Faculty of Sciences and Mathematics University of Niš

Available at:

www.pmf.ni.ac.yu/org/filomat/welcome.htm

Filomat **19** (2005), 1–5

On Measure of Non-Compactness in Convex Metric Spaces

Ljiljana Gajić

Abstract. In this paper new results concerning the measure of non-compactness in convex metric spaces are presented.

1. Introduction

Let (X, d) be a metric space and A be a bounded subset of X. Denote

 $\beta(A) = \inf\{\epsilon > 0 | A \text{ can be covered with a finite }$

number of balls of radii smaller then ϵ }.

This function is called the Hausdorff, measure of non-compactness. From definition one can directly obtain the following facts:

- (1) $\beta(A) = 0 \Leftrightarrow A$ is totaly bounded;
- (2) $\beta(A) = \beta(\bar{A});$
- (3) $A \subset B \Rightarrow \beta(A) \leq \beta(B);$
- (4) $\beta(A \cup B) = \max\{\beta(A), \beta(B)\};$
- (5) $\beta(A \cap B) \le \min\{\beta(A), \beta(B)\}.$

If our space is Banach this function has some additional properties connected with the linear structure:

- 6) $\beta(A+B) \leq \beta(A) + \beta(B);$
- 7) $\beta(\alpha A) = |\alpha|\beta(A), \quad \alpha \in \mathbb{R};$
- 8) $\beta(convA) = \beta(A)$, (conv A is a convex hull of A).

¹2000 Mathematics Subject Classification. 47H10.

 $^{^{2}}Key$ words and phrases. convex metric spaces, measure of non-compactness, condensing multifunction, fixed point.

 $^{^3 \}rm Communicated$ at the 5th International Symposium on Mathematical Analysis and Its Applications, Niška Banja, Serbia and Montenegro, October 2–6, 2002.

Ljiljana Gajić

It is well known that in the fixed point theory the relation 8) i.e.

$$\beta(convA) = \beta(A)$$

is of great importance. In locally convex metric spaces relation 8) is thrue. But, if we considered topological vector space is not locally convex space we can not prove, in general, that $\beta(convA) = \beta(A)$ (see [2] for example). Further, one can introduce a concept of convexity in metric space in abstract form and study the properties of such spaces – called *convex metric spaces*. At first it was done by W. Takahashi [3].

Definition 1. Let X be a metric space and I be the closed unit interval. A mapping $W : X \times X \times I \to X$ is said to be convex structure on X if for all $x, y, u \in X, \lambda \in I$,

$$d(u, W(x, y, \lambda) \le \lambda d(u, x) + (1 - \lambda)d(u, y).$$

X together with a convex structure is called a Takahaski convex metric space (X, d, W) or TCS.

Any convex subset of a normed space is a convex metric space with $W(x, y, \lambda) = \lambda x + (1 - \lambda)y$. There are non-trivial examples of TCS.

Example 1. Let I be the unit interval [0,1] and X be the family of closed intervals $[a_i, b_i]$ such that $0 \le a_i \le b_i \le 1$. For $I_i = [a_i, b_i], I_j = [a_j, b_j]$ and $\lambda(0 \le \lambda \le 1)$, we define a mapping W by $W(I_i, I_j, \lambda) = [\lambda a_i + (1 - \lambda)a_j, \lambda b_i + (1 - \lambda)b_j]$ and define a metric d in X by the Hausdorff distance, *i.e.*

$$d(I_i, I_j) = \sup_{a \in I} \{ |\inf_{b \in I_i} \{ |a - b| \} - \inf_{c \in I_j} \{ |a - c| \} | \}.$$

Definition 2. Let X be a convex metric space. A nonempty subset K of X is said to be convex if and only if $W(x, y, \lambda) \in K$ whenever $x, y \in K$ and $\lambda \in I$.

Takahashi has shown ([3]) that open and closed balls are convex, and that the arbitrary intersection of convex sest is convex too.

For arbitrary $A \subset X$ let

(1)
$$W(A) := \{ W(x, y, \lambda) : x, y \in A, \lambda \in I \}.$$

It is easy to see that $\widetilde{W}: \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{X})$ is a mapping with properties:

- i) $A \subset \widetilde{W}(A)$, for $A \subset X$;
- ii) $A \subset B$ implies $\widetilde{W}(A) \subset \widetilde{W}(B)$, for any $A, B \in \mathcal{P}(\mathcal{X})$;
- iii) $\widetilde{W}(A \cap B) \subset \widetilde{W}(A) \cap \widetilde{W}(B)$, for any $A, B \in \mathcal{P}(\mathcal{X})$.

Using this notation we say that K is convex iff $\widetilde{W}(K) \subset K$. Now, let us recall:

Definition 3. The convex hull of a set $A (A \subset X)$ is the intersection of all convex sets in X containing A and it is denoted by conv A.

It is obvious that if A is a convex set then $\widetilde{W}^n(A) = \widetilde{W}(\widetilde{W}(\dots,\widetilde{W}(A)\dots) \subset A$ for any $n \in N$. If we set:

$$A_n = \widetilde{W}^n(A), \quad (A \subset X),$$

the sequence $\{A_n\}_{n \in \mathbb{N}}$ is increasing so $\limsup A_n$ exists and

 $\limsup A_n = \liminf A_n = \lim A_n = \bigcup_{n=1}^{\infty} A_n.$

Proposition 1. Let X be a convex mertic space and $(A \subset X)$. Then

$$convA = \lim A_n = \bigcup_{n=1}^{\infty} A_n$$

Proposition 2. [1] For any subset A of (X, d, W)

 $\delta(convA) = \delta(A),$

 $\delta(A) = \sup_{x,y \in A} d(x,y).$

Definition 4. *TSC X has property P if for every* $x_1, x_2, y_1, y_2, \in X, \lambda \in I$

 $d(W(x_1, x_2, \lambda), W(y_1, y_2, \lambda)) \le \lambda d(x_1, y_1) + (1 - \lambda) d(x_2, y_2).$

Obviously in normed space it is always satisfied.

