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FLAT SINGULAR INTEGRALS IN PRODUCT DOMAINS

Ahmad Al-Salman

Abstract

In this paper, we study singular integrals on product domains with
kernels in L(log L)?(S®~1 xS™~1) supported by surfaces of revolutions.

We prove that our operators are bounded on L? under certain convexity
assumption on the surfaces. Also, in this paper we prove that the
convexity assumption is not necessary for the L? boundedness to hold.
Moreover, additional related results are presented. Our condition on
the kernel is known to be optimal.

1 Introduction

Let T'k.q(y) = Tk.a(y1, y2, - - ., yr) be asmooth k parameter surface in R< with
d > k+1. For a pair (I';, 4, I';, 1) of smooth n and m parameter surfaces I'y, 4
and I';,; in R? and R! respectively, define the associated singular integral
operator T(r, ,r,. ) (initially for C3° functions on R x R™*1) by

Tt 0 0:5) = Dv. [ £~ Traw)y =T (0)) [l ™ o] 2 1, 0) dud,
R7»xR™
(1.1)

where

Qe LY(S" ! x 8™ 1) Q(tx, sy) = Q(z, y) for any t,s > 0; (1.2)

/Sn_l Q(u,-) doy (u) = /Sm_lQ(-,U) dop, (v) = 0. (1.3)

Here, S~ ! and S™! are the unit spheres in R™ and R™ respectively.
The L? boundedness of singular integral operators on product domains
have been studied by many authors ( [2], [3], [5], [7], [9], [10], [11], among
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others). Whend=n+1,l=m+1, I'; 4(u) = (u,0), and Iy, ;(v) = (v,0),
we shall simply let Ty, 1,y = T(r, ,1,,,)- In [10], R. Fefferman and E. M.
Stein proved that T(;, ;.. is bounded on LP(R™™) for 1 < p < oo if Q
satisfies certain Lipschitz conditions. Subsequently, in [5] Duoandikoetxea
established the L? (1 < p < oo) boundedness of T{y, ;,.) under the weaker
condition 2 € LI(S"! x 8™~ 1) with ¢ > 1. In a recent paper [3], it was

shown that the operator Ty, 7.y is bounded on L? (1 < p < oo) provided
that € satisfies the additional assumption that Q € L(log L)2(S"~! x S™~1),

ie.,

/Snilemil 1%, v)| (log 2 + [, v)|)2dorn () dow (v) < 00, (1.4)

Also, it was shown in [3] that the condition 2 € L(log L)?(S"~! x Sm~1)

is nearly optimal in the sense that the exponent 2 in L(log L)? can not be
replaced by any smaller numbers.

Recently, there have been a considerable amount of research concerning
the LP boundedness of the operators T, (Tn.a:Tom.) and their analog in the one
parameter setting for various functions 2 and surfaces I';, 4 and T',,; ([1],
], [12)).

The main focus of this paper is seeking L estimates for T(r, ,r,. ;) Pro-
vided that each one of the surfaces I';, 4 and I';,, ; is a hypersurface obtained
by rotating a one-dimensional curve around one of the coordinate axes.
We also allow each one of our surfaces to have infinite order of contacts
with its tangent plane at the origin. More specifically, we assume that
d=n+1,l=m+1,T,q(u) = (u,o(|u|)), and T'y, ;(v) = (v, ¢(|v])), where
¢ and ¢ are real valued functions defined on R* with ¢(0) = ¢(0) = 0.
For simplicity, throughout the rest of this paper, we shall let I'y ,(u) =
Lyng1(uw) = (u, ¢(Jul)) and Ty pm(v) = Tims1(v) = (v, 0(Jv])). It is worth
pointing out here that the functions ¢ and ¢ can be very flat at the origin

in the sense that CZ—,?(O) = Z];—f(()) = 0 for all £ > 1. Tt is natural to ask

wether the operator T(F¢ o) is bounded under the optimal size condition

Q € L(log L)%(S™! x S™~1). More precisely we ask the following question:

Question. Suppose that ¢ and ¢ are C?, convex increasing and that Q €
L(log L)?(S"~! x 8™~1). Is the operator T(p¢ T, ..) bounded on LP(R™ x

R™Y) for some p € (1,00)?

