo. Then (N,q)a, (N,p)g) = Sar g/ implies
p.q € Ch. L

(i) Assume that sq = sqr and sg = sgr. Then ((N,q)a, (N,p)g) = Sar g’ if
and only if p,q € Cy.

Proof. (i) The conditions aQ, P € Ci imply (N,q9)a = (N,q)., = 5aQ/q
and (N,p)g = (N,p); = sgp/p- Indeed, we have (N,q)o = DéADQsa =

Di1Asyg and by Lemma 2.1, a@ € Cy implies that A € £ is bijective
q

from s, into itself and As,g = sqag. So we have (N,q)a = SaQ/q- By a
similar argument, we get (N,q), = S;Q /g Furthermore BP € Cy implies
(N,p)s = sgpy, and (N,p); = s;P/p. Then we have

((N, a) . (N.p) B) = (00/058P/0) = (Sacya>S5P/0)
(vl ()

and the conclusion follows from the identity (s,q/q, SP/p) = Sa/q,8P/p-
(ii) By Theorem 3.5 (iii), the identity ((N,q)a, (N,p)s) = Sa’g is equiv-

alent to sae = S4/ and sgp = sg. Therefore we have so/ x 51/ =
q

P
50Q/q * 51/a = 5Q/q and also sg//3 = sp/,. This shows (ii).
(iii) Using Theorem 3.5 (iii), we have saq = s4/, and sgp = sg/ imply
together that there are constants K; and qu such that
(3.27)
On < Kl— =0(1) and — < Ko By =0(1) for all n.
dn (79 Pn n

Then we have p,q € Cy.
(iv) The necessity comes from (ii). For the sufficiency, we assume s, = $q/
and sg = sg/. Then there are constants My, My > 0 such that a) /o, > M

and S, /3, > Mj for all n. Now p,q € Cy imply that there are constants
M|, MJ > 0 such that

1 1 P, P,
_%<1<% and ——<1<—" for all n.
M1 dn qn M2 DPn Pn

S0 Sq/ar = loo = 8g/q and sg/gr = loo = Sp/p, and we have shown
((Nv Q)om (va),@) = Sa’,ﬁ’-
O

Remark 3.9. Reasomng as above it can easily be shown that the conditions
aQ €T and BP € Cy, imply together (N )(c) (N,p)g) = S0Q/q,8P/p-
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Corollary 3.10. Assume aQ,BP € Ci and consider the following hypothe-
ses:

(7’) ((Na Q)aj\(ﬁa p)ﬁ) = Soz,ﬁ;

(“) D, q S Cl;
iii) there are K, K' >0 and v, > 1 such that
v

pn > K" and q, > K'u™ for all n;

(iv) (N, @)a, (N,p)g) = Si;

(v) 50Q = Sq, 5P = Sp;

(vi) g/ ¢ co or p/B & co;

(vii) there are constants Ky, Ko > 0 such that

K1§—: < %Zlq’_: < K2§—Z for all n.

Then (i) and (ii) are equivalent, (i) implies (iii), (iv) is equivalent to (v),
and (iv) implies (vi) and (vii).

Proof. By Theorem 3.8 (iv), conditions (i) and (ii) are equivalent.
Let us show that (ii) implies (iii). First, p € C} implies that there exists
a real M > 1 such that
P,
So P, > (M/(M —1))P,_1 and P, > (M/(M —1))""!p, for all n. Therefore
we conclude from

m( M )"—1 P,
o <[C =" <M,
that p, > K4" for all n, with K = (M — 1)p;/M? and v = M/(M —1) > 1.

We get the same result for ¢. Since (ii) implies (iii) and (i) 1mphes (ii) we
conclude that (i) implies (iii).
By Remark 3.7, the conditions s« = s1 and sgp = s1 are equivalent to
q p
5aQ * Sq = SaQ = Sq and Sar * S, = Sqp = Sp and then (iv) is equivalent to
p

q
V).
| )Let us show that (iv) implies (vi). Condition (iv) implies saq@ = s1 and
spp = s1. Then there are constants K1, Ko > 0 such that K; §qon/q < Ko
and

0<%<%<a—n for all n.

