A new ordering relation on lattices applied to weak congruences

Vera Lazarević and Andreja Tepavčević

Abstract

Starting from an arbitrary codistributive element a in an algebraic lattice \mathcal{L} , a new operation $*_a$ on the underlying set L is defined. This operation determines an ordering relation on L. A properties of the new poset are investigated. Some necessary and some sufficient conditions under which it is a lattice are presented¹.

An application of the results to the weak congruence lattice is given. A new characterization of the Congruence Extension Property (CEP) in terms of weak congruences under the new ordering is obtained.

1 Introduction

Let $\mathcal{L} = (L, \wedge, \vee)$ be an algebraic lattice (sometimes referred to as to (L, \leq)) and a an arbitrary codistributive element in L (satisfying $a \wedge (x \vee y) = (a \wedge x) \vee (a \wedge y)$, for every $x, y \in L$.)

The mapping $m_a : L \mapsto a$ defined by $m_a(x) = x \wedge a$ is a complete homomorphism from L to the ideal $\downarrow a$. Since the lattice L is algebraic, the classes of the congruence ϕ_a induced by this homomorphism always have the top elements (see e.g. [12]). Let \overline{x} denote the top element of the congruence class ϕ_a to which x belongs, i.e., $m_a(x) = m_a(\overline{x})$.

The mapping $f: L \longrightarrow L$ defined by $f(x) = \overline{x}$ is a closure operator on L. Moreover,

$$\overline{x \wedge y} = \overline{x} \wedge \overline{y}.\tag{1}$$

A binary operation $*_a$ on the set L is defined by

$$x *_a y = (\overline{x} \land y) \lor (x \land \overline{y}), \text{ for all } x, y \in L.$$

$$\tag{2}$$

In [5] it is proved that $(L, *_a)$ is a commutative, idempotent groupoid, satisfying the identity:

$$x *_{a} (x *_{a} y) = x *_{a} y.$$
(3)

Nevertheless, the operation $*_a$ is not associative in general.

Next, a binary relation \leq_{*_a} on L is defined in a natural way, using operation $*_a$. For all $x, y \in L$, let

$$x \leq_{*_a} y$$
 if and only if $x *_a y = y$. (4)

The relation \leq_{*_a} is an ordering relation on L (see [5]).

 $^{^1\}mathrm{Presented}$ at the IMC "Filomat 2001", Niš, August 26–30, 2001 2000 Mathematics Subject Classification: $06\mathrm{B}$

Keywords: Ordering relations, lattice, congruence extension property, weak congruence

Some of the notions and notations used throughout the paper are listed in the sequel.

As usual, $\downarrow x$ and $\uparrow x$ denote the principal ideal and principal filter in the lattice \mathcal{L} , generated by x, respectively.

 $\downarrow_{*_a} x = \{y \in L \mid y \leq_{*_a} x\}$ and $\uparrow_{*_a} x = \{y \in L \mid x \leq_{*_a} y\}$ are the principal ideal and principal filter in the poset (L, \leq_{*_a}) generated by a, respectively.

 $[b,c] = \{x \in L \mid b \leq x \leq c\}$ is an interval lattice in the lattice \mathcal{L} , and $[b,c]_{*_a} = \{x \in L \mid b \leq_{*_a} x \leq_{*_a} c\}$ is an interval in the poset (L, \leq_{*_a}) .

Proposition 1 [5] Let $\mathcal{L} = (L, \wedge, \vee)$ be an algebraic lattice with a codistributive element a and let \leq_{*_a} be the ordering relation defined by (4). Then:

(i) $a \leq_{*_a} x$, for all $x \in L$.

(ii) If $b \leq a$, and $x, y \in [b, \overline{b}]$, then $x *_a y = x \lor y$.

(iii) If $b \leq a$ and $x, y \in [b, \overline{b}]$, then $x \leq y$ if and only if $x \leq_{*_a} y$.

