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SKEW EXACTNESS
AND RANGE-KERNEL ORTHOGONALITY

Robin Harte

Abstract. Range-kernel orthogonality is set in a context of skew exactness, in particular

for elementary operators on bimodules.

Suppose (S,T) : X — Y — Z, bounded linear operators between Banach
spaces (by which we mean 7' : X — Y and S : Y — Z, so that ST is
defined): then the null space S71(0) and the range T'X are subsets of the
same space Y and can be compared. Thus ST = 0 iff TX C S~1(0), and
the pair (S5,T) is “exact” if the opposite inclusion holds. When they are
either disjoint (intersection {0}), or add up to the whole space Y, we shall
think of the pair (S,7T) as in some sense “skew exact” ([12] §10.9; [13];[14]).
Among variations on this theme lies a certain “range-kernel orthogonality”,
based on James’ Banach space orthogonality. In this note we look at this,
in particular for “elementary operators”. We begin by noticing how certain
kinds of operator comparison ([12] §§10.1,10.2) transmit corresponding kinds
of skew exactness:

1. Theorem If (S,T): X - Y — Z and (5", T") : X' - Y' — Z’ satisfy
1.1 WS =SV, vl'=TU ,V'V=I
then there is implication

1.2 T=RST—=—T =RS'T .
19
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If instead
1.3 S'7H0) C (SV)H0), VT'X' CTX , V-1(0) = {0}

then there is implication

1.4 STHO)NT(X) = {0} = &' (0)nT'(X) = {0} .
If instead
L5 ISVOI<AIS Ol VI'X'CTX |- < V)l

then there is implication
1.6 1T < KISTC)l = 1Tl < K'IS'T'O) -

Proof. For (1.2) argue

VT'=TU = RSTU = RSVT' = RWS'T' , = T' = (V'RW)S'T" .

For (1.4) argue

S/y/ :0:>SVy/ :O:}Vy/ gTX:>y/ Q’V_ITX QT/X/ .

Finally, for (1.6),

T2 || < VT2 || = £|Tx|| < k)| STx| = k| SVT'|| < keh||S'T'z'||

Dually,
2. Theorem If (S,T): X - Y — Z and (5", T") : X' = Y' — Z' satisfy

2.1 WS=SV,VI=TU,VV =1

then there is implication

2.2 S=STR— S'"=S'T'R'.
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If instead
2.3 V(STHo) c 80y, VI(X) CT/(X), VY =Y

then there is implication

2.4 STHO+T(X) =Y = S (0) +T'(X")=Y".
If instead
25  V(S7Y0)) € S N0), VTz =T’ with ||| < hljz|| , V open

then there is implication

2.6 Sy= STz with ||z|| < klly|| = Sy = S"T"z" with ||z'|] < K'||y|| .

Proof. For (2.2) argue exactly as for (1.2), reversing products. For (2.4)
argue, with Sw = 0,

yeY =y =Vy=V(w+Tz)=Vw+TUz' €8 (0)+T'(X') .
Finally, for (2.6),
y ey —
Sy =S8"Vy=SV(w+Tx)=S5"T2" with ||y| < ||y ,
Sw=0 and |lo] < ly| o

Our “weak orthogonality” comes from James’ Banach space orthogonality
for subspaces:

3. Definition If (S,T): X — Y — Z and k > 0 we declare
3.1
ST = STH0) 4 T(X) < (y € ST'(0) = |ly|| < kdist(y, T(X))) ,

and call S weakly orthogonal to T, written S/T, equivalently S~1(0)/T(X),
provided

3.2 k>0, SLT .
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If (3.1) holds with k = 1 we shall say that S is orthogonal to T, written
S L T. If (3.1) with k = 1, or (3.2), holds with S = T we shall call T
orthogonal, or weakly orthogonal .

