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FLAT SINGULAR INTEGRALS IN PRODUCT DOMAINS

Ahmad Al-Salman

Abstract

In this paper, we study singular integrals on product domains with
kernels in L(log L)2(Sn−1×Sm−1) supported by surfaces of revolutions.

We prove that our operators are bounded on Lp under certain convexity
assumption on the surfaces. Also, in this paper we prove that the
convexity assumption is not necessary for the L2 boundedness to hold.
Moreover, additional related results are presented. Our condition on
the kernel is known to be optimal.

1 Introduction

Let Γk,d(y) = Γk,d(y1, y2, . . . , yk) be a smooth k parameter surface in Rd with
d ≥ k+1. For a pair (Γn,d, Γm,l) of smooth n and m parameter surfaces Γn,d

and Γm,l in Rd and Rl respectively, define the associated singular integral
operator T(Γn,d,Γm,l) (initially for C∞0 functions on Rn+1 ×Rm+1) by

T(Γn,d,Γm,l)f(x, y) = p.v.
∫

Rn×Rm

f(x−Γn,d(u), y−Γm,l(v)) |u|−n |v|−m Ω(u, v) dudv,

(1.1)
where

Ω ∈ L1(Sn−1 × Sm−1), Ω(tx, sy) = Ω(x, y) for any t, s > 0; (1.2)
∫

Sn−1
Ω(u, ·) dσn (u) =

∫

Sm−1
Ω (·, v) dσm (v) = 0. (1.3)

Here, Sn−1 and Sm−1 are the unit spheres in Rn and Rm respectively.
The Lp boundedness of singular integral operators on product domains

have been studied by many authors ( [2], [3], [5], [7], [9], [10], [11], among
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others). When d = n + 1, l = m + 1, Γn,d(u) = (u, 0), and Γm,l(v) = (v, 0),
we shall simply let T(In,Im) = T(Γn,d,Γm,l). In [10], R. Fefferman and E. M.
Stein proved that T(In,Im) is bounded on Lp(Rn+m) for 1 < p < ∞ if Ω
satisfies certain Lipschitz conditions. Subsequently, in [5] Duoandikoetxea
established the Lp (1 < p < ∞) boundedness of T(In,Im) under the weaker
condition Ω ∈ Lq(Sn−1 × Sm−1) with q > 1. In a recent paper [3], it was

shown that the operator T(In,Im) is bounded on Lp (1 < p < ∞) provided
that Ω satisfies the additional assumption that Ω ∈ L(log L)2(Sn−1×Sm−1),

i.e.,
∫

Sn−1×Sm−1
|Ω(u, v)| (log 2 + |Ω(u, v)|)2dσn (u) dσm (v) < ∞. (1.4)

Also, it was shown in [3] that the condition Ω ∈ L(log L)2(Sn−1 × Sm−1)

is nearly optimal in the sense that the exponent 2 in L(log L)2 can not be
replaced by any smaller numbers.

Recently, there have been a considerable amount of research concerning
the Lp boundedness of the operators T(Γn,d,Γm,l) and their analog in the one
parameter setting for various functions Ω and surfaces Γn,d and Γm,l ([1],
[4], [12]).

The main focus of this paper is seeking Lp estimates for T(Γn,d,Γm,l) pro-
vided that each one of the surfaces Γn,d and Γm,l is a hypersurface obtained
by rotating a one-dimensional curve around one of the coordinate axes.
We also allow each one of our surfaces to have infinite order of contacts
with its tangent plane at the origin. More specifically, we assume that
d = n + 1, l = m + 1, Γn,d(u) = (u, φ(|u|)), and Γm,l(v) = (v, ϕ(|v|)), where
φ and ϕ are real valued functions defined on R+ with φ(0) = ϕ(0) = 0.
For simplicity, throughout the rest of this paper, we shall let Γφ,n(u) =
Γn,n+1(u) = (u, φ(|u|)) and Γϕ,m(v) = Γm,m+1(v) = (v, ϕ(|v|)). It is worth
pointing out here that the functions φ and ϕ can be very flat at the origin
in the sense that dkφ

dtk
(0) = dkϕ

dtk
(0) = 0 for all k ≥ 1. It is natural to ask

wether the operator T(Γ
φ,n

,Γϕ,m) is bounded under the optimal size condition
Ω ∈ L(log L)2(Sn−1 × Sm−1). More precisely we ask the following question:

