Criteria for sets of scores with prescribed positions

Momčilo Bjelica and Slobodan Lakić

Abstract

We characterize sets of scores with property that each score has prescribed position in the tournament score sequence ${ }^{1}$.

A tournament T_{n} is a graph with vertices $1,2, \ldots, n$ such that each pair of distinct vertices i and j is joined by one and only one of the oriented edges $i j$ and $j i$. We say that vertex i dominates vertex j if T_{n} contains an oriented edge $i j$. The score (outdegree) of vertex i is the number s_{i} of vertices that i dominates. Let vertices of T_{n} be labeled in such way that $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$. The sequence $\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is called the score sequence of T_{n}. A transitive tournament has the simplest structure $0 \leq 1 \leq \ldots \leq n-1$, while regular tournaments have scores as nearly equal as possible $\underbrace{\lfloor e\rfloor=\ldots=\lfloor e\rfloor}_{\lfloor n / 2\rfloor} \leq \underbrace{\lceil e\rceil=\ldots=\lceil e\rceil}_{\lceil n / 2\rceil}, \quad e=(n-1) / 2$.
E.g, a regular tournament of odd order $n=2 e+1$ obtains if vertex j, where $1 \leq j \leq n$, dominates $j+i$, where $1 \leq i \leq e$, assuming that vertex $n+k$ equals k. Landau theorem [6] gives a non-constructive criterium for a score sequence.

Theorem 1 (Landau theorem) A nondecreasing sequence $s_{1} \leq s_{2} \leq \ldots \leq$ s_{n} of nonnegative integers is the score sequence of some tournament T_{n} if and only if

$$
\begin{equation*}
\sum_{i=1}^{k} s_{i} \geq k 2, \quad 1 \leq k \leq n, \quad \sum_{i=1}^{n} s_{i}=n 2 \tag{1}
\end{equation*}
$$

The next theorem [2] gives a criterium for score segments and subsequences with arbitrary positions of scores.

Theorem 2 Let $t_{1} \leq t_{2} \leq \ldots \leq t_{m}$ be a sequence of nonnegative integers and $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$ be a score sequence of a tournament T_{n} with $m \leq n$. Then the following properties are equivalent: $4 S_{1}: \quad \sum_{i=1}^{j} t_{i} \geq j 2, \quad 1 \leq j \leq m$;
$S_{2}: \quad t_{j}=s_{j}, \quad 1 \leq j \leq m, \quad$ forsome $T_{n} ;$
$S_{3}: \quad t_{j}=s_{k+j}, \quad 1 \leq j \leq m, \quad$ forsome T_{n} and k;
$S_{4}: \quad t_{j}=s_{k_{j}}, \quad 1 \leq j \leq m, \quad$ forsome T_{n} and $k_{1}<k_{2}<\ldots<k_{m}$.

[^0]In this paper we consider conditions for a set of integers to be the subset of scores with prescribed positions in some score sequence. In the following we shall use the notations $\mathrm{b}(\mathrm{x})=\mathrm{x} 2, \quad \mathrm{X}(\mathrm{k})=\sum_{i=1}^{k} x_{i}, \quad \sum_{i=l}^{k} x_{i}=0, \quad l>k$.

Theorem 3 Let $0 \leq t_{1} \leq t_{2} \leq \ldots \leq t_{m}$ and $0<k_{1}<k_{2}<\ldots<k_{m}$ be two sequences of integers. Then, there exists a tournament T_{n} with score sequence $s_{1} \leq s_{2} \leq \ldots \leq s_{n}$ such that $t_{j}=s_{k_{j}}, \quad 1 \leq j \leq m$, if and only if

$$
\begin{equation*}
\sum_{i=1}^{j}\left(k_{i}-k_{i-1}\right) t_{i} \geq k_{j} 2, \quad 1 \leq j \leq m, \quad k_{0}=0 \tag{2}
\end{equation*}
$$

The size of the tournament can be k_{m} if and only if in e:prescribed the equality holds for $j=m$.

Necessity. If for some tournament we have $t_{j}=s_{k_{j}}$, where $1 \leq j \leq m$, then monotonicity of the score sequence and the Landau theorem give $\sum_{i=1}^{j}\left(k_{i}-\right.$ $\left.k_{i-1}\right) t_{i}=\sum_{i=1}^{j}\left(k_{i}-k_{i-1}\right) s_{k_{i}} \geq \sum_{i=1}^{k_{j}} s_{i} \geq k_{j} 2, \quad 1 \leq j \leq m$.

