Criteria for sets of scores with prescribed positions

Momčilo Bjelica and Slobodan Lakić

Abstract

We characterize sets of scores with property that each score has prescribed position in the tournament score sequence¹.

A tournament T_n is a graph with vertices $1, 2, \ldots, n$ such that each pair of distinct vertices i and j is joined by one and only one of the oriented edges ij and ji. We say that vertex i dominates vertex j if T_n contains an oriented edge ij. The score (outdegree) of vertex i is the number s_i of vertices that i dominates. Let vertices of T_n be labeled in such way that $s_1 \leq s_2 \leq \ldots \leq s_n$. The sequence (s_1, s_2, \ldots, s_n) is called the score sequence of T_n . A transitive tournament has the simplest structure $0 \leq 1 \leq \ldots \leq n-1$, while regular tournaments have scores as nearly equal as possible $[e] = \ldots = [e] \leq [e] = \ldots = [e], e = (n-1)/2.$

E.g, a regular tournament of odd order n = 2e + 1 obtains if vertex j, where $1 \le j \le n$, dominates j + i, where $1 \le i \le e$, assuming that vertex n + k equals k. Landau theorem [6] gives a non-constructive criterium for a score sequence.

Theorem 1 (Landau theorem) A nondecreasing sequence $s_1 \leq s_2 \leq \ldots \leq s_n$ of nonnegative integers is the score sequence of some tournament T_n if and only if

$$\sum_{i=1}^{k} s_i \ge k^2, \quad 1 \le k \le n, \quad \sum_{i=1}^{n} s_i = n^2.$$
(1)

The next theorem [2] gives a criterium for score segments and subsequences with arbitrary positions of scores.

Theorem 2 Let $t_1 \leq t_2 \leq \ldots \leq t_m$ be a sequence of nonnegative integers and $s_1 \leq s_2 \leq \ldots \leq s_n$ be a score sequence of a tournament T_n with $m \leq n$. Then the following properties are equivalent: $4 S_1$: $\sum_{i=1}^{j} t_i \geq j2$, $1 \leq j \leq m$; S_2 : $t_j = s_j$, $1 \leq j \leq m$, for some T_n ; S_3 : $t_j = s_{k+j}$, $1 \leq j \leq m$, for some T_n and k; S_4 : $t_j = s_{k_j}$, $1 \leq j \leq m$, for some T_n and $k_1 < k_2 < \ldots < k_m$.

 $^{^1\}mathrm{Presented}$ at the IMC "Filomat 2001", Niš, August 26–30, 2001 2000 Mathematics Subject Classification: 05C20.

Keywords: Tournament, score sequence.

In this paper we consider conditions for a set of integers to be the subset of scores with prescribed positions in some score sequence. In the following we shall use the notations $b(x)=x^{2}$, $X(k)=\sum_{i=1}^{k}x_{i}$, $\sum_{i=l}^{k}x_{i}=0$, l>k.

Theorem 3 Let $0 \le t_1 \le t_2 \le \ldots \le t_m$ and $0 < k_1 < k_2 < \ldots < k_m$ be two sequences of integers. Then, there exists a tournament T_n with score sequence $s_1 \le s_2 \le \ldots \le s_n$ such that $t_j = s_{k_j}$, $1 \le j \le m$, if and only if

$$\sum_{i=1}^{j} (k_i - k_{i-1}) t_i \ge k_j 2, \quad 1 \le j \le m, \ k_0 = 0.$$
⁽²⁾

The size of the tournament can be k_m if and only if in e:prescribed the equality holds for j = m.

Necessity. If for some tournament we have $t_j = s_{k_j}$, where $1 \leq j \leq m$, then monotonicity of the score sequence and the Landau theorem give $\sum_{i=1}^{j} (k_i - k_{i-1})t_i = \sum_{i=1}^{j} (k_i - k_{i-1})s_{k_i} \geq \sum_{i=1}^{k_j} s_i \geq k_j 2$, $1 \leq j \leq m$. Sufficiency. Let some sequences t and k satisfy e:prescribed. Define the

Sufficiency. Let some sequences t and k satisfy e:prescribed. Define the sequence $u_1 \leq u_2 \leq \ldots \leq u_{k_m}$ which includes the sequence t as subsequence $u_k = t_j, \quad k_{j-1} < k \leq k_j, \quad 1 \leq j \leq m$, and let us prove that it satisfies property S_1 from Theorem 2. In the following minorizations we apply piecewise linearity of U, inequalities e:prescribed, and convexity of binomial function b $U(k)=U(k_{j-1}) + (k - k_{j-1})t_{k_j}$ $= U(k_{j-1}) + (k - k_{j-1})U(k_{j-1})$

$$= U(k_{j-1}) + (k - k_{j-1}) \frac{U(k_j) - U(k_{j-1})}{k_j - k_{j-1}}$$

$$= \frac{k_j - k}{k_j - k_{j-1}} U(k_{j-1}) + \frac{k - k_{j-1}}{k_j - k_{j-1}} U(k_j)$$

$$\geq \frac{k_j - k}{k_j - k_{j-1}} b(k_{j-1}) + \frac{k - k_{j-1}}{k_j - k_{j-1}} b(k_j)$$

$$\geq b \left(\frac{k_j - k}{k_j - k_{j-1}} k_{j-1} + \frac{k - k_{j-1}}{k_j - k_{j-1}} k_j \right)$$

= b(k). By property S_2 from Theorem 2, there exists a tournament T_n with beginning score segment u. Therefore, scores from the sequence t appear on the prescribed positions k.