Question. Suppose that φ and ϕ are C2, convex increasing and that Ω ∈
L(log L)2(Sn−1×Sm−1). Is the operator T(Γ

φ,n
,Γϕ,m) bounded on Lp(Rn+1×

Rm+1) for some p ∈ (1,∞)?

In this paper, we shall answer this question in the affirmative. For the
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L2 boundedness we shall show that the operator T(Γ
φ,n

,Γϕ,m) is bounded
without convexity or any smoothness conditions on φ and ϕ. In fact, we
have the following:

Theorem A. Suppose that φ and ϕ are real valued functions defined on
R+ with φ(0) = ϕ(0) = 0. If Ω ∈ L(log L)2(Sn−1 × Sm−1) and satisfies

(1.2)-(1.3), then T(Γ
φ,n

,Γϕ,m) is bounded on L2(Rn+1 ×Rm+1).

For the Lp boundedness for any p ∈ (1,∞), we shall first establish the
following result which shows the dependence of the Lp norms on the size of
Ω:

Theorem B. Suppose that β > 1, φ and ϕ are C2, convex increasing.
Suppose also that Ω ∈ L2(Sn−1×Sm−1) and satisfies (1.2)-(1.3). If ‖Ω‖L2 ≤
24β and ‖Ω‖L1 ≤ 1, then

∥∥∥T(Γφ,Γϕ)f
∥∥∥

p
≤ β2C ‖f‖p

for p ∈ (1,∞). The constant C is independent of the parameter β.

As a consequence of Theorem B, we will obtain the following result:

Theorem C. Suppose that φ and ϕ are C2, convex increasing. If Ω ∈
L(log L)2(Sn−1 × Sm−1) and satisfies (1.2)-(1.3), then T(Γφ,Γϕ) is bounded

on Lp(Rn+1 ×Rm+1) for p ∈ (1,∞).

It should be pointed out here that the result of Theorem C still holds for
many functions φ and ϕ other than the convex increasing ones. Moreover, a
similar result as that in Theorem C can be obtained if we allow the kernel to
have an additional roughness in the radial direction. A detailed discussion
of these results and some others will be presented in Section 4.

Throughout this paper the letter C will stand for a constant that may
vary at each occurrence, but it is independent of the essential variables.

2 Preliminary estimates

In this section, we shall establish certain necessary estimates that we shall
need to prove our results.
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2.1 Certain oscillatory estimates

Suppose that β > 1 and Ω ∈ L1(Sn−1 × Sm−1). For j, k ∈ Z, ξ ∈ Rn+1,
η ∈ Rm+1, and real valued functions φ and ϕ defined on R+ with φ(0) =
ϕ(0) = 0, let

I
β
(ξ, η, k, j) =

∫

Sn−1×Sm−1

e−i{ξ·Γφ,n(2βkru′)−η·Γϕ,m(2βjsv′)}Ω(u′, v′)dσn
(
u′

)
dσm

(
v′

)
,(2.1)

Jn
β
(ξ, k, j) =

∫

Sn−1
e−iξ·Γφ,n(2βkru′)Ω(u′, v′)dσn

(
u′

)
, (2.2)

Jm
β

(η, k, j) =
∫

Sm−1
e−iη·Γϕ,m(2βjsv′)Ω(u′, v′)dσm

(
v′

)
. (2.3)

Also, let πn+1
n and πm+1

m be the usual projections from Rn+1 to Rn and
from Rm+1 to Rm respectively. Thus we have the following:
Proposition 2.1. Suppose that Ω ∈ L2(Sn−1 × Sm−1) that satisfies (1.2)-
(1.3). Then