(iv) If $b \leq a$, then $([b, \overline{b}]_{*_a}, \leq_{*_a})$ is a lattice, isomorphic to the interval in \mathcal{L} bounded by the same elements.

 $(\mathbf{v}) \ \overline{x \wedge y} = \overline{x} *_a \overline{y} = \overline{x} \wedge \overline{y} = \overline{x} *_a \overline{y}.$

(vi) $\overline{x} \leq_{*_a} \overline{y}$ if and only if $\overline{y} \leq \overline{x}$.

(vii) If $x \leq_{*_a} y$ then $\overline{y} \leq \overline{x}$.

(**viii**) $\overline{a} *_a x = \overline{x}$.

(ix) $\overline{a} \leq_{*_a} x$ if and only if $x = \overline{x}$.

(**x**) *L* is the union of all intervals $[b, \overline{b}]_{*}$, for $b \leq a$.

(xi) The filter $\uparrow_{*_a} \overline{a}$ is antiisomorphic with the ideal $\downarrow a$.

(xii) $x \leq_{*_a} \overline{0}$, for all $x \in L$, where 0 is the bottom element in the lattice \mathcal{L} .

From the previous proposition we deduce that (L, \leq_{*a}) is a bounded poset. The bottom element of the poset under consideration is the element *a* and the top element is $\overline{0}$, where 0 is the bottom element of the lattice (L, \leq) .

In the sequel, we represent the algebra $(L, \wedge, *_a)$, by the two ordering operations, \leq and \leq_{*_a} , and consequently, by two Hasse diagrams in finite case.

2 Results

Let (L, \leq) be an algebraic lattice, let $a \in L$ be a codistributive element in L and let (L, \leq_{*_a}) be the poset defined by (4). Firstly, we prove that the distributivity of a finite lattice (L, \leq) is a sufficient condition for (L, \leq_{*_a}) to be a lattice.

Theorem 1 If (L, \wedge, \vee) is a finite distributive lattice, then (L, \leq_{*_a}) is a lattice.

Proof. We prove that under the distributivity condition, the operation $*_a$ is associative.

 $x *_a (y *_a z) = (\overline{x} \land ((\overline{y} \land z) \lor (y \land \overline{z}))) \lor (x \land ((\overline{y} \land z) \lor (y \land \overline{z}))) = (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land y \land \overline{z}) \lor (x \land \overline{y} \land \overline{z}), \text{ by } (1), (2) \text{ and by Proposition 1 (v).}$

Similarly, we prove that $(x *_a y) *_a z = (\overline{x} \land \overline{y} \land z) \lor (\overline{x} \land y \land \overline{z}) \lor (x \land \overline{y} \land \overline{z})$, and the

associativity holds.

By the identities (3): $x *_a (x *_a y) = x *_a y$ and $y *_a (x *_a y) = x *_a y$, we prove that $x *_a y$ is an upper bound of elements x and y under \leq_{*_a} . We have to prove that it is the supremum of these elements. Let p be another upper bound of x and y, i.e., $x \leq_{*_a} p$ and $y \leq_{*_a} p$. By the definition of $\leq_{*_a}, x *_a p = p$ and $y *_a p = p$. Hence, $(x *_a p) *_a (y *_a p) = p$. By the associativity, commutativity and idempotency, $(x *_a y) *_a p = p$, and $x *_a y \leq_{*_a} p$, $x *_a y$ is the supremum. Since every subset has a supremum and there is a bottom element under ordering $\leq_{*_a}, (L, \leq_{*_a})$ is a lattice.

A new ordering relation on lattices applied to weak congruences

Nevertheless, distributivity of (L, \leq) is not a necessary condition for poset (L, \leq_{*a}) to be a lattice, which is illustrated by the following example.

Example 1 The poset (L, \leq_{*_a}) in Figure 1 b) is a lattice, although the lattice (L, \leq) is not distributive.