So g/« ¢ co. Similarly we obtain that (iv) implies p/5 ¢ co. Condition (iv)
implies that s = s,/ and sg = s,/p and since s/, = 5g/, We deduce from
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Theorem 3.5 (vii) that s1/q * S5 = 53/0 = 5Q/q * Sp/p = Sge- So we have

shown that (iv) implies (vi) and (vii). O

Remark 3.11. It is easy to show that if a, B € T, then (N, q)a, (N,p)g) =
Sq,p if and only if s, = s4 and sg = s;,. This result comes from the identities
Sag = SQ and Sgp = Sp.

Ngte also that of:ﬁ e I' implies aQ, 8P € I'. Then o, € T implies that
((N,q)a, (N,p)g) = Sa,s if and only if p,q € Cy.

Remark 3.12. If B/« € ¢y, %P € lo and aQ, BP € C, then (N, q)a, (N,p)s)
# S1. Indeed, suppose that (N, q)a, (N,p)g) = S1. Then, since (iv) implies
(vit) in Corollary 3.10, B/a € co implies (Qn/Pn)(Pn/qn) = 0(1) (n — 00),
and since ¢P[p € L, we ahve Qy = (Pngn/pn)o(1) = o(1) (n — o). This is

contradictory because Q, > q1 > 0 for all n and so (N,q)a, (N,p)s) # S1-

On the other hand it can easily be shown that if B/ ¢ lo and aQ, BP € Ci,
then

<(W,q)a,(w,p)6):Sl implies Q/q ¢ loo.

Indeed, if /o ¢ ls then there is a nondecreasing sequence (n;)52, of integers
tending to infinity such that By, /om, — oo, and since (i) implies (vii) in
Corollary 3.10, we have Qun,pn,/Pn,qn;, — 0. From the inequality Qn, /qn; >
Qn;Pn;/Qn, Pn;, we conclude Q/q ¢ loo.

4. MATRIX TRANSFORMATIONS IN THE SETS s,(N,N,), 5.(N,N,) AND
sSON,N,).
In this section, we study some properties of the sets s,(N,N,), so(N,N,)
(©)

and sy’ (N,N,) and give a characterization of matrix transformations map-
ping in either of the sets so(N,N,), s.(N,N,), or st (N,N,).

4.1. A study of the equation (N,N,)X = B.

Proposition 4.1. (i) Let B be any given sequence. Then the equation
(NpNg)X = B is equivalent to the infinite linear system

1

_i (Zn: %)gmxm:bn (n=1,2,...).

m=1 \k=m

3

Sa)s the equation (N,N,)X = B admits in s, pq, (Tesp. s;m) the unique
pq Prq

(i) Assume that o,a/p € T'. Then, for any given B € s, (resp. B €
Ny
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solution X = N;lﬁng given by

(4.1) =z,

_ @n-1 Pos @(in Qn)b Qn Pa

bn—2 -
Pn—1 dn dn Pn—1 Pn

with the convention b, =0 for n <O0.
(iii) If o P, aP/p € T, then, for any given B € s((f), the equation (N,N )X
(c)

= B admits in s, PQ 0 unique solution given by (32).
rq

Proof. (i) We have NyN, = D1 EDPD% YD, =D1 (ED% ¥)Dg; and putting
P P
ED%E = (Onm)pom=1> We get Tnm = > p_ (Pk/Qr) for m <n and oy, =0

otherwise. This shows (i).
(ii) Consider the case when B € s,. First, since P is nondecreasing and

lim (anl Pnl) < lim (Oén1) lim (Pnl)
n—00 a, P, — n—oo o, n—00 P, ’

we deduce that a € T implies aP € I'. Then the operator represented by

W;l = D1ADp is bijective from s, into s_r. Now, from the inequality
P p

- On—-1  Pn Pnlenfl - op—1 1

lim < lim Pot | >

=0 \ OpPn—1 Pn—1 PnQn n—oo Qp .

the condition «/p € T' implies that «PQ/p € T' and N;l = D1ADg is also
q

bijective from s p into s re. We conclude that Npﬁq is bijective from s _ ro
p prq praq

into s,. To obtain (4.1), we need to explicitly obtain the matrix (N,N,)~!.

We have N;IN;I = Di1ADGD:1ADp = D1AD,ADp, with v = Q/p and
q P q

A'=D,ADp = (M )pom—1, Where

Un Py, for m =n,
Tnm = —% —1 form=n—-1, n>1,
n
0 otherwise.