Weak orthogonality lies ([14] (2.7)) between the conditions (1.4) and (1.6),
and is transmitted by a hybrid of the conditions (1.3) and (1.5):

4. Theorem If (S,T): X - Y — Z and (5", 1") : X' = Y' — Z' satisfy

4.1 S 7H0) C (SV)TH0), VI'X' CTX , |- < V()

then there is implication

4.2 S/T = S'/T" .

Proof. If y € S7Y0) = ||y|| < kdist(y, TX) then Sy’ =0 = SVy' =0

and hence if S’y = 0 then
/| < eIV | < hdist(Vy, TX) < Ckdist(Vy', VI'X")
< LK|V||dist(y’, T'X’) @

Under the conditions (1.1) we can reverse the implication (4.2) if there
are “approximate inverse intertwinings” in the sense of Shulman/Turowska
[22]:

5. Theorem If (S,T): X - Y — Z and (5", T") : X' = Y' — Z' satisfy

WS =S8V, VT =TU , S71(0) C V(5" (0)),
VIV I, V. T-TU, -0,

5.1

with convergence in the strong operator topology, then there is inclusion
5.2 VHTX) Cc T'(X')

and implication

5.3 S"H0)rel T'X" = {0} = S~H0)TX = {0} .

If in addition

5.4 sup||V.|| < oo and cl UX = X'
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then
5.5 S' /T — S/T .

Proof. This is the argument of Shulman/Turowska ([22] Theorem 6.1,
Corollary 6.2):

Vy=Tr =y = licrynV;Tx = li;nT'Uc’!x celT'X",
giving (5.2), while for (5.3)
V(S"H0)ATX = V(S (0)aV Y TX)) C V(S H0)nel TX) = V({0}) .
Finally for (5.5) 4/ € '~ "(0) gives for arbitrary 2/ € X’
VYl <k NVl + T2 = kl|[V[ i [VE(Vy' + VT2')]|
< k[[V]| sup IVall VY + TU"||
and hence
VY| < hdist(Vy', TUX") = h dist(Vy', TX) e
Specialising to X =Y =Z and X' =Y’ =27/ if S,T,5" and T’ satisfy

VS =SV, VT =1V , VS-S5V, -0, V.T-T'V. -0,

5.6 / /
VvV —-1,VV, —1I
then
O <Ek|S')|| =
5o 17" < ENSC)l

STV STV and [[VTITO)| < KIVTESO)] -
This is Shulman/Turowska ([22] Lemma 6.4): for the first implication
Sy=Vy =y =lmV,Sy =1limS'V]y

giving by completeness and cauchyness

dz' = limT'V]y = 1lim V. Ty with ||z’|| < k||y’|| and Va2’ =Ty ,
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while
[V=ATyll = ll2'|| < klly'll = IV 1Syl

The archetypical example of orthogonality S L T occurs when Z = X
and Y are Hilbert spaces and S = T is the adjoint of T

6. Definition If x : B — BL(Y, X) is an involution defined on a linear
subspace B C BL(X,Y') we shall describe T € B as *-orthogonal provided

6.1 ™ 1T,
weakly *-orthogonal provided

6.2 /T,

and ultra weakly *-orthogonal provided

6.3 (T*T)~*(0) C T7(0) .

If in particular Y = X and B* = B we shall callT € B hyponormal provided

6.4 1T < ITOIF

weakly hyponormal provided there is k > 0 for which

6.5 1T <k NTOI

and Fuglede provided there is inclusion

6.6 T-10) c T 0) .
Finally we call T € B normal provided

6.7 Tr* =T"T .

Obviously each of the first three conditions implies the next, and also
each of the second three. If for example X and Y are Hilbert spaces and *
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is the usual adjoint, defined on the whole space B = BL(X,Y), then every
operator T' € B satisfies (6.1): we recall

6.8 |Tz|* < |T*Tz| ||z| (z € X)
and
6.9 zeX, Ty=0= |Tz+y|*=|Tz|*+|y|?.

On Hilbert space also weakly hyponormal operators satisfy a strengthened
form of the condition (6.5):

6.10 T =UT .

We cannot however strengthen (6.1) to the analogue of the left hand side of
(1.6): for example ([12] (10.5.2.9)) take X =Y = /5 and set (T'x),, = n"lz,.