Sufficiency. Let some sequences t and k satisfy e:prescribed. Define the sequence $u_{1} \leq u_{2} \leq \ldots \leq u_{k_{m}}$ which includes the sequence t as subsequence $\mathrm{u}_{k}=t_{j}, \quad k_{j-1}<k \leq k_{j}, \quad 1 \leq j \leq m$, and let us prove that it satisfies property S_{1} from Theorem 2. In the following minorizations we apply piecewise linearity of U, inequalities e:prescribed, and convexity of binomial function b $\mathrm{U}(\mathrm{k})=\mathrm{U}\left(\mathrm{k}_{j-1}\right)+\left(k-k_{j-1}\right) t_{k_{j}}$
$=U\left(k_{j-1}\right)+\left(k-k_{j-1}\right) \frac{U\left(k_{j}\right)-U\left(k_{j-1}\right)}{k_{j}-k_{j-1}}$
$=\frac{k_{j}-k}{k_{j}-k_{j-1}} U\left(k_{j-1}\right)+\frac{k-k_{j-1}}{k_{j}-k_{j-1}} U\left(k_{j}\right)$
$\geq \frac{k_{j}-k}{k_{j}-k_{j-1}} b\left(k_{j-1}\right)+\frac{k-k_{j-1}}{k_{j}-k_{j-1}} b\left(k_{j}\right)$
$\geq b\left(\frac{k_{j}-k}{k_{j}-k_{j-1}} k_{j-1}+\frac{k-k_{j-1}}{k_{j}-k_{j-1}} k_{j}\right)$
$=b(k)$. By property S_{2} from Theorem 2 , there exists a tournament T_{n} with beginning score segment u. Therefore, scores from the sequence t appear on the prescribed positions k.

Hardy, Littlewood and Pólya [4] introduced the majorization relation. Let a and b be in \mathbb{R}^{n}, then a is said to be majorized by b a々 b if $\sum_{i=1}^{k} a_{[i]} \leq$ $\sum_{i=1}^{k} b_{[i]}, \quad 1 \leq k \leq n, \quad \sum_{i=1}^{n} a_{[i]}=\sum_{i=1}^{n} b_{[i]}$, where $x_{[1]} \geq x_{[2]} \geq \ldots \geq x_{[n]}$ denotes the nonincreasing permutation of the sequence $x_{1}, x_{2}, \ldots, x_{n}$. The same authors proved that $a \prec b$ if and only if for each convex function f holds $\sum_{i=1}^{n} f\left(a_{i}\right) \leq \sum_{i=1}^{n} f\left(b_{i}\right)$. In this notation the Landau condition e:Landau takes an equivalent form

$$
\begin{equation*}
\left(s_{1}, s_{2}, \ldots, s_{n}\right) \prec(0,1, \ldots, n-1) . \tag{3}
\end{equation*}
$$

Weak supermajorization [7] of a by b means $a \prec^{w} b$ if $\sum_{i=1}^{k} a_{(i)} \geq$ $\sum_{i=1}^{k} b_{(i)}, \quad 1 \leq k \leq n$, where $x_{(1)} \leq x_{(2)} \leq \ldots \leq x_{(n)}$ is the nondecreasing permutation of $x_{1}, x_{2}, \ldots, x_{n}$, and weak submajorization means $\mathrm{a} \prec_{w} b$ if $\quad \sum_{i=1}^{k} a_{[i]} \leq$ $\sum_{i=1}^{k} b_{[i]}, \quad$ i.e. $\quad \sum_{i=k}^{n} a_{(i)} \leq \sum_{i=k}^{n} b_{(i)}, \quad 1 \leq k \leq n$.

In the proof of Theorem 3 we constructed the multiset

$$
\left\{k_{1} \bullet t_{1},\left(k_{2}-k_{1}\right) \bullet t_{2}, \ldots,\left(k_{m}-k_{m-1}\right) \bullet t_{m}\right\}
$$

which preserves the nondecreasing arrangement of $t \Delta k \bullet t: \underbrace{t_{1}=\ldots=t_{1}}_{k_{1}} \leq$ $\underbrace{t_{2}=\ldots=t_{2}}_{k_{2}-k_{1}} \leq \ldots \leq \underbrace{t_{m}=\ldots=t_{m}}_{k_{m}-k_{m-1}}$. The notation for multisets \bullet we also use for vectors.