∫

Sm−1

∫ 2
β

1

∣∣∣Jn
β
(ξ, k, j)

∣∣∣ r−1drdσn
(
u′

) ≤ β ‖Ω‖L2

∣∣∣2βkπn+1
n (ξ)

∣∣∣
− 1

8 ; (2.4)

∫

Sn−1

∫ 2
β

1

∣∣∣Jm
β

(η, k, j)
∣∣∣ s−1dsdσm

(
v′

) ≤ β ‖Ω‖L2

∣∣∣2βjπm+1
m (η)

∣∣∣
− 1

8 ; (2.5)

2
β∫

1

2
β∫

1

∣∣∣Iβ
(ξ, η, k, j)

∣∣∣ r−1s−1drds ≤ β2 ‖Ω‖L2

∣∣∣2βkπn+1
n (ξ)

∣∣∣
− 1

8
∣∣∣2βjπm+1

m (η)
∣∣∣
− 1

8 .

(2.6)
Proof. We start by proving (2.6). By Cauchy Schwartz inequality, we

have

2
β∫

1

2
β∫

1

∣∣∣Iβ
(ξ, η, k, j)

∣∣∣ r−1s−1drds ≤ β(
2

β∫

1

2
β∫

1

∣∣∣Iβ
(ξ, η, k, j)

∣∣∣
2
r−1s−1drds)

1
2 .

(2.7)
Now, it is easy to see that the square of the integral in the right hand side
of (2.7) is dominated by

‖Ω‖2
L2(

∫

(Sn−1×Sm−1)2

A
β
(k, ξ, u′, z′)B

β
(j, η, v′, w′)dσn

(
u′

)
dσm

(
v′

)
dσn

(
z′

)
dσm

(
w′

)
)

1
2 ,

(2.8)
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where

A
β
(k, ξ, u′, z′) =

∣∣∣∣∣∣

∫ 2
β

1
e−i2βkrπn+1

n (ξ)·(u′−z′)r−1dr

∣∣∣∣∣∣

2

(2.9)

B
β
(j, η, v′, w′) =

∣∣∣∣∣∣

∫ 2
β

1
e−i2βjsπm+1

m (η)·(v′−w′)s−1ds

∣∣∣∣∣∣

2

. (2.10)

By integration by parts, we immediately obtain

A
β
(k, ξ, u′, z′) ≤

∣∣∣2βkπn+1
n (ξ).(u′ − z′)

∣∣∣
−2

(2.11)

B
β
(j, η, v′, w′) ≤

∣∣∣2βjπm+1
m (η).(v′ − w′)

∣∣∣
−2

. (2.12)

By (2.11) and the trivial estimate A
β
(k, ξ, u′, z′) ≤ β, we get

A
β
(k, ξ, u′, z′) ≤ β

7
8

∣∣∣2βkπn+1
n (ξ).(u′ − z′)

∣∣∣
− 1

4 . (2.13)

Similarly, we have

B
β
(j, η, v′, w′) ≤ β

7
8

∣∣∣2βjπm+1
m (η).(v′ − w′)

∣∣∣
− 1

4 . (2.14)

Hence, by combining (2.7)-(2.8) and (2.13)-(2.14), we obtain (2.6). Finally,
(2.4) and (2.5) can be obtained by a similar argument. This completes the
proof.

Now, let {mj,k : j, k ∈ Z} be a sequence of Boreal measures defined on
Rn ×Rm by

∫

Rn×Rm

fdmj,k =
∫

Ak

∫

Aj

f(Γφ,n(u), Γϕ,m(v)) |u|−n |v|−m Ω (u, v) dudv, (2.15)

where Ak = [2k, 2k+1) and Aj = [2j , 2j+1). For these measures, we have the
following:
Proposition 2.2. Suppose that Ω ∈ L2(Sn−1 × Sm−1) that satisfies (1.2)-
(1.3). Then for β > 1, ξ ∈ Rn+1 , and η ∈ Rm+1, we have

|m̂βj,βk(ξ, η)| ≤ β2 ‖Ω‖L1 (2.16)

|m̂βj,βk(ξ, η)| ≤ (‖Ω‖L2)
1
β
β2

∣∣∣2βk
πn+1

n (ξ)
∣∣∣
± 1

8β
∣∣∣2βjπm+1

m (η)
∣∣∣
± 1

8β .(2.17)
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Here, we used the notation t±α = min{tα, t−α}.
Proof. The estimate (2.16) is clear. Therefore, we only need to prove