Lemma 1 Let $x, y, z \in L$, such that $x \leq_{*_a} z$ and $y \leq_{*_a} z$. Then: (i) $\overline{x \wedge y} \leq_{*_a} \overline{z}$. (ii) $x \wedge \overline{y} \leq_{*_a} z$ and $\overline{x} \wedge y \leq_{*_a} z$.

Proof. (i) From $x \leq_{*_a} z$ and $y \leq_{*_a} z$, by Proposition 1 (vii), we have that $\overline{z} \leq \overline{x}$ and $\overline{z} \leq \overline{y}$. Thus, $\overline{z} \leq \overline{x} \wedge \overline{y} = \overline{x \wedge y}$, hence $\overline{x \wedge y} \leq_{*_a} \overline{z}$. (ii) By $(\overline{x} \wedge z) \lor (x \wedge \overline{z}) = z$,

$$(\overline{x} \wedge \overline{y} \wedge z) \lor (x \wedge \overline{y} \wedge \overline{z}) \le (\overline{x} \wedge z) \lor (x \wedge \overline{z}) = z.$$
(5)

From $x \leq_{*_a} z$ and $y \leq_{*_a} z$, by Proposition 1 (vii), $\overline{z} \leq \overline{x \wedge y}$. From $z \leq \overline{x \wedge y} = \overline{x} \wedge \overline{y}$, we have that

$$z \le (\overline{x} \wedge \overline{y} \wedge z) \lor (x \wedge \overline{y} \wedge \overline{z}). \tag{6}$$

From (5) and (6) we have that $(\overline{x} \wedge \overline{y} \wedge z) \vee (x \wedge \overline{y} \wedge \overline{z}) = z$, i.e.,

$$(\overline{x \wedge \overline{y}} \wedge z) \lor (x \wedge \overline{y} \wedge \overline{z}) = z,$$

hence

$$x \wedge \overline{y} \leq_{*a} z$$

Similarly, $\overline{x} \wedge y \leq_{*_a} z$.

Lemma 2 If elements $x, y \in L$ have the supremum in (L, \leq_{*_a}) , then the supremum is equal to $x *_a y$.

Proof. Suppose that x and y from L have a supremum p under \leq_{*_a} . We prove that the supremum is in the congruence relation ϕ_a (induced by the homomorphism m_a) with $x *_a y$.

Thus, $x \leq_{*_a} p$ and $y \leq_{*_a} p$. By (3), $x \leq_{*_a} x *_a y$ and $y \leq_{*_a} x *_a y$, and thus

$$p \leq_{*_a} x *_a y, \tag{7}$$

since $x *_a y$ is another lower bound of x and y.

By Proposition 1 (vii), $\overline{p} \leq \overline{x}, \overline{p} \leq \overline{y}$ and $\overline{x *_a y} \leq \overline{p}$, and thus $\overline{x *_a y} \leq \overline{p} \leq \overline{x} \wedge \overline{y}$. By Proposition 1 (v),

$$\overline{p} = \overline{x} \wedge \overline{y} = \overline{x \wedge y} = \overline{x *_a y}.$$
(8)

Hence, $p, x \wedge y$ i $x *_a y$ are in same congruence class of the relation ϕ_a . By Proposition 1(*iv*)), and by (7), $p \leq x *_a y$.

By Lemma 1, $x \wedge \overline{p} \leq p$ and $y \wedge \overline{p} \leq p$. Therefore, using (8),

$$p \leq x *_a y = (\overline{x} \land y) \lor (x \land \overline{y}) = (\overline{x} \land \overline{y} \land y) \lor (x \land \overline{x} \land \overline{y}) = (\overline{p} \land y) \lor (x \land \overline{p}) \leq p.$$

Hence, $x *_a y$ is a supremum for $x, y \in L$ under the ordering \leq_{*_a}

By $C_{\overline{x}}$ we denote the class of the congruence ϕ_a (induced by homomorphism m_a) containing $x \in L$, and by L/ϕ_a the corresponding quotient set under the ϕ_a .

