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SKEW EXACTNESS
AND RANGE-KERNEL ORTHOGONALITY

Robin Harte

Abstract. Range-kernel orthogonality is set in a context of skew exactness, in particular

for elementary operators on bimodules.

Suppose (S, T ) : X → Y → Z, bounded linear operators between Banach
spaces (by which we mean T : X → Y and S : Y → Z, so that ST is
defined): then the null space S−1(0) and the range TX are subsets of the
same space Y and can be compared. Thus ST = 0 iff TX ⊆ S−1(0), and
the pair (S, T ) is “exact” if the opposite inclusion holds. When they are
either disjoint (intersection {0}), or add up to the whole space Y , we shall
think of the pair (S, T ) as in some sense “skew exact” ([12] §10.9; [13];[14]).
Among variations on this theme lies a certain “range-kernel orthogonality”,
based on James’ Banach space orthogonality. In this note we look at this,
in particular for “elementary operators”. We begin by noticing how certain
kinds of operator comparison ([12] §§10.1,10.2) transmit corresponding kinds
of skew exactness:

1. Theorem If (S, T ) : X → Y → Z and (S′, T ′) : X ′ → Y ′ → Z ′ satisfy

1.1 WS′ = SV , V T ′ = TU , V ′V = I

then there is implication

1.2 T = RST =⇒ T ′ = R′S′T ′ .
19



20 ROBIN HARTE

If instead

1.3 S′−1(0) ⊆ (SV )−1(0) , V T ′X ′ ⊆ TX , V −1(0) = {0}

then there is implication

1.4 S−1(0)∩T (X) = {0} =⇒ S′−1(0)∩T ′(X ′) = {0} .

If instead

1.5 ‖SV (·)‖ ≤ h‖S′(·)‖ , V T ′X ′ ⊆ TX , ‖ · ‖ ≤ `‖V (·)‖

then there is implication

1.6 ‖T (·)‖ ≤ k‖ST (·)‖ =⇒ ‖T ′(·)‖ ≤ k′‖S′T ′(·)‖ .

Proof. For (1.2) argue

V T ′ = TU = RSTU = RSV T ′ = RWS′T ′ , =⇒ T ′ = (V ′RW )S′T ′ .

For (1.4) argue

S′y′ = 0 =⇒ SV y′ = 0 =⇒ V y′ 6∈ TX =⇒ y′ 6∈ V −1TX ⊇ T ′X ′ .

Finally, for (1.6),

‖T ′x′‖ ≤ `‖V T ′x′‖ = `‖Tx‖ ≤ k`‖STx‖ = k`‖SV T ′x′‖ ≤ k`h‖S′T ′x′‖ •

Dually,
2. Theorem If (S, T ) : X → Y → Z and (S′, T ′) : X ′ → Y ′ → Z ′ satisfy

2.1 WS = S′V , V T = T ′U , V V ′ = I

then there is implication

2.2 S = STR =⇒ S′ = S′T ′R′ .
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If instead

2.3 V (S−1(0)) ⊆ S′−1(0) , V T (X) ⊆ T ′(X ′) , V Y = Y ′

then there is implication

2.4 S−1(0) + T (X) = Y =⇒ S′−1(0) + T ′(X ′) = Y ′ .

If instead

2.5 V (S−1(0)) ⊆ S′−1(0) , V Tx = T ′x′ with ‖x′‖ ≤ h‖x‖ , V open

then there is implication

2.6 Sy = STx with ‖x‖ ≤ k‖y‖ =⇒ S′y′ = S′T ′x′ with ‖x′‖ ≤ k′‖y′‖ .

Proof. For (2.2) argue exactly as for (1.2), reversing products. For (2.4)
argue, with Sw = 0,

y′ ∈ Y ′ =⇒ y′ = V y = V (w + Tx) = V w + T ′Ux′ ∈ S′−1(0) + T ′(X ′) .