(2.17). By the cancelation property (1.3), it is easy to see that

|m̂βj,βk(ξ, η)| ≤ ‖Ω‖L2 β2
∣∣∣2βkπn+1

n (ξ)
∣∣∣
∣∣∣2βjπm+1

m (η)
∣∣∣ . (2.18)

Using polar coordinates and the cancelation property (1.3), we have

|m̂βj,βk(ξ, η)| ≤ β min{1,
∣∣∣2βjπm+1

m (η)
∣∣∣}

∫

Sm−1

2β∫

1

∣∣∣Jn
β
(ξ, k, j)

∣∣∣ r−1drdσn
(
u′

)
,

(2.19)

|m̂βj,βk(ξ, η)| ≤ β min{1,
∣∣∣2βkπn+1

n (ξ)
∣∣∣}

∫

Sn−1

2
β∫

1

∣∣∣Jm
β

(η, k, j)
∣∣∣ s−1dsdσm

(
v′

)
.

(2.20)
Also, it is easy to see that

|m̂βj,βk(ξ, η)| ≤
2

β∫

1

2
β∫

1

∣∣∣Iβ
(ξ, η, k, j)

∣∣∣ r−1s−1drds. (2.21)

Hence (2.17) follows by (2.18)-(2.21), Proposition 2.1, and an interpolation.
By a careful review of the proof of Proposition 2.1, we notice the follow-

ing:
Remark 2.3. The estimates in Proposition 2.2 hold for any two real valued
functions φ and ϕ defined on R+ with φ(0) = ϕ(0) = 0.

2.2 General tools

In this section, we recall some important facts that we need to prove our
results. We start by recalling the following version of Theorem 15 in ([2]).

Theorem 2.4 ([2]).Let {σk,j: k, j ∈ Z} be a sequence of Borel measures on
RN× RM . Let L: RN → Rd1 and Q: RM → Rd2 be linear transformations.
Suppose that for some α1, α2, C > 0, and B > 1, the following hold for k,
j ∈ Z, (ξ, η) ∈ RN× RM :

(i) |σ̂k,j(ξ, η)| ≤ CB2(2Bk |L(ξ)|)±α1
B (2Bj |Q(η)|)±α2

B ;
(ii)

∥∥∥(
∑

k,j∈Z |σk,j ∗ gk,j |2)
1
2

∥∥∥
p0

≤ CB2
∥∥∥(

∑
k,j∈Z |gk,j |2)

1
2

∥∥∥
p0

holds for ar-

bitrary functions {gk,j} on RN× RM and some p0 > 2.
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Then
∥∥∥∥
∑

k,j∈Z
σk,j ∗ f

∥∥∥∥
Lp(RN×RM )

≤ CpB
2 ‖f‖Lp(RN×RM ) , (2.22)

for all p′0 < p < p0 and for all f in Lp( RN× RM ). The constant Cp is
independent of B and the linear transformations L and Q.

We shall also need the following result from ([4]):

Lemma 2.5 ([4]). Suppose β > 1. Let ψ be a C2, convex and increasing
function satisfying ψ(0) = 0. Suppose also that Ψ ∈ L2(Sd−1) with ‖Ψ‖L1

≤ 1 and ‖Ψ‖L2 ≤ 2
β
. Let

M (d)
β,Ψ,ψ

f(x, xd+1) = sup
j∈Z

∣∣∣∣∣∣∣∣

∫

2
βj≤|y|<2

β(j+1)

f(x− y, xd+1 − ψ(|y|)) |y|−d Ψ(y)dy

∣∣∣∣∣∣∣∣
.