In this paper, we shall answer this question in the affirmative. For the
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L? boundedness we shall show that the operator T( o) is bounded

without convexity or any smoothness conditions on ¢ and . In fact, we
have the following;:

Theorem A. Suppose that ¢ and ¢ are real valued functions defined on
RT with ¢(0) = ¢(0) = 0. If @ € L(log L)?(S"~! x S™~1) and satisfies
(1.2)-(1.3), then T(p¢ T, is bounded on L2(R*H x R,

For the LP boundedness for any p € (1,00), we shall first establish the

following result which shows the dependence of the LP norms on the size of
Q:

Theorem B. Suppose that § > 1, ¢ and ¢ are C%, convex increasing.
Suppose also that Q € L*(S"1 xS™1) and satisfies (1.2)-(1.3). If || 2 <
240 and |||, < 1, then

|Tvraf] < 6% 11,
for p € (1,00). The constant C' is independent of the parameter §3.

As a consequence of Theorem B, we will obtain the following result:

Theorem C. Suppose that ¢ and ¢ are C%, convex increasing. If Q €
L(log L)2(S"! x S™1) and satisfies (1.2)-(1.3), then Tir,r,) is bounded

on LP(R™ x R™*) for p € (1, 00).

It should be pointed out here that the result of Theorem C still holds for
many functions ¢ and ¢ other than the convex increasing ones. Moreover, a
similar result as that in Theorem C can be obtained if we allow the kernel to
have an additional roughness in the radial direction. A detailed discussion
of these results and some others will be presented in Section 4.

Throughout this paper the letter C' will stand for a constant that may
vary at each occurrence, but it is independent of the essential variables.

2 Preliminary estimates

In this section, we shall establish certain necessary estimates that we shall
need to prove our results.
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2.1 Certain oscillatory estimates

Suppose that 3 > 1 and Q € L'(S"~! x ™1, For j,k € Z, £ € R"!,
n € R™H! and real valued functions ¢ and ¢ defined on R with ¢(0) =
»(0) =0, let

L& k,j) = L/é-”{@F¢ﬂ*2ﬁkr“”‘”ffvﬂn<””S””}s2<uc1/>do»zcuﬂ do, ((2)1)

Sn—1ygm-—1

Tk = [ e e 00, o e, (o) (2.2)
Sn—1
T k,g) = / e Tem IO o ) do (o) (2.3)
Sm=
m+1

Also, let 71 and 77+ be the usual projections from R"*! to R™ and
from Rm+1 to R respectively. Thus we have the following:

Proposition 2.1. Suppose that Q € L?(S"~! x S™~1) that satisfies (1.2)-
(1.3). Then

2° .
/Sm_l/l ‘Jg(gvk’j)‘r_ldrd"n (u') < B L2 Pﬁk”ﬁﬂ(f) i (24)

_1
2Pt )| ti o (25)

B

2
Lo | s dsdon () < 19
sn-1./1

_1 X _1
[ J1atm k)| s drds < g 00 P 0] i )|

11

(2.6)
Proof. We start by proving (2.6). By Cauchy Schwartz inequality, we
have

BZ,B

2 2'8 2B
//‘Iﬁ (& .k, ] L=l drds gﬂ(//‘lﬁ & n,k, ] 2 L Lirds)}
11 11

(2.7)
Now, it is easy to see that the square of the integral in the right hand side
of (2.7) is dominated by