Lemma 3 The unique minimal upper bound of elements $x, y \in L$ in (L, \leq_{*_a}) , belonging to the class $C_{\overline{x \wedge y}}$ of the congruence ϕ_a is $x *_a y$.

Proof. By (3), $x *_a y$ is an upper bound of elements x, y in (L, \leq_{*_a}) .

By Proposition 1 (v), $x *_a y$ belongs to the class of the congruence ϕ_a having the top element $\overline{x \wedge y}$.

Let p be an upper bound: $x \leq_{*_a} p, y \leq_{*_a} p$ and let p belong to the class $C_{\overline{x \wedge y}}$ of the congruence ϕ_a . We prove that $x *_a y \leq p$. By Lemma 1, $x \wedge \overline{p} \leq p$ and $y \wedge \overline{p} \leq p$. The desired property follows similarly as in the proof of Lemma 2.

Hence, $x *_a y$ is the least of all upper bounds belonging to the class $C_{\overline{x \wedge y}}$ of the congruence ϕ_a .

The statements from the two previous lemmas say that for each $x, y \in (L, \leq_{*_a})$ there is a minimal upper bound in $C_{\overline{x \wedge y}}$. Nevertheless, x and y may have another minimal upper bound z in the class $C_{\overline{z}} \in L/\phi_a$, where $\overline{x \wedge y} \leq_{*_a} \overline{z}$. In this case, element z should be incomparable with $x *_a y$. Obviously, (L, \leq_{*_a}) is not a lattice in this case.

Lemma 4 Let (L, \leq_{*_a}) be the poset defined by (4) and $x, y \in L$ such that $\overline{x} \neq \overline{y}$. Then, $x \leq_{*_a} x \wedge \overline{y}$ and $x \wedge \overline{y} \in C_{\overline{x \wedge y}}$.

Proof. $x *_a (x \land \overline{y}) = (\overline{x} \land (x \land \overline{y})) \lor (x \land (\overline{x \land \overline{y}})) = (x \land \overline{y}) \lor (x \land \overline{x} \land \overline{y}) = x \land \overline{y}$. The second part of the lemma is straightforward.

Let \mathcal{L} be an algebraic lattice and let (L, \leq_{*_a}) be the poset defined by (4). Further, let $C_{\overline{y}}$ be the class of the congruence ϕ_a containing y. For $x, y \in L$, we define the following set:

$$Q_x^y = \{ z \mid z \in C_{\overline{y}}, y \leq_{*_a} x \text{ and } x \leq y \}.$$

$$\tag{9}$$

It is easy to prove that if $\overline{x} = \overline{y}$ then $Q_x^y = \{x\}$. If $\overline{x} \neq \overline{y}$, then Q_x^y can be empty. Recall that an element *a* is a lattice *L* is **cancellable** if for every $x, y \in L$,

from
$$a \wedge x = a \wedge y$$
 and $a \vee x = a \vee y$ it follows that $x = y$.

A new ordering relation on lattices applied to weak congruences

Lemma 5 Codistributive element $a \in L$ is cancellable in (L, \leq) if and only if for every $x, y \in L$, such that $\overline{x} \leq \overline{y}$, the set Q_x^y defined by (9) is nonempty.

Proof. Suppose that $a \in L$ is not cancellable. Then, there are $x, y \in L$ such that $a \vee x = a \vee y$ and $a \wedge x = a \wedge y$ and $x \neq y$. Moreover, without loss of generality we can suppose that x and y are comparable, because x (or y) and $x \vee y$ satisfy the same property as x and y. Suppose that x < y. We prove that Q_x^a is the empty set. Take $z \in C_{\overline{a}}$, such that $x \leq z$. By $a \vee x = a \vee y$ and $a \vee x \leq z$, we obtain $a \vee y \leq z$ and $y \leq z$. Then,

