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Abstract

Starting from an arbitrary codistributive element a in an algebraic lattice L, a
new operation ∗a on the underlying set L is defined. This operation determines
an ordering relation on L. A properties of the new poset are investigated. Some
necessary and some sufficient conditions under which it is a lattice are presented1.

An application of the results to the weak congruence lattice is given. A new
characterization of the Congruence Extension Property (CEP) in terms of weak
congruences under the new ordering is obtained.

1 Introduction

Let L = (L,∧,∨) be an algebraic lattice (sometimes referred to as to (L,≤)) and a an
arbitrary codistributive element in L (satisfying a ∧ (x ∨ y) = (a ∧ x) ∨ (a ∧ y), for every
x, y ∈ L.)

The mapping ma : L 7−→↓a defined by ma(x) = x ∧ a is a complete homomorphism
from L to the ideal ↓a. Since the lattice L is algebraic, the classes of the congruence φa

induced by this homomorphism always have the top elements (see e.g. [12]). Let x denote
the top element of the congruence class φa to which x belongs, i.e., ma(x) = ma(x).

The mapping f : L −→ L defined by f(x) = x is a closure operator on L. Moreover,

x ∧ y = x ∧ y. (1)

A binary operation ∗a on the set L is defined by

x ∗a y = (x ∧ y) ∨ (x ∧ y), for all x, y ∈ L. (2)

In [5] it is proved that (L, ∗a) is a commutative, idempotent groupoid, satisfying the
identity:

x ∗a (x ∗a y) = x ∗a y. (3)

Nevertheless, the operation ∗a is not associative in general.
Next, a binary relation ≤∗a on L is defined in a natural way, using operation ∗a. For

all x, y ∈ L, let
x ≤∗a y if and only if x ∗a y = y. (4)

The relation ≤∗a is an ordering relation on L (see [5]).

1Presented at the IMC “Filomat 2001”, Nǐs, August 26–30, 2001
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Some of the notions and notations used throughout the paper are listed in the sequel.
As usual, ↓x and ↑x denote the principal ideal and principal filter in the lattice L,

generated by x, respectively.
↓∗ax = {y ∈ L | y ≤∗a x} and ↑∗ax = {y ∈ L | x ≤∗a y} are the principal ideal and

principal filter in the poset (L,≤∗a
) generated by a, respectively.

[b, c] = {x ∈ L | b ≤ x ≤ c} is an interval lattice in the lattice L, and [b, c]∗a =
{x ∈ L | b ≤∗a

x ≤∗a
c} is an interval in the poset (L,≤∗a

).

Proposition 1 [5] Let L = (L,∧,∨) be an algebraic lattice with a codistributive element
a and let ≤∗a

be the ordering relation defined by (4). Then:
(i) a ≤∗a

x, for all x ∈ L.
(ii) If b ≤ a, and x, y ∈ [b, b], then x ∗a y = x ∨ y.
(iii) If b ≤ a and x, y ∈ [b, b], then x ≤ y if and only if x ≤∗a

y.
(iv) If b ≤ a, then ([b, b]∗a ,≤∗a) is a lattice, isomorphic to the interval in L bounded

by the same elements.
(v) x ∧ y = x ∗a y = x ∧ y = x ∗a y.
(vi) x ≤∗a y if and only if y ≤ x.
(vii) If x ≤∗a y then y ≤ x.
(viii) a ∗a x = x.
(ix) a ≤∗a x if and only if x = x.
(x) L is the union of all intervals

[
b, b

]
∗a

, for b ≤ a.
(xi) The filter ↑∗a a is antiisomorphic with the ideal ↓ a.
(xii) x ≤∗a

0, for all x ∈ L, where 0 is the bottom element in the lattice L.

From the previous proposition we deduce that (L,≤∗a) is a bounded poset. The
bottom element of the poset under consideration is the element a and the top element is
0, where 0 is the bottom element of the lattice (L,≤).

In the sequel, we represent the algebra (L,∧, ∗a), by the two ordering operations, ≤
and ≤∗a , and consequently, by two Hasse diagrams in finite case.

2 Results

Let (L,≤) be an algebraic lattice, let a ∈ L be a codistributive element in L and let
(L,≤∗a) be the poset defined by (4). Firstly, we prove that the distributivity of a finite
lattice (L,≤) is a sufficient condition for (L,≤∗a) to be a lattice.

Theorem 1 If (L,∧,∨) is a finite distributive lattice, then (L,≤∗a) is a lattice.

