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Abstract

A class of algebras is said to be globally determined if any two members
of that class having isomorphic power algebras are isomorphic. In 1984,
Y. Kobayashi proved that semilattices are globally determined. By using
his methods, we prove that the class of all ∗-bands has the same property1.

Let 〈A,F〉 be a universal algebra. Clearly, the operations from F can be
extended to the collection of all nonempty subsets of A by defining

f(A1, . . . , An) = {f(a1, . . . , an) : ai ∈ Ai, 1 ≤ i ≤ n}

for all n-ary operations f ∈ F and A1, . . . , An ⊆ A. In the way just described,
we obtain the power algebra, or the global of the algebra A, denoted by P(A). In
particular, if S is a semigroup, then P(S) is a semigroup too, with the operation
given by

XY = {xy : x ∈ X, y ∈ Y },
for all nonempty X, Y ⊆ S.

A class C of algebras of the same similarity type is said to be globally deter-
mined if for each A,B ∈ C the following implication holds:

P(A) ∼= P(B) =⇒ A ∼= B.

The problem of global determinism was formulated for the first time in the six-
ties by B. M. Schein, and also in the pioneering paper of Tamura and Shafer
[15], where it was proved that the class of all groups possesses this property.
Further research in this field was mainly concentrated on various classes of semi-
groups and related associative systems. Although the class of all semigroups is
not globally determined, as proved by Mogiljanskaja [9], a number of relevant
globally determined classes of semigroups were found: rectangular groups [12],
finite semilattices of torsion groups and finite simple semigroups [5], completely
regular periodic monoids (in particular, all bands with an identity element)
and their orthogonal sums [6], completely simple and completely 0-simple semi-
groups [13, 14], and so on.

Recall that an involution semigroup is a semigroup equipped with an invo-
lutary antiautomorphism. In other words, we are concerned with algebras of
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the form 〈S, ·,∗ 〉 such that 〈S, ·〉 is a semigroup and the following identities are
satisfied:

(xy)∗ = y∗x∗,

(x∗)∗ = x.

If, in addition, x∗ is an inverse of x for each x ∈ S, i.e. if the identity xx∗x = x
holds in S, then S is a ∗-semigroup [10]. Finally, a ∗-band is an idempotent
∗-semigroup.

There is a number of papers on ∗-bands in the literature describing their nice
and interesting properties, which all show how well-behaved this class actually
is. For example, the lattice of its subvarieties is completely described in [1],
valuable information on projectives and injectives is provided by [11], and the
structure of free ∗-bands is well understood [16, 4]. In the present note, we add
one more entry to the list of ‘good’ features of ∗-bands: we prove that they are
globally determined. We recall, however, that the latter property is not shared
by the class of all involution semigroups [2].

The present note is inspired by the paper of Kobayashi [8], who proved the
the class of all semilattices is globally determined by analyzing some order-
theoretic properties of semilattices. But since any band can be made into a
partially ordered set by defining

a ≤ b ⇐⇒ ab = ba = a,

it was tempting to see to what extent can be the method of Kobayashi applied
in some more general situations. It turned out that ∗-bands provide conditions
under which such a generalization is completely successful. Note that a ∗-
semilattice is necessarily a semilattice with trivial involution (identity mapping),
yielding the original framework discussed in [8].

For any involution semigroup S involved in the sequel, we denote by Su(S)
the set of all involution subsemigroups of S. We start with the following fact.

Lemma 1 For any involution band B, Su(B) coincides with the set of all pro-
jections (idempotent fixed points of the involution) of P(B). Therefore, if B1, B2

are involution bands, any isomorphism ϕ : P(B1) → P(B2) induces (by restric-
tion) a bijection Su(B1) → Su(B2).

Proof. First of all, note that for all X ⊆ B we have (X∗)∗ = X and, by the
idempotency, X ⊆ X2. Thus, X ∈ Su(B) if and only if X2 ⊆ X and X∗ ⊆ X,
which is, in turn, equivalent to X = X2 = X∗.

Further, we point out one distinguished subfamily of Su(B):

Ch(B) = {X ∈ Su(B) : X = Y 2 ⇒ X = Y }.
Clearly, as in the above lemma, any isomorphism of P(B1) and P(B2) defines a
bijection between Ch(B1) and Ch(B2). We characterize the members of Ch(B),
as follows.
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Lemma 2 Let B be a ∗-band. Then X ∈ Ch(B) if and only if X is a chain of
projections.