 $\begin{array}{l} z\ast_a x=(\overline{z}\wedge x)\vee(z\wedge\overline{x})=x\vee(z\wedge\overline{x})=z\wedge\overline{x}\geq y>x.\\ \text{Therefore, }\neg(z\leq_{\ast_a}x)\text{, and }Q^a_x=\emptyset. \end{array}$

On the other hand, suppose that for some $x, y \in L$, we have that $\overline{x} \leq \overline{y}$, and $Q_x^y = \emptyset$. Denote $y \wedge a$ by b. By $Q_x^y = Q_x^z$, for all $\overline{z} = \overline{y}$, we have that $Q_x^{b \vee x} = \emptyset$. By $x \leq b \vee x$, we have that $\neq (b \vee x \leq_{*_a} x)$, i.e., $x \vee ((b \vee x) \wedge \overline{x}) \neq x$. Thus $\neg((b \vee x) \wedge \overline{x} \leq x)$. Hence, $(b \vee x) \wedge \overline{x} \neq x$.

Moreover, $(b \lor x) \land \overline{x} \land a = ((b \land a) \lor (x \land a)) \land \overline{x} \land a = x \land a$. Finally, $((b \lor x) \land \overline{x}) \lor a = x \lor a$. Hence, *a* is not cancellable.

Lemma 6 Let (L, \leq_{*_a}) be the poset defined by (4) and $x, y \in L$. If the set Q_x^y defined by (9) is nonempty, then every element from Q_x^y is below a maximal element under the ordering \leq_{*_a} .

Proof. Take a chain of elements from Q_x^y :

$$\{y_i \mid i \in I\}$$
, where $y_i \in C_{\overline{y}}, y_i \leq_{*_a} x$ and $x \leq y_i$.

Denote by

$$s = \bigvee_{i \in I} y_i.$$

The supremum s belongs to $C_{\overline{y}}$, because $(\bigvee_{i \in I} y_i) \wedge a = \bigvee_{i \in I} (y_i \wedge a)$ (a is an infinitely distributive element in (L, \leq)). We show that $s \in Q_x^y$. Indeed, from the definition of the set Q_x^y we have that:

$$x \le s = \bigvee_{i \in I} y_i. \tag{10}$$

Further, from $y_i \leq_{*_a} x$, by Lemma 1 it follows that $y_i \wedge \overline{x} \leq x$, for every $i \in I$. Now, we have that $\bigvee_{i \in I} (y_i \wedge \overline{x}) \leq x$. We use a well known fact that for every $x \in L$, where \mathcal{L} is an algebraic lattice and $D \subseteq L$ a directed set,

$$x \land \bigvee D = \bigvee_{d \in D} (x \land d)$$
 (see e.g. [1]).

Therefore, since $\{y_i \mid i \in I\}$ is chain,

$$(\bigvee_{i \in I} y_i) \wedge \overline{x} = \bigvee_{i \in I} (y_i \wedge \overline{x}) \le x.$$
(11)

Thus, by (11) we have that

$$s *_a x = (\overline{s} \wedge x) \lor ((\bigvee_{i \in I} y_i) \wedge \overline{x}) = x \lor ((\bigvee_{i \in I} y_i) \wedge \overline{x}) = x.$$
(12)

From (10) and (12), it follows that $s \in Q_x^y$. By Zorn lemma, if Q_x^y is nonempty, then every element from Q_x^y is below a maximal element under the ordering \leq_{*_a} belonging to the same set.

Theorem 2 If (L, \leq_{*_a}) is a lattice then for all $x, y \in L$ the set Q_x^y defined by (9) is empty or it has the top element under the \leq_{*_a} .