Proof. We prove that under the distributivity condition, the operation ∗a is associative.
x ∗a (y ∗a z) = (x ∧ ((y ∧ z) ∨ (y ∧ z))) ∨ (x ∧ ((y ∧ z) ∨ (y ∧ z))) =
(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z), by (1), (2) and by Proposition 1 (v).
Similarly, we prove that (x ∗a y) ∗a z = (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z), and the

associativity holds.
By the identities (3): x ∗a (x ∗a y) = x ∗a y and y ∗a (x ∗a y) = x ∗a y, we prove that

x ∗a y is an upper bound of elements x and y under ≤∗a . We have to prove that it is the
supremum of these elements. Let p be another upper bound of x and y, i.e., x ≤∗a p and
y ≤∗a p. By the definition of ≤∗a , x∗a p = p and y∗a p = p. Hence, (x∗a p)∗a (y∗a p) = p.
By the associativity, commutativity and idempotency, (x ∗a y) ∗a p = p, and x ∗a y ≤∗a p,
x∗ay is the supremum. Since every subset has a supremum and there is a bottom element
under ordering ≤∗a , (L,≤∗a) is a lattice.
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Nevertheless, distributivity of (L,≤) is not a necessary condition for poset (L,≤∗a)
to be a lattice, which is illustrated by the following example.
Example 1 The poset (L,≤∗a) in Figure 1 b) is a lattice, although the lattice (L,≤) is
not distributive.
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Next we prove several lemmas which enable proving a necessary condition under which
a poset (L,≤∗a) is a lattice as well as a characterization of the CEP in Section 3.

Lemma 1 Let x, y, z ∈ L, such that x ≤∗a z and y ≤∗a z. Then:
(i) x ∧ y ≤∗a z.
(ii) x ∧ y ≤∗a z and x ∧ y ≤∗a z.

Proof. (i) From x ≤∗a z and y ≤∗a z, by Proposition 1 (vii), we have that z ≤ x and
z ≤ y. Thus, z ≤ x ∧ y = x ∧ y, hence x ∧ y ≤∗a z.
(ii) By (x ∧ z) ∨ (x ∧ z) = z,

(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) ≤ (x ∧ z) ∨ (x ∧ z) = z. (5)

From x ≤∗a z and y ≤∗a z, by Proposition 1 (vii), z ≤ x ∧ y. From z ≤ x ∧ y = x∧ y,
we have that

z ≤ (x ∧ y ∧ z) ∨ (x ∧ y ∧ z). (6)

From (5) and (6) we have that (x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = z, i.e.,

(x ∧ y ∧ z) ∨ (x ∧ y ∧ z) = z,

hence
x ∧ y ≤∗a z.

Similarly, x ∧ y ≤∗a z.

Lemma 2 If elements x, y ∈ L have the supremum in (L,≤∗a), then the supremum is
equal to x ∗a y.

Proof. Suppose that x and y from L have a supremum p under ≤∗a . We prove that
the supremum is in the congruence relation φa (induced by the homomorphism ma) with
x ∗a y.

Thus, x ≤∗a p and y ≤∗a p. By (3), x ≤∗a x ∗a y and y ≤∗a x ∗a y, and thus

p ≤∗a x ∗a y, (7)
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since x ∗a y is another lower bound of x and y.
By Proposition 1 (vii), p ≤ x, p ≤ y and x ∗a y ≤ p, and thus x ∗a y ≤ p ≤ x ∧ y. By

Proposition 1 (v),
p = x ∧ y = x ∧ y = x ∗a y. (8)

Hence, p, x∧y i x∗a y are in same congruence class of the relation φa. By Proposition
1(iv)), and by (7), p ≤ x ∗a y.

By Lemma 1, x ∧ p ≤ p and y ∧ p ≤ p. Therefore, using (8),

p ≤ x ∗a y = (x ∧ y) ∨ (x ∧ y) = (x ∧ y ∧ y) ∨ (x ∧ x ∧ y) = (p ∧ y) ∨ (x ∧ p) ≤ p.

Hence, x ∗a y is a supremum for x, y ∈ L under the ordering ≤∗a

By Cx we denote the class of the congruence φa (induced by homomorphism ma)
containing x ∈ L, and by L/φa the corresponding quotient set under the φa.

Lemma 3 The unique minimal upper bound of elements x, y ∈ L in (L,≤∗a), belonging
to the class Cx∧y of the congruence φa is x ∗a y.

Proof. By (3), x ∗a y is an upper bound of elements x, y in (L,≤∗a).
By Proposition 1 (v), x ∗a y belongs to the class of the congruence φa having the top

element x ∧ y.
Let p be an upper bound: x ≤∗a p, y ≤∗a p and let p belong to the class Cx∧y of the

congruence φa. We prove that x ∗a y ≤ p. By Lemma 1, x ∧ p ≤ p and y ∧ p ≤ p. The
desired property follows similarly as in the proof of Lemma 2.

Hence, x ∗a y is the least of all upper bounds belonging to the class Cx∧y of the
congruence φa.