We conclude that N;W;l = D%AA’ = (Nyym)oom=1, With
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Qn P, ¢ B
== or m =n,
dn Pn
P,_ _
n_1<@+%) form=n—1, n>2,
777,”” = dn Pn—1 Pn
1P,
@n-1 Pn2 form=n—-2, n>3,
DPn—1 dQn
0 otherwise.
Part (iii) can be shown similarly. O

It follows from Part (i) in the previous theorem that

sa(NpNy) = {X €s: Fn Z (Z ) GmTm = a,O(1) (n — oo)}

m=1

We have the following result.

Proposition 4.2. We have
(i) sa(NpNg) = s, (Ng) if and only if oP € Ch;
P

(i1) 5o (NpN,) = s° P(_q) if and only if aP € C;;

(i) sﬁf)(ﬁpﬁ ) = S(CP( Ng) if and only if aP € I;
(iv) a € T implies sa(Nqu) =s,p(Ng) and s, (NpyNy) =
(v) Assume that o € I'. Then ’
(a) sa(NpNg) = s, rq if and only if 04m e Cy;
(b) s, (N,N,) = S;:Q if and only zfoz e Cy;

rq

(vi) Let aP € T. Then sﬁf)(ﬁpﬁ ) = s) pa if and only zfoz el.

Pq

. —
Sa% :DLASQ%. Thensag(]\fq) =

q

Wq_lwzjlsa = D1ADgD1ADps, ifand only if s_ro = DgAsqp and sap =
q p P !

~

=l

ok

@I“U

Proof. (i) First we have s p (Ng) = N;
P

Asqp. The last identity means aP € 6'\1
Parts (ii) and (iii) can shown similarly.
(iv) As we have seen in the proof of Proposition 4.1 (ii), the condition

a € T implies aP € C; and the conclusion follovvs from ( ) and (ii).
(v)(a) As we have seen in (i), the identity N, N = 5,£Q is equivalent
to
(4.2) DéADQD%ADPSa =5 pQ-
"

pq
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Since @ € I', we have aP € I' and ,by Proposition 2.2, aP € (/3'\1 So
Asop = sqp and identity (4.2) is equivalent to ADQ/pAsap = ADQ/psap =
Asq p = 8,re which in turn is equivalent to aPQ/p € 6’\1

P

Assertions (V)p (b) and (v) (c) can be shown similarly.

(vi) Reasoning as above we get D1 ADgD1 As&cl)g = SSLQ if and only if
q P oaq

prq
ASSL_Q = SSL_Q. This means aPQ/p € f’, and we have shown (vi). O
p p

4.2. Matrix transformations between x(N,N,) and x'(N,N;), where
x and x’ are of the form s, 52 or séc . In this section, among other

things, we study matrix transformations between x(N,) and x'(N,Ns),
where x and x’ are of the form sg, 32 or séc) for ¢ € UT. We also con-
sider the case when a matrix transformation maps x(N,N,) into x'(N,N;)

(C). Note that until now there is

(c)

no characterization of the sets (x(N,N,),x’) where x’ is 54, s,, or sS4 .

In this part, we use the sequences r = (1,)% 4, s = (s,)%2, € U, R =
(Rn)pli, S = (Sn)p2y, with R, =} rp and S, = >7)_; sg. From the
previous results, we deduce the following

where x and x' are of the form s¢, 32 or s

Proposition 4.3. We have

o

(i) (50,58(NsNs)) = (50, 85(NoNg)) = (9, s5(N, Ns))
and A € (sq,83(N,Ny))

am> < 00,

if and only if

(4.3) sup (i i

00 k
Qnk Ti
S(rg)e

00 k
1 i
lim — [E % ( E ;—Z> smaml =0 forallm=1,2,..;

i=m

(i1i) A € (sg),s;(ﬁrﬁs)) if and only if (4.3) and (4.4) hold and

00 00 k
nlLH;O ﬁi Z [Z nk (Z %) smam] =0 forallm=1,2,...,
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(iv) A € (s;,s(ﬁc) (N,.Ny)) if and only if (4.3) holds and
(4.5)

1 o) k :
lim — lz GR_n: (Z ;—Z> smam] =y, for allm=1,2,..;

e ﬂn k=1 i=m

(v) A€ (S&C),s(ﬁc)(ﬁrﬁs)) if and only if (4.3), (4.5) hold and

00 00 k
lim — 3 [z i (z ;_> smam] )
k )

n—00
ﬂn m=1 Lk=1 i=m

Proof. A short computation yields N, N A = (Hnm)%?mzl with

00 1 k r;
(4.6) Bnm = Z ankR—k ;;L E) Sy

By Lemma 3.3, we have A € (sq,s3(N,Ny)) if and only if N,NsA € S, 3,
and we have shown (i).