HSQH%Q / Ag(k7€,u/’ Z/)Bﬁ(j,’r]’ Uljw/)dan (u/) dO’m (fu/) dO’n (Z/) dO’m (w/))%’
(Snfl Xsmfl)Z
(2.8)
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where
o 2
. n+1 / /
Ay (k6,2 = /1 e i27rm O (' =) -1 g, (2.9)
2’ 2
. j om+1 / /
Bﬁ (.77 n, Ulv w/) - /1 e_ZQBJSFer K )3_1d8 (210)
By integration by parts, we immediately obtain
-2
Ak, g0, 2) < ’25k772+1(§).(u’ — 2 (2.11)
, -2
B,(,n, v, w) < |2t (n).(0 — o) (2.12)
By (2.11) and the trivial estimate A, (k,&, v, 2") < 3, we get
_1
Ay (k&0 2) < B3 255 (6).(uf — )] (2.13)
Similarly, we have
_1
B, (j,m,v/,w) < 85 297 (). (o) — w)| (2.14)

Hence, by combining (2.7)-(2.8) and (2.13)-(2.14), we obtain (2.6). Finally,
(2.4) and (2.5) can be obtained by a similar argument. This completes the
proof.

Now, let {mj : j,k € Z} be a sequence of Boreal measures defined on
R"™ x R™ by

| gdmi = [ [ F@on(@).Tom(o)) ™ o 2 (u,0) dudo, (2.15)
R"xR™ Ay A;

where Ay, = [2F,28F1) and A; = [27,2971). For these measures, we have the
following:

Proposition 2.2. Suppose that Q € L?(S"~1 x S™1) that satisfies (1.2)-
(1.8). Then for 3> 1, £ € R* | and n € R™, we have

g el < B2 (2.16)

1 1 1
N 3 Bk + o +=
g an(&ml < (190lp2)" 82 27wt @) |2t )| (217)
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Here, we used the notation t¥% = min{t®,t=*}.
Proof. The estimate (2.16) is clear. Therefore, we only need to prove
(2.17). By the cancelation property (1.3), it is easy to see that

s o0 (&M < 119202 67 [2P ()| 22wt o) (2.18)

Using polar coordinates and the cancelation property (1.3), we have

28

g€l < Bmin{L [t )y [ [0 k)| drdon ().
s (2.19)

2/3
gan(€ )l < Bmin{1,[2Pm @y [ [k 5] s dsdo (0)

Sn—1 1
(2.20)

Also, it is easy to see that

2 2

35,85 (€5 M) // (&, n,k, ] s drds. (2.21)

11

Hence (2.17) follows by (2.18)-(2.21), Proposition 2.1, and an interpolation.
By a careful review of the proof of Proposition 2.1, we notice the follow-

ing:

Remark 2.3. The estimates in Proposition 2.2 hold for any two real valued

functions ¢ and ¢ defined on R™ with ¢(0) = »(0) = 0.

2.2 General tools

In this section, we recall some important facts that we need to prove our
results. We start by recalling the following version of Theorem 15 in ([2]).

Theorem 2.4 ([2]).Let {0} ;: k, j € Z} be a sequence of Borel measures on
RYx RM. Let L: RN — R™ and Q: RM — R% be linear transformations.
Suppose that for some a1, as, C > 0, and B > 1, the following hold for k,
j€Z, (&n) € RNx RM:
NN a1 ; a2
(i) |ow,5 (€, m)| < CB2(2P* llL(f)l)i 5 25 1QMm)* 1
(i1) |[(Shgezlons * aei2 | < OB |[(Shjenlons)?

bitrary functions {gi ;} on RYx RM and some py > 2.

holds for ar-
Po
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Then

< GB? / 2.22
LP(RNXR]\/I) —= P ||f”LP(RN><R]\[)7 ( )

sz,jez Tk *

for all pjy < p < po and for all f in LP( RN x RM). The constant C,, is
independent of B and the linear transformations L and Q.
We shall also need the following result from ([4]):

Lemma 2.5 ([4]). Suppose 3 > 1. Let ¢ be a C?, convex and increasing
function satisfying ¥(0) = 0. Suppose also that ¥ € L?(S%1) with || ¥| .
<1and |9, <2”. Let

M faaa) =sip| [ f =y - 9y U )y
(2.23)
Then for 1 < p < oo there exists a positive constant C, independent of (3

such that
[a 1) < 6C,1171, (224

for every f € LP(RITL).