Finally, for (2.6),

y′ ∈ Y ′ =⇒
S′y′ = S′V y = S′V (w + Tx) = S′T ′x′ with ‖y‖ ≤ `‖y′‖ ,

Sw = 0 and ‖x‖ ≤ k‖y‖ •

Our “weak orthogonality” comes from James’ Banach space orthogonality
for subspaces:

3. Definition If (S, T ) : X → Y → Z and k > 0 we declare
3.1
S∠kT ⇐⇒ S−1(0)∠kT (X) ⇐⇒ (

y ∈ S−1(0) =⇒ ‖y‖ ≤ kdist(y, T (X))
)

,

and call S weakly orthogonal to T , written S∠T , equivalently S−1(0)∠T (X),
provided

3.2 ∃k > 0, S∠kT .
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If (3.1) holds with k = 1 we shall say that S is orthogonal to T , written
S ⊥ T . If (3.1) with k = 1, or (3.2), holds with S = T we shall call T
orthogonal, or weakly orthogonal .

Weak orthogonality lies ([14] (2.7)) between the conditions (1.4) and (1.6),
and is transmitted by a hybrid of the conditions (1.3) and (1.5):

4. Theorem If (S, T ) : X → Y → Z and (S′, T ′) : X ′ → Y ′ → Z ′ satisfy

4.1 S′−1(0) ⊆ (SV )−1(0) , V T ′X ′ ⊆ TX , ‖ · ‖ ≤ `‖V (·)‖

then there is implication

4.2 S∠T =⇒ S′∠T ′ .

Proof. If y ∈ S−1(0) =⇒ ‖y‖ ≤ kdist(y, TX) then S′y′ = 0 =⇒ SV y′ = 0
and hence if S′y′ = 0 then

‖y′‖ ≤ `‖V y′‖ ≤ `kdist(V y′, TX) ≤ `kdist(V y′, V T ′X ′)

≤ `k‖V ‖dist(y′, T ′X ′) •

Under the conditions (1.1) we can reverse the implication (4.2) if there
are “approximate inverse intertwinings” in the sense of Shulman/Turowska
[22]:

5. Theorem If (S, T ) : X → Y → Z and (S′, T ′) : X ′ → Y ′ → Z ′ satisfy

5.1
WS′ = SV , V T ′ = TU , S−1(0) ⊆ V (S′−1(0)),

V ′
αV → I , V ′

αT − T ′U ′
α → 0 ,

with convergence in the strong operator topology, then there is inclusion

5.2 V −1(TX) ⊆ cl T ′(X ′)

and implication

5.3 S′−1(0)∩cl T ′X ′ = {0} =⇒ S−1(0)∩TX = {0} .

If in addition

5.4 sup
α
‖V ′

α‖ < ∞ and cl UX = X ′
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then

5.5 S′∠T ′ =⇒ S∠T .

Proof. This is the argument of Shulman/Turowska ([22] Theorem 6.1,
Corollary 6.2):

V y = Tx =⇒ y′ = lim
α

V ′
αTx = lim

α
T ′U ′

αx ∈ cl T ′X ′ ,

giving (5.2), while for (5.3)

V (S′−1(0))∩TX = V
(
S′−1(0)∩V −1(TX)

) ⊆ V
(
S′−1(0)∩cl TX

)
= V ({0}) .

Finally for (5.5) y′ ∈ S′−1(0) gives for arbitrary x′ ∈ X ′

‖V y′‖ ≤ k ‖V ‖ ‖y′ + T ′x′‖ = k‖V ‖ lim
α
‖V ′

α(V y′ + V T ′x′)‖
≤ k‖V ‖ sup

α
‖V ′

α‖ ‖V y′ + TUx′‖

and hence

‖V y′‖ ≤ h dist(V y′, TUX ′) = h dist(V y′, TX) •

Specialising to X = Y = Z and X ′ = Y ′ = Z ′, if S, T, S′ and T ′ satisfy

5.6
V S′ = SV , V T ′ = TV , V ′

αS − S′V ′
α → 0 , V ′

αT − T ′V ′
α → 0 ,

V ′
αV → I , V V ′

α → I

then

5.7
‖T ′(·)‖ ≤ k‖S′(·)‖ =⇒

S−1V (Y ′) ⊆ T−1V (Y ′) and ‖V −1T (·)‖ ≤ k‖V −1S(·)‖ .

This is Shulman/Turowska ([22] Lemma 6.4): for the first implication

Sy = V y′ =⇒ y′ = lim
α

V ′
αSy = lim

α
S′V ′

αy

giving by completeness and cauchyness

∃x′ = lim
α

T ′V ′
αy = lim

α
V ′

αTy with ‖x′‖ ≤ k‖y′‖ and V x′ = Ty ,
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while
‖V −1Ty‖ = ‖x′‖ ≤ k‖y′‖ = k‖V −1Sy‖ .