Parts (ii) and (iii) follow in a similar way using the characterizations of
(co,¢p) and (¢, ¢), (cf. [14, Theorem 1.36, p.160]). O

We also have the following
Corollary 4.4. Let o, 3 € UT. Then A € (sa(Ny),s3(N+Ns)) if and only

if
1 = Gk | TmSm | (Sm Smad o
4.7) sup | — + <— - ) -
.7 n>1 (ﬁn mZ:l ,;1 Ri | amSm  \@m  @m+1 (Z-:%l Sz):H
aQO) <0
and
(4.8)

0 k )
lim [Z o (Z ﬁ) W] —0 foralln=1,2,....

k=1 i=m Vi qm

95)

Proof. Now A € (s4(Ng),s3(N,Ny) if and only if N,N,A € (sa(Ny),s3),
and applying Lemma 3.3 (i), we get (4.7) and (4.8). O

Remark 4.5. Reasoning as in the proof of Corollary 4.4 and using Propsition
3.2 and Lemma 3.3, we easily get the characterizations of the sets (E, F),

where E is any of the sets so(Ny), s.(Ng) or s&c)(Nq), and F is any of
the sets s3(N,Ny), s;(ﬁ,ﬁs) or s(ﬁc) (N.Ns). So we have for instance A €
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(s;(wq),sg) (N.Ny)) if and only if N, NsA € (s, (N,),s (c )) that is if and
only if (4.7) holds and

lim i Guks | TmSm + <S—m - Sm“) i i A =0 for all n.

Proposition 4.6. (i) Assume that a € T'.
(a) Then A € (sa(NpNy),sp) if and only if

1 = Qnpm Gn,m+1 aumQm
4.9 sup - — < 00
( ) n>1 [Bn <mz:1 dm dm+1 Pm )
and
(4.10)
P,
limm — oo <anmm> =0 foraln=12,..
mdm
(b) A e (s;(ﬁpwq),s/g) if and only if (4.9) holds and
um m
sup (\anml u) < 00
m>1 mdm
(ii) If aP €T, then A € (sg)(ﬁpwq),%) if and only if (4.9) holds,
um m
lim (anmu) =&, foralln=1,2,... and sup|&,| < oo.
m—0oo memﬁn n>1

(iii)  (a) Assume that o, /p € . Then (so(NpNy),85) = (s0(NpNy), 55)
and A € (sa(N,Ny),sg) if and only if

(4.11) sup( 5 Z! nm\am mQ )
N,)

n>1

(b) If aP,aPQ/p € T, then A € (s % )(W ), s8) if and only if (4.11)

holds.
Proof. (i) (a) As we have seen in the proof of Proposition 4.1, a € T" implies
aP € T and Asap = Sap. Thus we have so(N,N,) = N;IN;I
-1 ~-1 ~ ~ . .
N, D%Asap =N, Sal = Sag(Nq) and A € (so(NpNy), sp) if and only if
A€ (s,p(Ng),sg). Then it is enough to apply Propositon 3.2 (i).
P

Part (b) can be shown similarly

(ii) The condition aP € [ implies s&)(ﬁ N, = s((f])J/ (N,). Then A €

):8

(s (N, N,), s5) if and only if A € (s, (N,

aP/p 3), and the conclusion fol-

lows from Proposition 3.2 (ii).
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(iii) (a) The condition a,a/p € T implies s4(N,N ) = SaPQ/pq and
so(NpN,) = So we have (so(N,Ng),s5) =

SaPQ/pep-
Part (iii) (b) follows from Proposition 4.2 (vi). O

o
SaPQ/pg:

Remark 4.7. Reasoning as in Proposition 4.6, we get the characterizations
of the sets (E,F), where E is any of the sets so(NpyN,), so(NpyN,) or
s )(N N,), and F is any of the sets sg, s; or s(ﬁc).

Proposition 4.8. (i) (a) Assume that a,«/p € T'. Then we have

(50 (NpNy) 255 (NoN)) = (50 (NN, 55 (NN

and A € (sa(NpNy),s3(N-Ns)) if and only if

aumQm

Pm4m

< 00.