Now we are in a position to establish the boundedness of the necessary
maximal functions:

2.3 Maximal functions

Suppose that 8 > 1. Let M; oo be the maximal function defined by

Mg, () = sup; ez [mpjon] * f1. (2.25)

Then we have the following:

Lemma 2.6. Suppose that ||Q|;2 < 2% and |||, < 1. Suppose also that
¢ and ¢ are C?, convex increasing. Then for 1 < p < oo, there exists a
constant C, independent of 3 such that HM;;@W (f)Hp < 3G, 11,

Proof. Our proof is based on the same ideas developed in the proof of
Proposition 5.5 in ([1]). But, this time, we keep track of the parameter 3 at
each step. For the readers convenience, we shall give a sketch of the proof.
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For j, k € Z, let )\,i 3 g,, )\,(61]2% , )\122]%, nd /\,(:Jlg be the measures defined by

>\](<:2j2%(£ 7]) = m,BJ ﬂk(ﬁ n) g(f 77) mﬂ],ﬂk(oa fn-i-lv 77)7
), A

2,1) A
(7] ﬁ(g 77) = mﬁ],ﬂk(§7 0777m+1 ) ]g7 7ﬁ(€777) = m,@j,ﬁk(07§n+1707nm+1)'

Without loss of generality, we may assume that (2 is nonnegative. By similar
argument as in Proposition 2.2 and the assumption that ||Q||;. < 2*% and
1€2]| 1 <1, we obtain

1 ] 1
AEH | < e mr @ PP n[® (226
1 1
Bk —33 Cm 33
AZ2Em) — AID e m] < 08 |2t @ R )| (227)
1 1
: : R R
S = AGhE )| < e |2 @ 2Vt m)| T (228)
A m = AL m) = A% m) + AL E )|
_ 1 . _ 1
< oo T [Pt )| (2.29)

Forl =1,2, s = 1,2, let Mélvs) (f) = supy jez H)\
clear that M;¢ o= Mﬁ(m). Now we claim that

*f‘. Then it is

[a2 ()] < B2Cp 11, 2.30)

for all 1 < p < oo and (I,s) € {(1,2),(2,1),(1,1)}. To see (2.30), first, let
l=1,5s =2, and ¥(v) = [gu_1|Q(u,v)|doy (v'). Then V¥ is a homogenous
function of degree 0 on 8™ with ||¥||;» < 2% and ||¥| ., < 1. Let M, be
the maximal function defined by (2.23) with d = m. Therefore, by Lemma
2.5, the boundedness of the Hardy-Littlewood maximal function Hgr on R
(see [13]), and the observation that Mﬁ(m) (f) (z,y) < CB((Irr ® HR) ®

. . 172 . .
Méi’;?w)(f)(x,y), it is easy to see that MB( ) satisfies (2.30). Here Irn is

the identity operator on R™. Similarly, we can show that Mél’s), (I,s) €
{(2,1),(1,1)} satisfy (2.30). Hence, our result follows by following exactly
the same bootstrapping argument employed in the proof of Proposition 5.5

in ([1]).
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3 Proof of main results

Proof of Theorem B. Suppose that 3 > 1, ¢ and ¢ are C?, convex
increasing. Suppose also that [|Qf|;2 < 2% and ||Q[;. < 1. Let {m, :
J.k € Z} be the sequence of measures defined by (2.15). Then

Tiryrf = Zmez mg; k% -

Therefore, by the fact that |||, < 2% and ||Q2]|;. < 1, Proposition 2.2,
Lemma 2.6, the proof of the lemma in page 544 of ([6]), and Theorem 2.4,
the result follows. This completes the proof.