The archetypical example of orthogonality S ⊥ T occurs when Z = X
and Y are Hilbert spaces and S = T ∗ is the adjoint of T :

6. Definition If ∗ : B → BL(Y, X) is an involution defined on a linear
subspace B ⊆ BL(X, Y ) we shall describe T ∈ B as *-orthogonal provided

6.1 T ∗ ⊥ T ,

weakly *-orthogonal provided

6.2 T ∗∠T ,

and ultra weakly *-orthogonal provided

6.3 (T ∗T )−1(0) ⊆ T−1(0) .

If in particular Y = X and B∗ = B we shall call T ∈ B hyponormal provided

6.4 ‖T ∗(·)‖ ≤ ‖T (·)‖ ,

weakly hyponormal provided there is k > 0 for which

6.5 ‖T ∗(·)‖ ≤ k ‖T (·)‖ ,

and Fuglede provided there is inclusion

6.6 T−1(0) ⊆ T ∗−1(0) .

Finally we call T ∈ B normal provided

6.7 TT ∗ = T ∗T .

Obviously each of the first three conditions implies the next, and also
each of the second three. If for example X and Y are Hilbert spaces and ∗
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is the usual adjoint, defined on the whole space B = BL(X, Y ), then every
operator T ∈ B satisfies (6.1): we recall

6.8 ‖Tx‖2 ≤ ‖T ∗Tx‖ ‖x‖ (x ∈ X)

and

6.9 x ∈ X , T ∗y = 0 =⇒ ‖Tx + y‖2 = ‖Tx‖2 + ‖y‖2 .

On Hilbert space also weakly hyponormal operators satisfy a strengthened
form of the condition (6.5):

6.10 T ∗ = UT .

We cannot however strengthen (6.1) to the analogue of the left hand side of
(1.6): for example ([12] (10.5.2.9)) take X = Y = `2 and set (Tx)n = n−1xn.

7. Theorem If ∗ : B → B ⊆ B(X) and if T ∗ ∈ B is ultra weakly
*-orthogonal then

7.1 T normal =⇒ T Fuglede .

If T : X → Y between Hilbert spaces and S : Y → Z into a Banach space
then

7.2 S ⊥ T ⇐⇒ S−1(0) ⊆ T ∗−1(0) .

Also

7.3 T = UT ∗T ⇐⇒ T (X) = cl T (X) .

Proof. For (7.1) we argue

T−1(0) ⊆ (T ∗T )−1(0) = (TT ∗)−1(0) ⊆ T ∗−1(0) .

For (7.2) recall
T (X)⊥ = T ∗−1(0) .

If T : X → Y has closed range then the left hand side of (7.3) holds with
U∗ the “Moore-Penrose inverse” of T . Conversely if Q∗ = Q = Q2 is the
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orthogonal projection on Y for which Q(Y ) = cl(TX) and T = UT ∗T then
Q = UT ∗Q = UT ∗ so that

TX ⊇ TU∗Y = QY = cl TX •

From (7.2) it follows, if T ∈ B(X) for Hilbert space X, that

7.4 T Fuglede ⇐⇒ T orthogonal .

Shulman/Turowska [22] describes (6.3) as the “non commutative Fuglede
theorem” for Hilbert space operators. When Y = X is a Banach space there
is an involution derived from the concept of numerical range [4],[6]:

8. Definition If A is a Banach algebra define the numerical range of
a ∈ An by means of states ϕ ∈ A†:

8.1 VA(a) = {ϕ(a) : ‖ϕ‖ = 1 = ϕ(1)} ⊆ Cn .

The Hermitian elements of A are those with real numerical range:

8.2 Re(A) = {a ∈ A : VA(a) ⊆ R} = {a ∈ A : t ∈ R =⇒ ‖eita‖ = 1} .

Now write

8.3 Reim(A) = Re(A) + i Re(A) ,

and define

8.4 (h + ik)∗ = h− ik whenever (h, k) ∈ Re(A)2 .