Remark 1 The characterization e:prescribed from Theorem 3 have a condensed form

$$
\begin{equation*}
\left(0,1, \ldots, k_{m}-1\right)^{\mathrm{w}_{\succ}} \succ \Delta \bullet \bullet t .2 a \tag{4}
\end{equation*}
$$

From Theorems 2 and 3 one obtains that e:prescribed implies S_{1}. In the following we shall strengthen this implication.

For sequences a and b let $a \leq b$ denotes $a_{k} \leq b_{k}$, where $1 \leq k \leq n$.
If the comparands in relations \leq and \prec^{w} have different lengths, then we restrict them to the shorter one.

Theorem 4 Let $l_{1}<l_{2}<\cdots$ and $k_{1}<k_{2}<\cdots$ be sequences of positive integers and $t_{1} \leq t_{2} \leq \cdots$. Then the following are equivalent: $3 R_{1}: l \leq k$, $R_{2}: \quad \Delta l \bullet t \geq \Delta k \bullet t, \quad$ foreacht, $R_{3}: \quad \Delta l \bullet t \prec{ }^{\mathrm{W}} \Delta k \bullet t, \quad$ foreach t.
$R_{1} \Rightarrow R_{2} \Rightarrow R_{3}$. This is obvious.
$R_{3} \Rightarrow R_{1}$. Let $p_{1} \leq p_{2} \leq \cdots$ and $q_{1} \leq q_{2} \leq \cdots$ be the sequences $\Delta l \bullet t$ and $\Delta k \bullet t$, respectively. For $t_{1}=\ldots=t_{j}<t_{j+1}$ we have $l_{j} t_{1}=\sum_{i=1}^{l_{j}} p_{i} \geq$ $\sum_{i=1}^{l_{j}} q_{i} \geq l_{j} t_{1}$, so that $l_{j} \leq k_{j}$.

Corollary 1 Let $l_{1}<l_{2}<\ldots<l_{m}$ and $k_{1}<k_{2}<\ldots<k_{m}$ be sequences of positive integers satisfying $l \leq k$. If $t_{j}=s_{k_{j}}$, where $1 \leq j \leq m$, is the score subsequence of some tournament T_{n}, then $t_{j}=s_{l_{j}}^{*}$, where $1 \leq j \leq m$, for some T_{q}^{*}.

References

[1] M. Bjelica, On Landau Tournament Theorem, in: N. Boja, ed., Proc. of The 7th Symposium of Mathematics and its Applications, Politehnica, Timişoara, 1997, pp. 49-52.
[2] M. Bjelica, Segments of Score Sequences, Novi Sad J. Math. 30, No. 2 (2000), Proc. of the TARA 2000 Conference, Novi Sad, September 6-7, 2000, pp. 11-14.
[3] G. Chartrand, L. Lesniak, Graphs \& Digraphs, 3rd. Ed., Chapman and Hall, London 1996.
[4] G.H. Hardy, J.E. Littlewood, and G. Pólya, Some Simple Inequalities Satisfied by Convex Functions, Messenger Math. 58 (1929), pp. 145-152.
[5] F. Harary, and L. Moser, The Theory of Round Robin Tournaments, Amer. Math. Month. 73 (1966), pp. 231-246.
[6] H.G. Landau, On dominance relations and the structure of animal societies. III. The condition for a score structure, Bull. Math. Biophys. 15 (1953), pp. 143-148.
[7] A.W. Marshal, and I. Olkin, Inequalities: Theory of Majorization and Its Applications, Academic Press, New York, 1979.
[8] J.W. Moon, Topics on Tournaments, Holt, Reinhart and Winston, New York, 1968.

Faculty of Engineering "Mihajlo Pupin",
Zrenjanin, Yugoslavia
bjelica@zpupin.tf.zr.ac.yu
Faculty of Economy,
Brčko, Bosnia and Hertzegovina

[^0]: ${ }^{1}$ Presented at the IMC "Filomat 2001", Niš, August 26-30, 2001 2000 Mathematics Subject Classification: 05C20.
 Keywords: Tournament, score sequence.