Proof of Theorem C. Assume that Q € L(log™ L)?(S"~! x S™~1).
For w € N, let E,, be the set of points (2,y') € S"~! x 8m~! that satisfy
2 < |9 (2, y')] < 2@+, Also, we let Eg be the set of those points (z/,y') €
Snl x §™~1 that satisfy |Q (2/,y)] < 2. For w € NUJ{0}, set b, =
Qxg,and A, = [|by||;, where x is the characteristic function of the set
E,. Set D = {w e N: ), >273} and define the sequence of functions
{Q, 1w e DU{0}} by

Q(:cy)—bo(my—s—Zb z,y) /bouyda /boxvda

QD Sn— Sm—1
72 / w(, y)do(u) + /bzvdo()]
w¢D Sn—1 gm—1
// (u,v)do(u)do(v) + Z // (u,v)do(u)do(v)
Sn— 1><S'm 1 w¢Dsn IXSm 1

Q,(z,y) = (Aw)_l{bW(x’y)_/Snfl b (u,y)do(u)
[ bledo)+ [ [ bu(u)doudo(v)}.

Now, for w € D, set 8, = A\, and set 6, = 1. Thus, it is easy to see that
the following holds:

/ngw (u,) don (u) = /Smil Q, (~v)dom () =0,  (3.1)
12, 111 C, [Q,ll, < c2t D), (3.2)

Qx,y) Z 0,92, (z,y), (3.3)
weDU{0}

A
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Y. W+, < Ol pogryzsn-1xsm-1) - (3.4)
weDU{0}
For w € DU {0}, let T¥, r,) be the operator defined by (1.1) with Q replaced
by €,,. Then the operator T(r »Tp) 18 decomposed as follows:

weDU{0}

Now by Theorem B, we have
|7, rf| < @+ 1PClf, (3.6)
for all p € (1, 00); which when combined with (3.5) imply that

|Teenf| <t X 0.w+1711, (3.7)
weDU{0}

for all p € (1,00). Hence, by (3.4) and (3.7), the result follows.

Proof of Theorem A. A proof of Theorem A can be obtained using
Plancherel’s formula, the decomposition (3.1)-(3.5), the estimates (2.16)-
(2.17), and Remark 2.3. We omit the details.

4 Additional results

In this section, we shall present some results that can be obtained by minor
modifications of the argument employed in the previous sections.

For 1 < < oo, we let A_(RTXR™) be the set of all measurable func-
tions h: R™x R — R that satisfy

R1 rR2 - v
Ihly = sup |(RiRy)™" / / b (t,9)| dtds| < oo.
v R1,R>>0 0 0

Also, we let A_(RTxR*') = L®(R"xR™"). For more information about
the space A in the one parameter setting, we refer the reader to consult
([6], [3])-

It is clear that L*(RTxR¥) ¢ A (RTxRT) C A (R"xR™) for any
B < v and the inclusions are proper.

Forh e A, (RTxRT), v > 1, we let T(hF T be the operator given by

P,n’ M

(1.1) with Q is replaced by Qh, d = n+1,l = m+1, T, 4(u) = (u, ¢(|u])), and
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['yi(v) = (v, ¢(Jv])). Then we have the following generalization of Theorem
C:

Theorem 4.1. Suppose that ¢ and ¢ are C%, convex increasmg. If Q €
L(log L)2(S"~! x S™~1) and satisfies (1.2)-(1. 5’) then T(F r,) is bounded
on LP(R™ x R™Y) for all p satisfying [1/p — 1/2| < min {1/2,1/+'}.

It is clear that when v > 2, then T (}1L“
én>

on LP(R™1xR™*!) for all 1 < p < oo. Hence, if h = 1, then Theorem 4.1
reduces to Theorem C.