The equivalence of the two conditions in (8.2) is ([4] Lemma 5.2) not trivial.
Also ([4] Lemma 5.7) if a = h + ik ∈ A with hermitian h and k then h
and k are determined uniquely, so that (8.4) is a good definition. Since
VA(αa + βb) ⊆ αVA(a) + βVA(b) it is clear that real linear combinations of
hermitian elements are hermitian.

With the involution (8.4) normality (6.7) of a = h+ ik occurs when h and
k commute. A theorem of Palmer ([18] Lemma 2.7; [5] Proposition 2) says,
for normal T = H + iK ∈ B(X), that if all products HpKq are hermitian
then (6.4) holds with equality. An example of Anderson and Foias ([2]

Example 5.9) warns us that this can easily fail, even in 2 dimensions.
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Sinclair’s Theorem ([23] Proposition 1; [11] Corollary 7) says that bound-
ary points of the numerical range breed orthogonality: if T : X → X for a
Banach space X then

8.5 0 6∈ int VB(X)(T ) =⇒ T orthogonal .

Fong’s result ([11] Lemma 3, Theorem A) is that on Banach spaces normal
operators are orthogonal and Fuglede:

8.6 T normal =⇒ T ∗−1(0) = T−1(0) ⊥ T (X) .

Thus on two counts hermitian elements are orthogonal.

When a ∈ An and b ∈ Bn are tuples of Banach algebra elements and

8.7 T = La ◦Rb = Rb ◦ La : x 7→ ∑
jajxbj

is an “elementary operator”, defined on a Banach (A,B)-bimodule M , we
look for such orthogonality. Notice that if a ∈ An and b ∈ Bn then

8.8 VB(M)(La) ⊆ VA(a) , VB(M)(Rb) ⊆ VB(b) ,

with equality if M = A or M = B:

8.9 Φ ∈ B(M)† → ϕ : a 7→ Φ(La) ; ϕ ∈ A† → Φ : T 7→ ϕ(T1) .

Hence if T = Lc−Rd : x 7→ cx−xd with hermitian, or normal, c ∈ A and
d ∈ B then T is again hermitian, or normal. It follows that (8.6) applies:

8.10
c, d normal =⇒ Lc −Rd normal =⇒ Lc −Rd orthogonal and Fuglede ;

this incorporates an extension of what is known as the Putnam-Fuglede
theorem. One consequence is that if a = h + ik ∈ A is normal then the
commutant of a is the same as the commutant of the pair (h, k); it then
follows that the sum of two commuting normal elements is again normal.
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Unfortunately (8.10) is not [2] clear for products: it does not generally
follow that hermitian or normal tuples a, b lead to hermitian or normal La ◦
Rb. Shulman/Turowska ([22] Proposition 9.8) has an example of commuting
normal a ∈ An, b ∈ An for which La ◦Rb is not a Fuglede operator.

One way to achieve normality of La ◦Rb is for M to be a Hilbert space:
9. Theorem If the (A,B)-bimodule M is a Hilbert space and a ∈ An

and b ∈ Bn are commuting tuples of normal elements then

9.1 La∗ ◦Rb∗ ⊥ La ◦Rb .

Proof. If a ∈ An and b ∈ Bn are tuples of complex combinations of
hermitian elements then, acting on the Hilbert space M with the standard
involution ∗,

9.2 (La ◦Rb)∗ = La∗ ◦Rb∗ .

In particular if the aj and bi are normal then so are the Laj and Rbi , and
hence also T = La ◦Rb: now (6.1) applies •

Theorem 9 applies in particular [28] if A = B = B(X) for a Hilbert
space X and M = C2(X) is the Schatten class of Hilbert-Schmidt operators.
Theorem 4 suggests that if La ◦ Rb is orthogonal on A = B = B(X) then
it is also orthogonal on the ideal M = C2(X): more pertinent is Theorem 5
which suggests that if La ◦Rb is orthogonal on C2(X) then it is orthogonal
on B(X).

The context of Theorem 9 can be marginally extended: Turnsek ([27]
Theorem 2.8) has the result that if M is one of the Schatten ideals Cp(X)
in the algebra A = B(X) for a Banach space X then, for commuting normal
pairs a ∈ A2 and b ∈ A2 and a Hilbert space X, there is inclusion

9.3 clM (M∩(La ◦Rb)(A)) ⊆ clM (La ◦Rb)(M) .