Proof. Assume that xy 6∈ {x, y} for some x, y ∈ X. Then x, y ∈ X \ {xy} and
so xy ∈ (X \ {xy})2. Since X \ {xy} ⊆ (X \ {xy})2, it follows (X \ {xy})2 = X,
i.e. X 6∈ Ch(B). Now for each x ∈ X we have xx∗ ∈ {x, x∗}, implying that x
must be a projection. Finally, since xy ∈ {x, y} for all x, y ∈ X and x, y are
projections, xy must be a projection too, and therefore xy = yx. Thus, X is a
chain.

Conversely, let X be a chain of projections and X = Y 2 for a subset Y ⊆ B.
Then however, Y ⊆ X and since every subset of a chain is its subsemigroup, we
obtain Y = Y 2 = X.

We have already mentioned the partial order relation which can be defined
on an arbitrary band B. In an analogous way, one defines a partial order on
Su(B) as the restriction of the natural order on the set of idempotents of P(B):

X ≤ Y ⇐⇒ XY = Y X = X.

The fact that y covers x in B (i.e. if x < y and there is no z ∈ B such that
x < z < y) we write x → y. However, when elements of Su(B) are involved, we
are going to use two kinds of arrows. If Y covers X in Su(B), then we write
X ⇒ Y . On the other hand, the weaker assertion that X < Y and that there
is no element of Ch(B) between X and Y we denote by X → Y .

Following Kobayashi’s terminology [8], we call a sequence Y1, . . . , Yn of ele-
ments of Ch(B) a hair of X (of length n) if

X ⇒ Y1 ⇒ . . . ⇒ Yn.

The above hair is maximal if it cannot be prolonged to a hair of length n + 1.
Finally, a quadruple X,Y, Z, T of distinct elements of Ch(B) we call a topknot
of X provided that the following relations hold:

Y ⇒ T ⇐ Z
↖ ↗

X

The main characterization theorem of [8] that allowed to prove the global de-
terminism of semilattices is now the following one.

Proposition 3 (Kobayashi, [8]) Let S be a semilattice and let X be a subchain
of S. Then |X| = 1 if and only if X has neither topknots, nor maximal hairs
of length 1.

Our aim is here to prove that an analogous statement holds for ∗-bands.
It is well known (e.g. from [1, 3]) that if Σ is the greatest semilattice image

of a ∗-band B, then each of the rectangular band D-classes of B is closed for
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the ∗ operation, yielding that these classes must be square. In other words, B is
a semilattice of rectangular ∗-bands. Let σ : B → Σ denote the corresponding
surjective homomorphism. The following simple observation enables us to use
Lemma 1 from [8] for ∗-bands.

Lemma 4 Let B be a ∗-band. If X, Y ∈ Ch(B) are such that X < Y and that
σ(X) ⇒ σ(Y ) (σ(X) → σ(Y )) holds in P(Σ), then X ⇒ Y (X → Y ).

Proof. Assume there exists Z ∈ Su(B) (Z ∈ Ch(B)) such that X < Z < Y .
Then, clearly, σ(X) < σ(Z) < σ(Y ). The lemma now easily follows by noting
that σ(Z) is a subsemilattice (subchain) of Σ.

This immediately yields

Lemma 5 Let X ∈ Ch(B), where B is a ∗-band. If x ∈ X is not a maximal
element of X, then X ⇒ X \ {x}.

Proof. Since the restriction of σ to a given chain of projections (in this case,
X) is an isomorphism of X and σ(X), and since by Lemma 1 of [8] we have
σ(X) < σ(X) \ {σ(x)} = σ(X \ {x}), it follows that X < X \ {x}. Now the
conclusion follows by the above lemma and Lemma 1 of [8].

We need two more lemmata, which are the analogues (but, it is important
to stress, not corollaries) of Lemma 2 and Lemma 3 from [8].

Lemma 6 For a ∗-band B, let X ∈ Ch(B) and assume that X has a greatest
element x′. If, moreover, there exists a projection y ∈ B such that x′ → y, then
X → X ∪ {y}.

Proof. Since X(X ∪ {y}) = (X ∪ {y})X = X, we have X < X ∪ {y}. Assume
that X ≤ Y ≤ X ∪ {y} holds for some Y ∈ Ch(B). Then XY = Y X = X and

Y = (X ∪ {y})Y = XY ∪ {y}Y = X ∪ {y}Y,

so X ⊆ Y . Similarly, Y = X ∪ Y {y}. Now if X 6= Y , let z ∈ Y \ X. Then
x′ < z, for otherwise z = x′z ∈ XY = X. On the other hand, z belongs to
{y}Y ∩ Y {y}, i.e. z = yu = vy holds for some u, v ∈ Y , and thus yz = zy = z,
z ≤ y. But we have x′ → y, hence y = z. Therefore, Y = X ∪ {y}.