(2.23)
Then for 1 < p ≤ ∞ there exists a positive constant Cp independent of β
such that ∥∥∥M (d)

β,Ψ,ψ
f
∥∥∥

p
≤ βCp ‖f‖p (2.24)

for every f ∈ Lp(Rd+1).

Now we are in a position to establish the boundedness of the necessary
maximal functions:

2.3 Maximal functions

Suppose that β > 1. Let M∗
β,φ,ϕ

be the maximal function defined by

M∗
β,φ,ϕ

(f) = supj,k∈Z ||mβj,βk| ∗ f | . (2.25)

Then we have the following:
Lemma 2.6. Suppose that ‖Ω‖L2 ≤ 24β and ‖Ω‖L1 ≤ 1. Suppose also that
φ and ϕ are C2, convex increasing. Then for 1 < p < ∞, there exists a
constant Cp independent of β such that

∥∥∥M∗
β,φ,ϕ

(f)
∥∥∥

p
≤ β2Cp ‖f‖p.

Proof. Our proof is based on the same ideas developed in the proof of
Proposition 5.5 in ([1]). But, this time, we keep track of the parameter β at
each step. For the readers convenience, we shall give a sketch of the proof.
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For j, k ∈ Z, let λ
(2,2)
k,j,β, λ

(1,2)
k,j,β , λ

(2,1)
k,j,β, and λ

(1,1)
k,j,β be the measures defined by

λ̂
(2,2)
k,j,β(ξ, η) = m̂βj,βk(ξ, η), λ̂(1,2)

k,j,β(ξ, η) = m̂βj,βk(0, ξn+1, η),

λ̂
(2,1)
k,j,β(ξ, η) = m̂βj,βk(ξ, 0, ηm+1), λ̂

(1,1)
k,j,β(ξ, η) = m̂βj,βk(0, ξn+1, 0, ηm+1).

Without loss of generality, we may assume that Ω is nonnegative. By similar
argument as in Proposition 2.2 and the assumption that ‖Ω‖L2 ≤ 24β and
‖Ω‖L1 ≤ 1 , we obtain

∣∣∣λ̂(2,2)
k,j,β(ξ, η)

∣∣∣ ≤ Cβ2
∣∣∣2βk

πn+1
n (ξ)

∣∣∣
1
8β

∣∣∣2βjπm+1
m (η)

∣∣∣
1
8β (2.26)

∣∣∣λ̂(2,2)
k,j,β(ξ, η)− λ̂

(1,2)
k,j,β(ξ, η)

∣∣∣ ≤ Cβ2
∣∣∣2βk

πn+1
n (ξ)

∣∣∣
− 1

8β
∣∣∣2βjπm+1

m (η)
∣∣∣

1
8β (2.27)

∣∣∣λ̂(2,2)
k,j,β(ξ, η)− λ̂

(2,1)
k,j,β(ξ, η)

∣∣∣ ≤ Cβ2
∣∣∣2βk

πn+1
n (ξ)

∣∣∣
1
8β

∣∣∣2βjπm+1
m (η)

∣∣∣
− 1

8β (2.28)

∣∣∣λ̂(2,2)
k,j,β(ξ, η)− λ̂

(1,2)
k,j,β(ξ, η)− λ̂

(2,1)
k,j,β(ξ, η) + λ̂

(1,1)
k,j,β(ξ, η)

∣∣∣

≤ Cβ2
∣∣∣2βk

πn+1
n (ξ)

∣∣∣
− 1

8β
∣∣∣2βjπm+1

m (η)
∣∣∣
− 1

8β . (2.29)