Proof. Suppose that there are elements $x, y \in L$, $(\overline{x} \neq \overline{y})$, such that the set $Q_x^y \neq \emptyset$ does not have the top element. By Lemma 6, there are at least two maximal elements under the ordering \leq_{*_a} in Q_x^y , say z and t. By the definition of Q_x^y ,

 $z,t\in C_{\overline{y}},\,z\leq_{\ast_a}x,\,x\leq z,\,t\leq_{\ast_a}x\text{ and }x\leq t.$

By Proposition 1 (iv) $C_{\overline{y}}$ is a lattice and

$$z *_a t = z \lor t = u$$
, where $u \in C_{\overline{u}}$,

and $u \notin Q_x^y$, by the assumption that z and t are maximal elements in Q_x^y .

By Lemma 2, if elements z and t have the supremum, then it is u. On the other hand, we proved that x is an upper bound for z and t in (L, \leq_{a_*}) .

Suppose that $u \leq_{*_a} x$. By $x \leq z$ and $x \leq t$, we have that $x \leq z \lor t = u$, and $u \in Q_x^y$, contrary to assumption.

Hence, z and t do not have the supremum in (L, \leq_{*_a}) , and this poset is not a lattice.

The following example illustrates the fact that the conditions of the theorem are not sufficient for a poset (L, \leq_{*a}) to be a lattice.

Example 2 Lattice (L, \leq) is given in Figure 2 a) and the corresponding poset (L, \leq_{*a}) in Figure 2 b). For every $x, y \in L$, if Q_x^y is nonempty, then it possesses the top element. On the other hand, (L, \leq_{*a}) is not a lattice.

3 Applications in universal algebra

In this section we give an application of the obtained results to the weak congruence lattice $(Cw\mathcal{A}, \subseteq)$ of an algebra $\mathcal{A} = (A, F)$. This lattice is algebraic, the diagonal relation Δ is always a codistributive element. The classes of the congruence ϕ_{Δ} , induced by the homomorphism $m_{\Delta} : \rho \mapsto \rho \land \Delta$ ($\rho \in Cw\mathcal{A}$), always have top elements which are

squares of subalgebras. Thus, all requirements from the previous section are fulfilled and the operation $*_{\Delta}$ could be introduced (see also [5]). Such an operation on the weak congruence lattice is a graphical composition (see [8]).

Let ρ, θ be weak congruences, $\rho \in Con\mathcal{B}, \theta \in Con\mathcal{C}$, for $\mathcal{B}, \mathcal{C} \in Sub\mathcal{A}$. Then,

$$\rho *_{\Delta} \theta = (B^2 \wedge \theta) \lor (\rho \wedge C^2)$$
 and $\emptyset *_{\Delta} \theta = \emptyset.$

By the operation $*_{\Delta}$, as in the previous section we introduce a new ordering relation on $Cw\mathcal{A}$.

 $(Cw\mathcal{A}, \leq_{*_{\Delta}})$ is a poset of weak congruences, where the relation $\leq_{*_{\Delta}}$ is defined by the operation $*_{\Delta}$, as follows:

$$\rho \leq_{*_{\Delta}} \theta$$
 if and only if $\rho *_{\Delta} \theta = \theta$.

Moreover, for $\alpha \in Con\mathcal{B}$ and $\mathcal{B}, \mathcal{C} \in Sub\mathcal{A}$, we define $Q^{\mathcal{C}}_{\alpha}$ similarly to (9):

$$Q_{\alpha}^{\mathcal{C}} = \{ \gamma \mid \gamma \in Con\mathcal{C}, \gamma \leq_{*_{\Delta}} \alpha \text{ and } \alpha \leq \gamma \}.$$
(13)

The propositions given in the sequel are direct consequences of the corresponding statements from the previous section.

Theorem 3 Let \mathcal{A} be an algebra. If the weak congruence lattice $Cw\mathcal{A}$ is finite distributive lattice, then the poset $(Cw\mathcal{A}, \leq_{*\Delta})$ is a lattice.

Theorem 4 If poset $(Cw\mathcal{A}, \leq_{*\Delta})$ is a lattice then for every $\rho \in Con\mathcal{C}$, $\mathcal{C} \in Sub\mathcal{B}$ the set Q^{β}_{α} is empty or it has the top element.