Lemma 7 Let B be a ∗-band and let x ∈ B be a projection. If {x} → Y for
some Y ∈ Ch(B) then Y = {x, y}, with x → y.

Proof. First of all, we know that {x}Y = Y {x} = {x}. In other words, for all
y ∈ Y we have xy = yx = x, i.e. x ≤ y. Therefore, if Y ′ = {x} ∪ Y , it follows

Y Y ′ = Y ({x} ∪ Y ) = {x} ∪ Y = Y ′,
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and similarly, Y ′Y = Y and {x}Y ′ = Y ′{x} = {x}, i.e. {x} < Y ′ ≤ Y , which
means that Y = Y ′, that is, x ∈ Y .

Now pick z ∈ Y \{x} in an arbitrary way and consider the chain of projections
Z = {y ∈ Y : y ≤ z}. Clearly, we have {x}Z = Z{x} = {x} and Y Z = ZY =
Z, so that {x} < Z ≤ Y , implying Z = Y . This shows that Y has only two
elements, Y = {x, y}. We must have x → y, for otherwise if x < u < y, then
obviously {x} < {x, u} < Y , a contradiction.

Now we launch into the main part of the proof of global determinism for
∗-bands.

Proposition 8 Let X ∈ Ch(B) for a ∗-band B such that |X| ≥ 3. Then X has
a topknot.

Proof. Assume that X contains elements x < y < z. Then by Lemma 5, X has
the topknot

X \ {x} ⇒ X \ {x, y} ⇐ X \ {y}
↖ ↗

X

(moreover, the simple arrows→ are in fact double ones, ⇒), and the proposition
is proved.

Proposition 9 If X is an involution subchain of a ∗-band B with exactly two
elements, then it has either a maximal hair of length 1, or a topknot.

Proof. Let X = {x, x′} with x < x′. By Lemma 5, we have X ⇒ X \ {x} =
{x′}. If this hair can be prolonged, then Lemma 7 yields a projection y ∈ B
such that x′ → y and {x′} ⇒ {x′, y}. Now by Lemma 6 we have X → X∪{y} =
{x, x′, y}, and {x, x′, y} ⇒ {x′, y} by Lemma 5. Hence, we have just constructed
the following topknot:

{x′} ⇒ {x′, y} ⇐ X ∪ {y}
↖ ↗

X

and the required conclusion follows.

Finally, we prove the main results of the paper.

Theorem 10 Let X ∈ Ch(B), where B is a ∗-band. Then |X| = 1 if and only
if X has neither maximal hairs of length 1, nor topknots.



96 Milovan Vinčić

Proof. (⇒) First of all, it is clear that if X = {x} has a hair of length 1,
{x} ⇒ Y , then by Lemma 7 it must be of the form {x} ⇒ {x, y}, with x → y.
Obviously, it can be prolonged, because by Lemma 5, {x, y} ⇒ {y}.

Assume that {x} has a topknot of the form

Y ⇒ T ⇐ Z
↖ ↗

{x}
Then Y = {x, y} and Z = {x, z} (by Lemma 7), and we have x → y, x → z,
y 6= z, so that yz = zy = x. Now the argument from the bottom of p.220 of [8]
applies verbatim in order to show that Y,Z < {x, y, z} < T holds, a conclusion
which prevents the existence of the above topknot.

(⇐) This follows immediately from Propositions 8 and 9.

Corollary 11 The variety of all ∗-bands is a globally determined class.

Proof. By the above theorem and the remarks following the definition of Ch(B),
if B1 and B2 are ∗-bands, then any isomorphism φ : P(B1) → P(B2) defines a
bijection between singleton subsets of B1 and B2 containing projections. Note
that in any ∗-band) each element x is a product of two projections, namely of
xx∗ and x∗x, since (xx∗)(x∗x) = xx∗x = x. Therefore, if x ∈ B1, then x = pq
for some projections p, q ∈ B1, and so

φ({x}) = φ({pq}) = φ({p}{q}) = φ({p})φ({q}) = {p′}{q′} = {p′q′},
which implies that φ defines an injection of the family of singleton subsets of
B1 into the corresponding family of singletons of B2. Of course, this conclusion
holds for the inverse mapping φ−1, so that the singleton subsets of B1 and B2

are in a bijective correspondence under φ. It is now straightforward to verify
that the mapping ψ : B1 → B2 defined by

ψ(x) = x′ if and only if φ({x}) = {x′}
is indeed an isomorphism. Thus, B1

∼= B2.
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