For l = 1, 2, s = 1, 2, let M (l,s)
β

(f) = supk,j∈Z

∣∣∣
∣∣∣λ(l,s)

k,j,β

∣∣∣ ∗ f
∣∣∣. Then it is

clear that M∗
β,φ,ϕ

= M (2,2)
β

. Now we claim that

∥∥∥M (l,s)
β

(f)
∥∥∥

p
≤ β2Cp ‖f‖p (2.30)

for all 1 < p < ∞ and (l, s) ∈ {(1, 2), (2, 1), (1, 1)}. To see (2.30), first, let
l = 1, s = 2, and Ψ(v) =

∫
Sn−1 |Ω(u, v)| dσn (u′). Then Ψ is a homogenous

function of degree 0 on Sm−1 with ‖Ψ‖L2 ≤ 24β and ‖Ψ‖L1 ≤ 1. Let M
β

be
the maximal function defined by (2.23) with d = m. Therefore, by Lemma
2.5, the boundedness of the Hardy-Littlewood maximal function HR on R
(see [13]), and the observation that M (1,2)

β
(f) (x, y) ≤ Cβ((IRn ⊗ HR) ⊗

M (m)
β,Ψ,ψ

)(f)(x, y), it is easy to see that M (1,2)
β

satisfies (2.30). Here IRn is
the identity operator on Rn. Similarly, we can show that M (l,s)

β
, (l, s) ∈

{(2, 1), (1, 1)} satisfy (2.30). Hence, our result follows by following exactly
the same bootstrapping argument employed in the proof of Proposition 5.5
in ([1]).
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3 Proof of main results

Proof of Theorem B. Suppose that β > 1, φ and ϕ are C2, convex
increasing. Suppose also that ‖Ω‖L2 ≤ 24β and ‖Ω‖L1 ≤ 1. Let {mj,k :
j, k ∈ Z} be the sequence of measures defined by (2.15). Then

T(Γφ,Γϕ)f =
∑

k,j∈Z
mβj,βk ∗ f .

Therefore, by the fact that ‖Ω‖L2 ≤ 24β and ‖Ω‖L1 ≤ 1, Proposition 2.2,
Lemma 2.6, the proof of the lemma in page 544 of ([6]), and Theorem 2.4,
the result follows. This completes the proof.

Proof of Theorem C. Assume that Ω ∈ L(log+ L)2(Sn−1 × Sm−1).
For w ∈ N, let Ew be the set of points (x′, y′) ∈ Sn−1 × Sm−1 that satisfy
2w ≤ |Ω (x′, y′)| < 2w+1. Also, we let E0 be the set of those points (x′, y′) ∈
Sn−1 × Sm−1 that satisfy |Ω (x′, y′)| < 2. For w ∈ N ∪ {0}, set bw =
ΩχEw

and λw = ‖bw‖1, where χEw
is the characteristic function of the set

Ew. Set D =
{
w ∈ N : λw ≥ 2−3w

}
and define the sequence of functions

{Ωw : w ∈ D∪{0}} by

Ω0(x, y) = b0(x, y) +
∑

w/∈D

bw(x, y)−
∫

Sn−1

b0(u, y)dσ(u)−
∫

Sm−1

b0(x, v)dσ(v)

−
∑

w/∈D

[
∫

Sn−1

bw(u, y)dσ(u) +
∫

Sm−1

b(x, v)dσ(v)] +

∫ ∫

Sn−1×Sm−1

b0(u, v)dσ(u)dσ(v) +
∑

w/∈D

∫ ∫

Sn−1×Sm−1

bw(u, v)dσ(u)dσ(v)

Ωw(x, y) = (λw)−1{bw(x, y)−
∫

Sn−1
bw(u, y)dσ(u)

−
∫

Sm−1
bw(x, v)dσ(v) +

∫ ∫

Sn−1×Sm−1
bw(u, v)dσ(u)dσ(v)}.