In the sequel, we introduce propositions proved in [5], concerning the Congruence Extension Property. Recall that an algebra \mathcal{A} has the Congruence Extension Property (CEP) if for every congruence ρ on the subalgebra \mathcal{B} of \mathcal{A} , there is a congruence θ on \mathcal{A} , such that $\theta \cap B^2 = \rho$.

Proposition 2 [5] A weak congruence $\theta \in CwA$ is an extension of $\rho \in Con\mathcal{B}$ if and only if $\rho \subseteq \theta$ and $\theta \leq_{*\Delta} \rho$.

Proposition 3 [5] An algebra \mathcal{A} has the Congruence Extension Property (CEP) if and only if for every $\rho \in Cw\mathcal{A}$,

$$(\rho *_{\Delta} A^2) \wedge (\rho \vee \Delta) = \rho.$$

Theorem 5 [5] An algebra \mathcal{A} has the CEP if and only if for every $\rho \in Con\mathcal{B}$, $\mathcal{B} \in Sub\mathcal{A}$ there exists $\theta \in Con\mathcal{A}$, $\theta \leq_{*_{\Delta}} \rho$, such that from $\tau \in Con\mathcal{B}$ and $\tau \in [\theta, \rho]_{*_{\Delta}}$, it follows that $\rho = \tau$.

As a direct consequence of Lemma 5, taking into account the fact that an algebra has the CEP if and only if its diagonal relation is a cancellable element in $Cw\mathcal{A}$ (see e.g. [2] or [11]), we obtain the following statement.

Theorem 6 An algebra \mathcal{A} satisfies the CEP if and only if for all $\alpha \in Con\mathcal{B}$, $\mathcal{B}, \mathcal{C} \in Sub\mathcal{A}$, such that $B \subset C$, every set Q_{α}^{C} is nonempty. \Box

References

- S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag Berlin Heidelberg New York, 1981.
- [2] I. Chajda, B. Šešelja, A. Tepavčević, Lattice of compatible relations satisfying a set of formulas, Algebra Univers. 40(1998) 51-58.
- [3] B. A. Davey, H. A. Priestly, Introduction to Lattices and Order, Cambridge University press, 1990.
- [4] E. Fried, Weakly associative lattices with the congruence extension property, Algebra Univers. 4 (1974), 151-162.
- [5] V. Lazarević, A. Tepavčević, Weak congruences and graphical composition, Contributions to General Algebra 13, Verlag Johannes Heyn, Klagenfurt 2001, 199-205.
- [6] V. Lazarević, Algebraic Structures of Weaken Lattices and Applications, Novi Sad, 2001, (Ph. D. thesis, in Serbian).
- [7] K. Leutöla, J. Nieminen, Posets and generalized suprema and infima, Algebra Univers. 16:3 (1983), 344-354.
- [8] M. Ploščica, Graphical compositions and weak congruences, Publ. Inst. Math. (Beograd), 56 (70) (1994), 34-40.
- B. Sešelja, A. Tepavčević, Infinitely distributive elements in the lattice of weak congruences, General Algebra 1988, Elsevier Science Publishers B.V.(North Holland), 1990, pp. 241-253.
- [10] B.Šešelja, A.Tepavčević, A note on CIP varieties, Algebra Univers. 45 (2001), 349-351.
- [11] B. Sešelja, A. Tepavčević, Weak Congruences in Universal Algebra, Institute of Mathematics, Novi Sad, 2001.
- [12] A. Tepavčević, Diagonal relation as a continuous element in a weak congruence lattice, Proc. of the International Conference General Algebra and Ordered Sets, Olomouc, 1994, 156-163.

Faculty of Technical Sciences, University of Kragujevac Svetog Save 65, 32000 Čačak, Yugoslavia veral@ptt.yu

Institute of Mathematics Fac. of Sci., University of Novi Sad Trg D. Obradovića 4, 21000 Novi Sad, Yugoslavia etepavce@eunet.yu