Without normality (9.3) may fail ([27] Example 2.9); with A = B(X) for
Hilbert space X and M = C1(X) the trace class take

9.4 T = I − LuRv with u, v the forward and backward shifts :

claim

9.5 1− uv = T (1) ∈ T (A)∩M and 1− uv 6∈ cl1 T (M) .
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Indeed there is duality between A and M implemented by the mapping

9.6 a 7→ a∧ ∈ M† : Σjϕj ¯ ξj 7→ Σjϕj(aξj) ,

under which the Banach space dual of the mapping T is given by

9.7 (I − LuRv)† = I − LvRu : A → A .

Evidently

9.8 {λ : λ ∈ C} ⊆ (I − LvRu)−1(0) ⊆ A

while

9.9 λ 6= 0 =⇒ λ 6∈ clM (I − LuRv)(M) .

When the involution is derived from numerical range there is [17] an
alternative concept of “hyponormal”:

10. Definition Call a ∈ A positive if it has positive real numerical range

10.1 VA(a) ⊆ [0,∞) ,

and hyponormal if it has a positive self commutator:

10.2 a ∈ Re(A) + i Re(A) with VA(a∗a− aa∗) ⊆ [0,∞) .

In this sense Mattila ([17] Theorem 4.3) and Shaw ([20] §3) have partially
extended (8.10):

10.3 c, d∗ hyponormal =⇒ Lc −Rd hyponormal .

Part of the argument is a partial extension of (8.8): if A = B(X) and
B = B(Y ) then ([20] Theorem 1.1)
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10.4 X† ¯ Y ⊆ M =⇒ VB(M)(Lc −Rd) = VA(c)− VB(d) .

The non trivial part of the argument passes through the “spatial” numer-
ical range of Lc − Rd: if ‖f‖ = ‖x‖ = f(x) = 1 and ‖g‖ = ‖y‖ = g(y) = 1
define Φ ∈ B(M)† by setting

Φ(T ) = f(T (g ¯ x))y = (f ¯ y)(T (g ¯ x))) ,

so that Φ(Lc −Rd) = f(cx)− g(yd). For (10.3) we now observe

10.5
(Lc −Rd)∗(Lc −Rd)− (Lc −Rd)(Lc −Rd)∗ = La −Rb

with a = c∗c− cc∗ , b = d∗d− dd∗ .

Shulman has the result that if a ∈ An and b ∈ An are commuting tuples
of normal C∗-algebra elements and T = La ◦Rb then there is implication

10.6 T−1(0)∩T (X) = {0} =⇒ T Fuglede :

the involution here is given by taking (9.2) as the definition of its left hand
side, hoping that this is good. Keckic [15] and Turnsek [25] have, for com-
muting pairs of normal operators a, b ∈ A2,

10.7 L−1
a (0)∩R−1

b (0) = {0} ⇐⇒ La ◦Rb orthogonal .

Part of the argument is the observation that if c and d are commuting nor-
mals with invertible d then, with a = (c, d) and b = (d,−c),

La ◦Rb = LcRd − LdRc = Ld(Ld−1c −Rd−1c)Rd .

More generally if a ∈ An and c ∈ An are “similar”, and also b ∈ Bn and
d ∈ Bn, then so are La ◦Rb and Lc ◦Rd:

10.8
ucj = aju and vdj = bjv (j = 1, 2, . . . , n) =⇒

Lu(Lc ◦Rd)Rv = Rv(La ◦Rb)Lu .
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Thus if u ∈ A−1 and v ∈ B−1 are invertible so that also Lu and Rv are
invertible in B(M), then (1.1) is satisfied when S = T = La ◦ Rb and
S′ = T ′ = Lc ◦Rd. Another reduction is that

c =
[

a1 0
0 b2

]
, d =

[−a2 0
0 b1

]
, w =

[
0 x
0 0

]

gives

10.9
(LcRd −RcLd)(w) =

[
0 (La ◦Rb)(x)
0 0

]
with

L−1
c (0)∩R−1

d (0) =
[

L−1
a (0)

R−1
b (0)

]
.

It is an interesting problem how or whether numerical range hyponormal-
ity (11.2) relates to conditions (6.4) and (6.6). It would be tempting to try
and extend the Fong argument for the second part of (8.6) from normal to
hyponormal T , which would then offer an extension of (10.7) to commuting
hyponormal pairs a, b∗ in A2.
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