Now, for w ∈ D, set θw = λw and set θ0 = 1. Thus, it is easy to see that
the following holds:

∫

Sn−1
Ωw (u, ·) dσn (u) =

∫

Sm−1
Ωw (·, v) dσm (v) = 0, (3.1)

‖Ωw‖1 ≤ C, ‖Ωw‖2 ≤ C24(w+1), (3.2)

Ω(x, y) =
∑

w∈D∪{0}
θwΩw(x, y), (3.3)
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∑

w∈D∪{0}
(w + 1)2θw ≤ C ‖Ω‖L(log L)2(Sn−1×Sm−1) . (3.4)

For w ∈ D∪{0}, let Tw
(Γφ,Γϕ) be the operator defined by (1.1) with Ω replaced

by Ωw . Then the operator T(Γφ,Γϕ) is decomposed as follows:

T(Γφ,Γϕ)f(x, y) =
∑

w∈D∪{0}
θwTw

(Γφ,Γϕ)f(x, y). (3.5)

Now by Theorem B, we have
∥∥∥Tw

(Γφ,Γϕ)f
∥∥∥

p
≤ (w + 1)2C ‖f‖p (3.6)

for all p ∈ (1,∞); which when combined with (3.5) imply that
∥∥∥T(Γφ,Γϕ)f

∥∥∥
p
≤ C{

∑

w∈D∪{0}
θw(w + 1)2} ‖f‖p (3.7)

for all p ∈ (1,∞). Hence, by (3.4) and (3.7), the result follows.
Proof of Theorem A. A proof of Theorem A can be obtained using

Plancherel’s formula, the decomposition (3.1)-(3.5), the estimates (2.16)-
(2.17), and Remark 2.3. We omit the details.

4 Additional results

In this section, we shall present some results that can be obtained by minor
modifications of the argument employed in the previous sections.

For 1 < γ < ∞, we let ∆γ (R+×R+) be the set of all measurable func-
tions h : R+× R+ → R that satisfy

‖h‖∆γ
= sup

R1,R2>0

[
(R1R2)−1

∫ R1

0

∫ R2

0
|h (t, s)|γ dtds

] 1
γ

< ∞.

Also, we let ∆∞(R+×R+) = L∞(R+×R+). For more information about
the space ∆γ in the one parameter setting, we refer the reader to consult
([6], [8]).

It is clear that L∞(R+×R+) ⊂ ∆γ (R+×R+) ⊂ ∆
β
(R+×R+) for any

β < γ and the inclusions are proper.
For h ∈ ∆γ (R+×R+), γ > 1, we let T h

(Γ
φ,n

,Γϕ,m) be the operator given by

(1.1) with Ω is replaced by Ωh, d = n+1, l = m+1, Γn,d(u) = (u, φ(|u|)), and
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Γm,l(v) = (v, ϕ(|v|)). Then we have the following generalization of Theorem
C:

Theorem 4.1. Suppose that φ and ϕ are C2, convex increasing. If Ω ∈
L(log L)2(Sn−1 × Sm−1) and satisfies (1.2)-(1.3), then T h

(Γφ,Γϕ) is bounded

on Lp(Rn+1 ×Rm+1) for all p satisfying |1/p− 1/2| < min {1/2, 1/γ′} .

It is clear that when γ ≥ 2, then T h
(Γ

φ,n
,Γϕ,m ) in Theorem 4.1 is bounded

on Lp(Rn+1×Rm+1) for all 1 < p < ∞. Hence, if h = 1, then Theorem 4.1
reduces to Theorem C.

Proof. We only need to show that all requirements needed to repeat
the same proof of Theorem B for p satisfying |1/p− 1/2| < min {1/2, 1/γ′} .
In order to do so, let {mj,k,h : j, k ∈ Z} and M∗

β,φ,ϕ,h
be the sequence of

measures and the maximal function given in (2.15) and (2.25) respectively
with Ω is replaced by Ωh. Then, by Hölder’s inequality and the observation
that ‖mj,k,h‖ ≤ β2 ‖h‖∆γ

‖Ω‖L1 , we get that Proposition 2.2 still holds for
the measures {mj,k,h : j, k ∈ Z}. On the other hand, by Lemma 2.6 and
Hölder’s inequality, we have that the maximal function M∗

β,φ,ϕ,h
is bounded

on Lp for γ′ < p < ∞. This completes the proof.