[e%) k
Ank T
w(25)

(b) IfaP €T, aPQ/p €T, then A € (sg)(ﬁpﬁq), s3(N-Ns)) if and only
if (4.12) holds.
(ii) (a) Assume that o € I'.Then A € (so(NpNy),s3(N,Ns)) if and only

k
"mSm (S_m B 5m+1) T
ImSm dm  dm+1 (2%1 Sz)] ‘

if

[e o]

Ank
2R,

n>1

(4.13) sup |:Bn i

m=1|k=
Pl .
Pm
and
(b) A€ (so(NyNy),s3(N,Ns)) if and only if (4.13) holds and
(4.14)

< oo for alln.

00 k
ok (N~ i) OmSmEn@m
k; ( By (Z:Zm Sz>> Pmlm
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(iii) If aP € T, then A € (sﬁf)(ﬁpﬁq),sﬁ(mﬁs)) if and only if (4.13)
holds and

. 1 s Ank i i amSumQm
lim |— — — || =
i[5 (5 (2 ) ] =

for all n and sup|¢,| < co.
n>1

Proof. (i) As we have seen in the proof of Proposition 4.1, the condition

a/p € T implies that aPQ/p € T. So a, a/p € T together imply s,(N,N,) =

s,rq. Thus A € (so(NpNg),s5(N,N,)) if and only if N, N A € (s_rq,s3)
rq prq

= 5,rq 5. Now the conclusion follows from (4.5) and
pq’

(.o (. )
S , 881 =1 s , 881 = 1| s , 88 | .
(argr59) = (shzg99) = (shg o0

(i) (b) By Proposition 4.2 (vi), the conditions aP € ' and aPQ/p € T
together imply sg)(ﬁpﬁq) = SSL_Q. Thus A € (sa(NpNy),s3(N,Ny)) is

equivalent to N, N,A € (SiCBDQ ,88) = 5,rQ g
Pq pq’

(ii) (a) Reasoning as in Proposition 4.6 (i) (a), we get that a € I' im-
plies sqo(NpNy) = sa%(Nq). So A € (sa(NpNg),53(N,Ny)) if and only if

N,N,A € (s,r(Ng),sg), and the conclusion follows from Proposition 3.2
p

(1). L L o

(i) (b) Since we have (so(NpNg), s3(NrNs)) = (s_p(Ng),s3(NrNs)) and

p— R — R — P [—
A€ (S;E(Nq),SB(NTNS)) if and only if N, NsA € (s p(Ny),ss), the con-
P

e
clusion follows by Proposition 3.2 (iii).

(iii) By Proposition 4.2 (iii), the condition aP € T implies s (N,N,) =
sf;]l/p(wq) and, as above, A € (s((f) (NpNy),s3(NNy)) if and only if N, N A
(c

al
p

~

€ (sp(Ng,s3). Now the conclusion follows from Proposition 3.2 (ii). O

Proposition 4.9. (i) Assume that o, 3 € T.
(a) Then A € (sa(NpNy),s3(N.Ny)) if and only if

(4.15)
oo n
Sn Akm Ak m+1 aumQm
sup E E Sk ( - — ) < 0
n>1 |Jn:1 BnSn Ry 1 dm dm+1 Pm
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and
(4.16)

. CVmJDQO Sn - Prlrm
lim =0 or all n.
m—00 [ Pmlm  OBnRn <kzl P, d

(b) Then A € (sa’ (N,N,),s3(N,Ny)) if and only if (4.15) holds and
QU P Qm " spa m
(4.17) sup [ <Z kS: )

k
( (u}) Ifaoel and B €T, then A € (sﬁf)(mm),sﬁ(mﬁs)) if and only if
4.15) holds and

(4.18)

m—00

li [aumQm ( = SkGkm
1m

o S, )] =¢) for alln and ilgl) €] < .

k=1
Proof. The condition «, 8 € I" implies
(sa(NpNg), 55(N,Ny)) = (Sag(ﬁq)735§(ﬁs))-

Now the conclusiom follows from Proposition 3.4 (i).
The statements (i) (b) and (ii) can be shown similarly. O

Remark 4.10. Reasoning as in the previous corollaries we can easily get the
characterizations of the sets (E, F'), where E is any of the sets so(NpNg),

so(N,N,) or s (N,N,) and F is any of the sets sg(N,Ny), s;(ﬁpﬁq) or
s INLN).
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