The statements from the two previous lemmas say that for each x, y ∈ (L,≤∗a) there
is a minimal upper bound in Cx∧y. Nevertheless, x and y may have another minimal
upper bound z in the class Cz ∈ L/φa, where x ∧ y ≤∗a z. In this case, element z should
be incomparable with x ∗a y. Obviously, (L,≤∗a) is not a lattice in this case.

Lemma 4 Let (L,≤∗a) be the poset defined by (4) and x, y ∈ L such that x 6= y. Then,
x ≤∗a x ∧ y and x ∧ y ∈ Cx∧y.

Proof. x ∗a (x ∧ y) = (x ∧ (x ∧ y)) ∨ (x ∧ (x ∧ y)) = (x ∧ y) ∨ (x ∧ x ∧ y) = x ∧ y. The
second part of the lemma is straightforward.

Let L be an algebraic lattice and let (L,≤∗a) be the poset defined by (4). Further, let
Cy be the class of the congruence φa containing y. For x, y ∈ L, we define the following
set:

Qy
x = {z | z ∈ Cy, y ≤∗a x and x ≤ y} . (9)

It is easy to prove that if x = y then Qy
x = {x}. If x 6= y, then Qy

x can be empty.
Recall that an element a is a lattice L is cancellable if for every x, y ∈ L,

from a ∧ x = a ∧ y and a ∨ x = a ∨ y it follows that x = y.
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Lemma 5 Codistributive element a ∈ L is cancellable in (L,≤) if and only if for every
x, y ∈ L, such that x ≤ y, the set Qy

x defined by (9) is nonempty.

Proof. Suppose that a ∈ L is not cancellable. Then, there are x, y ∈ L such that
a ∨ x = a ∨ y and a ∧ x = a ∧ y and x 6= y. Moreover, without loss of generality we
can suppose that x and y are comparable, because x (or y) and x ∨ y satisfy the same
property as x and y. Suppose that x < y. We prove that Qa

x is the empty set. Take
z ∈ Ca, such that x ≤ z. By a∨ x = a∨ y and a∨ x ≤ z, we obtain a∨ y ≤ z and y ≤ z.
Then,

z ∗a x = (z ∧ x) ∨ (z ∧ x) = x ∨ (z ∧ x) = z ∧ x ≥ y > x.
Therefore, ¬(z ≤∗a

x), and Qa
x = ∅.

On the other hand, suppose that for some x, y ∈ L, we have that x ≤ y, and Qy
x = ∅.

Denote y ∧ a by b. By Qy
x = Qz

x, for all z = y, we have that Qb∨x
x = ∅. By x ≤ b ∨ x, we

have that 6= (b ∨ x ≤∗a x), i.e., x ∨ ((b ∨ x) ∧ x) 6= x. Thus ¬((b ∨ x) ∧ x ≤ x). Hence,
(b ∨ x) ∧ x 6= x.

Moreover, (b ∨ x) ∧ x ∧ a = ((b ∧ a) ∨ (x ∧ a)) ∧ x ∧ a = x ∧ a.
Finally, ((b ∨ x) ∧ x) ∨ a = x ∨ a.
Hence, a is not cancellable.

Lemma 6 Let (L,≤∗a) be the poset defined by (4) and x, y ∈ L. If the set Qy
x defined

by (9) is nonempty, then every element from Qy
x is below a maximal element under the

ordering ≤∗a .

Proof. Take a chain of elements from Qy
x :

{yi | i ∈ I}, where yi ∈ Cy, yi ≤∗a x and x ≤ yi.

Denote by
s =

∨

i∈I

yi.

The supremum s belongs to Cy, because (
∨

i∈I yi)∧a =
∨

i∈I(yi∧a) (a is an infinitely
distributive element in (L,≤)). We show that s ∈ Qy

x. Indeed, from the definition of the
set Qy

x we have that:
x ≤ s =

∨

i∈I

yi. (10)

Further, from yi ≤∗a x, by Lemma 1 it follows that yi ∧ x ≤ x, for every i ∈ I. Now,
we have that

∨
i∈I(yi ∧ x) ≤ x. We use a well known fact that for every x ∈ L, where L

is an algebraic lattice and D ⊆ L a directed set,

x ∧
∨

D =
∨

d∈D

(x ∧ d) (see e.g. [1]).

Therefore, since {yi | i ∈ I} is chain,

(
∨

i∈I

yi) ∧ x =
∨

i∈I

(yi ∧ x) ≤ x. (11)

Thus, by (11) we have that

s ∗a x = (s ∧ x) ∨ ((
∨

i∈I

yi) ∧ x) = x ∨ ((
∨

i∈I

yi) ∧ x) = x. (12)
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From (10) and (12), it follows that s ∈ Qy
x. By Zorn lemma, if Qy

x is nonempty, then
every element from Qy

x is below a maximal element under the ordering ≤∗a
belonging to

the same set.