Now, the argument in this paper implies the following result:

Theorem 4.2. Suppose that there exists nonzero real numbers d1 and d2,
and positive constants {Ci,l : 1 ≤ i ≤ 4, 1 ≤ l ≤ 2} such that the functions φ
and ϕ satisfy

|φl(t)| ≤ C1,lt
dl ,

∣∣φ′′l (t)
∣∣ ≤ C2,lt

dl−2, C3,lt
dl−1 ≤ ∣∣φ′l(t)

∣∣ ≤ C4,lt
dl−1 (4.1)

for t ∈ (0, ∞) where φ1 = φ and φ2 = ϕ. If Ω ∈ L(log L)2(Sn−1 × Sm−1)

and satisfies (1.2)-(1.3), then T h
(Γφ,Γϕ) is bounded on Lp(Rn+1 ×Rm+1) for

all p satisfying |1/p− 1/2| < min {1/2, 1/γ′} .

To prove Theorem 4.2, we need the following analog of Lemma 2.5 which
can be proved by using the arguments on ([[4], p. 168-169, [6], p. 559]):

Lemma 4.3. Let β and Ψ be as in Lemma 2.5. If ψ satisfies (4.1) with φl

is replaced by ψ. Then the estimate (2.24) holds for 1 < p ≤ ∞.

Proof (of Theorem 4.2). By Proposition 2.2, Remark 2.3, and the
argument in the proof of Theorem 4.1, we only need to show that the result
of Lemma 2.6 still holds if the convexity assumptions on the functions φ
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and ϕ are replaced by the conditions (4.1). To see this, we repeat exactly
the same argument as that in the proof of Lemma 2.6, but this time we use
Lemma 4.3 instead of Lemma 2.5. This completes the proof.

By arguing inductively and using the estimates in this paper, we can
easily prove the following result:

Theorem 4.4. Suppose that φ and ϕ are generalized polynomials, i.e.,
φ(t) = µ1t

d1+ · · ·+µlt
dl and ϕ(t) = µ̃1t

d̃1+ · · ·+µ̃st
d̃s for some l, s ∈ N,

distinct real numbers d1, . . . , dl, distinct real numbers d̃1, . . . , d̃s, and real
numbers µ1, . . . , µl, µ̃1, . . . , µ̃s. If Ω ∈ L(log L)2(Sn−1 × Sm−1) and satisfies

(1.2)-(1.3), then T h
(Γφ,Γϕ) is bounded on Lp(Rn+1×Rm+1) for all p satisfying

|1/p− 1/2| < min {1/2, 1/γ′} . Moreover, the Lp bounds are independent of
the coefficients µ1, . . . , µl, µ̃1, . . . , µ̃s.

We end this section by presenting the analogy of our results above for the
related truncated maximal functions. The truncated maximal function cor-
responding to the operator T(Γ

φ,n
,Γϕ,m) is the operator (T(Γ

φ,n
,Γϕ,m))∗ given

by

(T(Γ
φ,n

,Γϕ,m ))
∗f(x, y) =

= sup
ε>0,δ>0

∫∫

|u|>ε,|v|>δ

f(x− Γn,d(u), y − Γm,l(v)) |u|−n |v|−m Ω(u, v) dudv

where d = n + 1, l = m + 1, Γn,d(u) = (u, φ(|u|)), and Γm,l(v) = (v, ϕ(|v|)).
By the estimates obtained in this paper and the techniques developed in

([1], [2], [4]), one can easily prove the following result:

Theorem 4.5. Suppose that Ω ∈ L(log L)2(Sn−1 × Sm−1) and satisfies

(1.2)-(1.3). If the functions φ and ϕ are C2 convex increasing, or satisfy
(4.1), or generalized polynomials, then the corresponding operator (T(Γ

φ,n
,Γϕ,m))∗

is bounded on Lp(Rn+1 ×Rm+1) for all p ∈ (1,∞). Moreover, if φ and ϕ
are generalized polynomials, then the Lp bounds are independent of the co-
efficients.
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