Ty in Theorem 4.1 is bounded

®,m

Proof. We only need to show that all requirements needed to repeat
the same proof of Theorem B for p satisfying |1/p — 1/2| < min{1/2,1/9'}.
In order to do so, let {m;x s : j,k € Z} and M*¢ » be the sequence of
measures and the maximal function given in (2.15) and (2.25) respectively
with €2 is replaced by Q2h. Then, by Holder’s inequality and the observation
that [|mj sl < B2 HhHAW 1€2]| .1, we get that Proposition 2.2 still holds for
the measures {m;y : j,k € Z}. On the other hand, by Lemma 2.6 and
Holder’s inequality, we have that the maximal function M;y 7 is bounded

¢,0,h
on LP for 4/ < p < co. This completes the proof.

Now, the argument in this paper implies the following result:

Theorem 4.2. Suppose that there exists nonzero real numbers di and da,
and positive constants {Cj; 1 <1i <4,1 <1 <2} such that the functions ¢
and ¢ satisfy

(1) < Cugt®, |6 (1)] < Co ™2, Cypt® ™ < |gj(t)| < Cagt™™" (4.1

fort € (0, 00) where ¢p1 = ¢ and ¢ = . IfQ € L(log L)?(S"~! x S™~1)
and satisfies (1.2)-(1.3), then T(}fd) r,) is bounded on LP(R™ x R™*Y) for
all p satisfying |1/p —1/2| < min{1/2,1/4'}.

To prove Theorem 4.2, we need the following analog of Lemma 2.5 which
can be proved by using the arguments on ([[4], p. 168-169, [6], p. 559]):

Lemma 4.3. Let § and ¥ be as in Lemma 2.5. If ¢ satisfies (4.1) with ¢;
is replaced by . Then the estimate (2.24) holds for 1 < p < oc.

Proof (of Theorem 4.2). By Proposition 2.2, Remark 2.3, and the
argument in the proof of Theorem 4.1, we only need to show that the result
of Lemma 2.6 still holds if the convexity assumptions on the functions ¢
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and ¢ are replaced by the conditions (4.1). To see this, we repeat exactly
the same argument as that in the proof of Lemma 2.6, but this time we use
Lemma, 4.3 instead of Lemma 2.5. This completes the proof.

By arguing inductively and using the estimates in this paper, we can
easily prove the following result:

Theorem 4.4. Suppose that ¢ and ¢ are generalized polynomials, i.e.,
o(t) = pth+ -+t and o(t) = arth 4 gt for some I,s € N,
distinct real numbers dy,...,d;, distinct real numbers dy,...,ds, and real
numbers pi1, ..., fy, fit, ..., fs. If @ € L(log L)?(S™"~! x S™~1) and satisfies
(1.2)-(1.3), then T&¢ r,) is bounded on LP(R"M xR™TY) for all p satisfying

11/p —1/2| < min{1/2,1/4'} . Moreover, the L? bounds are independent of
the coefficients w1, ...,y f1, ..., fbs.

We end this section by presenting the analogy of our results above for the
related truncated maximal functions. The truncated maximal function cor-
responding to the operator T(F¢ o) is the operator (T(F r, )" given

d,n’ P,m
by
(T(rqb’n,r%m)) flz,y) =
= sup f(li - Fn,d(u)a y— Fm,l(v)) |u|—n ‘v|—m Q (u’ U) dudv
€>0,6>0

|u|>€,|v]>6

where d =n+1,l=m+1, '), g(u) = (u,¢(Ju|)), and 'y, ;(v) = (v, o(|v])).
By the estimates obtained in this paper and the techniques developed in
([1], [2], [4]), one can easily prove the following result:

Theorem 4.5. Suppose that Q € L(log L)?(S"~! x 8™~ 1) and satisfies

(1.2)-(1.3). If the functions ¢ and ¢ are C? conver increasing, or satisfy
(4.1), or generalized polynomials, then the corresponding operator (T(p¢ T, )
is bounded on LP(R™1 x R™1) for all p € (1,00). Moreover, if ¢ and ¢
are generalized polynomials, then the LP bounds are independent of the co-
efficients.
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