Definition 5. TSC X has property Q if for any finite subset $A \subset X$ convA is compact set.

L. Talman [4] introduced a new notion of convex structure for metric spaces based on Takahashi notion but with some aditional properties- so called *strong convex structure (SCS)*. In SCS condition Q is always satisfied so it seems to be "natural."

2. Main result

Theorem 1. Set (X, d, W) be TSC with propetier P and Q. Then for any bounded subset $A \subset X$.

$$\beta(convA) = \beta(A).$$

Proof. Let A be a bounded subset of X. Let us prove that

$$\beta(convA) \le \beta(A).$$

From definition of measure of non-compactness it follows that for any $\varepsilon > 0$ there exists finite subset $B = \{x_1, x_2, \dots, x_n\}$ such that

(2)
$$A \subset \bigcup_{i=1}^{n} L(x_i, \beta(A) + \frac{\varepsilon}{2}).$$

Since convex hull for any finite subset is compact (property Q), there is $\{u_1, u_2, \ldots u_s\} \subset B$ such that

(3)
$$\operatorname{conv} B \subset \bigcup_{i=1}^{s} L(u_i, \frac{\varepsilon}{2})$$

For any $y \in convA$ find $n_0 \in \mathbb{N}$ such that

$$y \in A_{n_0} = W(A_{n_0-1}) = W^{n_0}(A).$$

But it means that

$$y = W(y_1^1, y_2^1, \lambda_1^1)$$

for some $y_1^1, y_2^1 \in A_{n_0-1}, \lambda_1^1 \in I$ and so on for y_1^1, y_2^1 . After not more than n_0 steps we have that y is image of \widetilde{W}^{n_0} for some $y_1^{n_0}, y_2^{n_0}, \ldots, y_{2^{n_0}}^{n_0}$ from A and $\lambda_1^{n_0}, \lambda_2^{n_0}, \ldots, \lambda_{2^{n_0-1}}^{n_0}$ from I. Further, for any $y_k^{n_0}, k = 1, 2, \ldots, 2^{n_0}$ there is $x_{i(k)} \in \{x_1, x_2, \ldots, x_n\}$ with property that

$$d(y_k^{n_0}, x_{i(k)}) < \beta(A) + \frac{\varepsilon}{2}.$$

Now we make image of $x_{i(1)}, x_{i(2)}, \ldots, x_{i(2^{n_0})}$ and $\lambda_1^{n_0}, \lambda_2^{n_0}, \ldots, \lambda_2^{n_{0-1}}$ on the same way (but in oposite direction) as for y. Set it be x. Obviously $x \in conv\{x_1, x_2, \ldots, x_n\} \subset \bigcup_{i=1}^s L(u_i, \frac{\varepsilon}{2})$ (see (3)) so there exists $k_0 \in \{1, 2, \ldots, n\}$ such that.

$$x \in L(U_{k_0}, \frac{\varepsilon}{2})$$

Using properti Q and (2) one can chek that

$$d(x,y) \le \sum_{k=1}^{2n_0} \lambda_i d(y_k^{n_0}, x_{i(k)}) < \beta(A) + \frac{\varepsilon}{2}.$$

Finaly we have that

$$d(y, u_{k_0}) \le d(y, x) + d(x, u_{k_0}) < \beta(A) + \varepsilon.$$

Since the inequality

$$\beta(A) \le \beta(convA)$$

is valid we prove that

$$\beta(convA) = \beta(A).$$

3. Application

Recall that a multifunction $F: X \to Y$ is a function which assigns to each $x \in X$ a nonempty subset F(x) of Y, and denote $F: X \to 2^Y$.

If $F: X \to 2^Y$ and $A \subset X$ then by F(A) we mean the set $\{y \in Y | y \in F(x), x \in A\}$. The graph of F is the set $\{(x, y) | y \in F(x), x \in X\}$. A fixed point of $F: X \to 2^X$ is a point satisfies $x \in F(x)$.

Definition 6. Let (X,d) be metric space, m measure of non-compactness on X and $F: X \to 2^X$. We say that F is condensing if for every bounded subset $A \subset X$, the relation m(A) > 0 implies that m(F(A)) < m(A). In our investigation let m be the Hausdorff measure of non-compactnes β .

Theorem 2. Let (X, d, W) be a complete TCS with continuous structure W and properties (P), (Q), and let $F : X \to 2^X$ be a condensing function with convex values, closed graph and bounded range. Then F has a fixed point.

4

Proof. Similary as in [3] using Theorem 1.

References

- Lj. Gajić, On convexity in convex metric spaces with applications, J. Natural, & Phys. Sci., Vol 3 (1989), 39-48.
- [2] O. Hadzić, Some Properties of Measures of Non-compactness in Paranormed Spaces, Proc. Amer. Math. Soc., 102 (1988), 843-849.
- [3] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep., 22 (1970), 142-149.
- [4] L. A.Tallman, Fixed points for condensing multifunctions in metric space with convex structure, Kodai. Math. Sem. Rep., 29 (1977), 62-70.

Department of Mathematics and Informatics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad Serbia and Montenegro *E-mail:* gajicim.ns.ac.yu