Theorem 2 If (L,≤∗a
) is a lattice then for all x, y ∈ L the set Qy

x defined by (9) is
empty or it has the top element under the ≤∗a

.

Proof. Suppose that there are elements x, y ∈ L, (x 6= y), such that the set Qy
x 6= ∅ does

not have the top element. By Lemma 6, there are at least two maximal elements under
the ordering ≤∗a

in Qy
x, say z and t. By the definition of Qy

x,
z, t ∈ Cy, z ≤∗a x, x ≤ z, t ≤∗a x and x ≤ t.

By Proposition 1 (iv) Cy is a lattice and

z ∗a t = z ∨ t = u, where u ∈ Cy,

and u 6∈ Qy
x, by the assumption that z and t are maximal elements in Qy

x.
By Lemma 2, if elements z and t have the supremum, then it is u. On the other hand,

we proved that x is an upper bound for z and t in (L,≤a∗).
Suppose that u ≤∗a x. By x ≤ z and x ≤ t, we have that x ≤ z ∨ t = u, and u ∈ Qy

x,
contrary to assumption.

Hence, z and t do not have the supremum in (L,≤∗a), and this poset is not a lattice.

The following example illustrates the fact that the conditions of the theorem are not
sufficient for a poset (L,≤∗a) to be a lattice.
Example 2 Lattice (L,≤) is given in Figure 2 a) and the corresponding poset (L,≤∗a)
in Figure 2 b). For every x, y ∈ L, if Qy

x is nonempty, then it possesses the top element.
On the other hand, (L,≤∗a) is not a lattice.
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3 Applications in universal algebra

In this section we give an application of the obtained results to the weak congruence lattice
(CwA,⊆) of an algebra A = (A,F ). This lattice is algebraic, the diagonal relation ∆
is always a codistributive element. The classes of the congruence φ∆, induced by the
homomorphism m∆ : ρ 7−→ ρ ∧ ∆ (ρ ∈ CwA), always have top elements which are
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squares of subalgebras. Thus, all requirements from the previous section are fulfilled
and the operation ∗∆ could be introduced (see also [5]). Such an operation on the weak
congruence lattice is a graphical composition (see [8]).

Let ρ, θ be weak congruences, ρ ∈ ConB, θ ∈ ConC, for B, C ∈ SubA. Then,

ρ ∗∆ θ = (B2 ∧ θ) ∨ (ρ ∧ C2) and ∅ ∗∆ θ = ∅.

By the operation ∗∆, as in the previous section we introduce a new ordering relation on
CwA.

(CwA,≤∗∆) is a poset of weak congruences, where the relation ≤∗∆ is defined by the
operation ∗∆, as follows:

ρ ≤∗∆ θ if and only if ρ ∗∆ θ = θ.

Moreover, for α ∈ ConB and B, C ∈ SubA, we define QC
α similarly to (9):

QC
α = {γ | γ ∈ ConC, γ ≤∗∆ α and α ≤ γ} . (13)

The propositions given in the sequel are direct consequences of the corresponding
statements from the previous section.

Theorem 3 Let A be an algebra. If the weak congruence lattice CwA is finite distributive
lattice, then the poset (CwA,≤∗∆) is a lattice.

Theorem 4 If poset (CwA,≤∗∆) is a lattice then for every ρ ∈ ConC, C ∈ SubB the set
Qβ

α is empty or it has the top element.

In the sequel, we introduce propositions proved in [5], concerning the Congruence
Extension Property. Recall that an algebra A has the Congruence Extension Property
(CEP) if for every congruence ρ on the subalgebra B of A, there is a congruence θ on A,
such that θ ∩B2 = ρ.

Proposition 2 [5] A weak congruence θ ∈ CwA is an extension of ρ ∈ ConB if and
only if ρ ⊆ θ and θ ≤∗∆ ρ.

Proposition 3 [5] An algebra A has the Congruence Extension Property (CEP) if and
only if for every ρ ∈ CwA,

(ρ∗∆A2) ∧ (ρ ∨∆) = ρ.

Theorem 5 [5] An algebra A has the CEP if and only if for every ρ ∈ ConB, B ∈ SubA
there exists θ ∈ ConA, θ ≤∗∆ ρ, such that from τ ∈ ConB and τ ∈ [θ, ρ]∗∆ , it follows
that ρ = τ .

As a direct consequence of Lemma 5, taking into account the fact that an algebra has
the CEP if and only if its diagonal relation is a cancellable element in CwA (see e.g. [2]
or [11]), we obtain the following statement.

Theorem 6 An algebra A satisfies the CEP if and only if for all α ∈ ConB, B, C ∈
SubA, such that B ⊂ C, every set QC

α is nonempty. 2
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