Hardy, Littlewood and Pólya [4] introduced the majorization relation. Let a and b be in \mathbb{R}^n , then a is said to be majorized by $b \ a \prec b$ if $\sum_{i=1}^k a_{[i]} \leq \sum_{i=1}^k b_{[i]}$, $1 \leq k \leq n$, $\sum_{i=1}^n a_{[i]} = \sum_{i=1}^n b_{[i]}$, where $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$ denotes the nonincreasing permutation of the sequence x_1, x_2, \ldots, x_n . The same authors proved that $a \prec b$ if and only if for each convex function f holds $\sum_{i=1}^n f(a_i) \leq \sum_{i=1}^n f(b_i)$. In this notation the Landau condition e:Landau takes an equivalent form

$$(s_1, s_2, \dots, s_n) \prec (0, 1, \dots, n-1).$$
 (3)

Weak supermajorization [7] of a by b means $a \prec^w b$ if $\sum_{i=1}^k a_{(i)} \geq \sum_{i=1}^k b_{(i)}$, $1 \leq k \leq n$, where $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ is the nondecreasing permutation of x_1, x_2, \ldots, x_n , and weak submajorization means $a \prec_w b$ if $\sum_{i=1}^k a_{[i]} \leq \sum_{i=1}^k b_{[i]}$, *i.e.* $\sum_{i=k}^n a_{(i)} \leq \sum_{i=k}^n b_{(i)}$, $1 \leq k \leq n$.

In the proof of Theorem 3 we constructed the multiset

$$\{k_1 \bullet t_1, (k_2 - k_1) \bullet t_2, \dots, (k_m - k_{m-1}) \bullet t_m\}$$

which preserves the nondecreasing arrangement of $t \ \Delta k \bullet t$: $\underbrace{t_1 = \ldots = t_1}_{k_1} \leq$

 $\underbrace{t_2 = \ldots = t_2}_{k_2 - k_1} \le \ldots \le \underbrace{t_m = \ldots = t_m}_{k_m - k_{m-1}}$. The notation for multisets • we also use for vectors.

Remark 1 The characterization e:prescribed from Theorem 3 have a condensed form

$$(0, 1, \dots, k_m - 1) \stackrel{\mathrm{W}}{\succ} \Delta k \bullet t.2a \tag{4}$$

From Theorems 2 and 3 one obtains that e:prescribed implies S_1 . In the following we shall strengthen this implication.

For sequences a and b let $a \leq b$ denotes $a_k \leq b_k$, where $1 \leq k \leq n$.

If the comparands in relations \leq and \prec^w have different lengths, then we restrict them to the shorter one.

Theorem 4 Let $l_1 < l_2 < \cdots$ and $k_1 < k_2 < \cdots$ be sequences of positive integers and $t_1 \leq t_2 \leq \cdots$. Then the following are equivalent: $\Im R_1 : l \leq k$, $R_2 : \Delta l \bullet t \geq \Delta k \bullet t$, for each t, $R_3 : \Delta l \bullet t \prec^W \Delta k \bullet t$, for each t.

 $R_1 \Rightarrow R_2 \Rightarrow R_3$. This is obvious.

 $R_3 \Rightarrow R_1$. Let $p_1 \leq p_2 \leq \cdots$ and $q_1 \leq q_2 \leq \cdots$ be the sequences $\Delta l \bullet t$ and $\Delta k \bullet t$, respectively. For $t_1 = \ldots = t_j < t_{j+1}$ we have $l_j t_1 = \sum_{i=1}^{l_j} p_i \geq \sum_{i=1}^{l_j} q_i \geq l_j t_1$, so that $l_j \leq k_j$.

Corollary 1 Let $l_1 < l_2 < \ldots < l_m$ and $k_1 < k_2 < \ldots < k_m$ be sequences of positive integers satisfying $l \leq k$. If $t_j = s_{k_j}$, where $1 \leq j \leq m$, is the score subsequence of some tournament T_n , then $t_j = s_{l_j}^*$, where $1 \leq j \leq m$, for some T_q^* .

References

- M. Bjelica, On Landau Tournament Theorem, in: N. Boja, ed., Proc. of The 7th Symposium of Mathematics and its Applications, Politehnica, Timişoara, 1997, pp. 49–52.
- [2] M. Bjelica, Segments of Score Sequences, Novi Sad J. Math. 30, No. 2 (2000), Proc. of the TARA 2000 Conference, Novi Sad, September 6–7, 2000, pp. 11–14.
- [3] G. Chartrand, L. Lesniak, *Graphs & Digraphs*, 3rd. Ed., Chapman and Hall, London 1996.

- [4] G.H. Hardy, J.E. Littlewood, and G. Pólya, Some Simple Inequalities Satisfied by Convex Functions, Messenger Math. 58 (1929), pp. 145–152.
- [5] F. Harary, and L. Moser, *The Theory of Round Robin Tournaments*, Amer. Math. Month. **73** (1966), pp. 231–246.
- [6] H.G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys. 15 (1953), pp. 143–148.
- [7] A.W. Marshal, and I. Olkin, *Inequalities: Theory of Majorization and Its Applications*, Academic Press, New York, 1979.
- [8] J.W. Moon, *Topics on Tournaments*, Holt, Reinhart and Winston, New York, 1968.

Faculty of Engineering "Mihajlo Pupin", Zrenjanin, Yugoslavia bjelica@zpupin.tf.zr.ac.yu

Faculty of Economy, Brčko, Bosnia and Hertzegovina