7. Theorem If x : B — B C B(X) and if T* € B is ultra weakly
*_orthogonal then
7.1 T normal — T Fuglede .

If T : X — Y between Hilbert spaces and S : Y — Z into a Banach space
then

7.2 S 1T+ S 0)cT0).
Also
7.3 T=UTT < T(X)=c T(X) .

Proof. For (7.1) we argue
T1(0) € (T°T)1(0) = (TT*) 1 (0) € T1(0) .

For (7.2) recall
(X)) =T7*70) .

If T: X — Y has closed range then the left hand side of (7.3) holds with
U* the “Moore-Penrose inverse” of T. Conversely if Q* = Q = Q? is the
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orthogonal projection on Y for which Q(Y) = cl(T'X) and T' = UT*T then
Q=UT*Q =UT* so that

TXDTU*Y =QY =cl TX o
From (7.2) it follows, if T' € B(X) for Hilbert space X, that
7.4 T Fuglede <= T orthogonal .
Shulman/Turowska [22] describes (6.3) as the “non commutative Fuglede

theorem” for Hilbert space operators. When Y = X is a Banach space there
is an involution derived from the concept of numerical range [4],[6]:

8. Definition If A is a Banach algebra define the numerical range of
a € A™ by means of states ¢ € Al:

8.1 Va(a) ={p(a) : [lol =1 = (1)} S C".
The Hermitian elements of A are those with real numerical range:

82 Re(d)={acA:Via)CR}={acA:tcR= || =1}.

Now write

8.3 Reim(A) = Re(A) +¢ Re(4) ,

and define

8.4 (h +ik)* = h — ik whenever (h,k) € Re(A)? .

The equivalence of the two conditions in (8.2) is ([4] Lemma 5.2) not trivial.
Also ([4] Lemma 5.7) if a = h 4 ik € A with hermitian h and k then h
and k are determined uniquely, so that (8.4) is a good definition. Since
Valaa + b) C aVa(a) + BV4(D) it is clear that real linear combinations of
hermitian elements are hermitian.

With the involution (8.4) normality (6.7) of @ = h+ik occurs when h and
k commute. A theorem of Palmer ([18] Lemma 2.7; [5] Proposition 2) says,
for normal 7' = H 4+ iK € B(X), that if all products H?K? are hermitian
then (6.4) holds with equality. An example of Anderson and Foias ([2]

Example 5.9) warns us that this can easily fail, even in 2 dimensions.
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Sinclair’s Theorem ([23] Proposition 1; [11] Corollary 7) says that bound-
ary points of the numerical range breed orthogonality: if T : X — X for a
Banach space X then
8.5 0 & int Vg(x)(T) = T orthogonal .
Fong’s result ([11] Lemma 3, Theorem A) is that on Banach spaces normal
operators are orthogonal and Fuglede:

8.6 T normal = T*7'(0)=T7*(0) L T(X) .

Thus on two counts hermitian elements are orthogonal.

When a € A™ and b € B™ are tuples of Banach algebra elements and
8.7 T:LaoRb:RboLa:xHZjaijj
is an “elementary operator”, defined on a Banach (A, B)-bimodule M, we
look for such orthogonality. Notice that if a € A™ and b € B™ then
8.8 Ve (La) € Vala) , Ve (Ry) € V(D) ,

with equality if M = A or M = B:

8.9 PeBM) - p:a—®(L,); p€ Al =& : T o(T1) .

Henceif T'= L.— Ry : x — cx — xd with hermitian, or normal, ¢ € A and
d € B then T is again hermitian, or normal. It follows that (8.6) applies:

8.10
¢,d normal — L.— R4 normal —> L. — Ry orthogonal and Fuglede ;

this incorporates an extension of what is known as the Putnam-Fuglede
theorem. One consequence is that if a = h + ik € A is normal then the
commutant of a is the same as the commutant of the pair (h,k); it then
follows that the sum of two commuting normal elements is again normal.
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Unfortunately (8.10) is not [2] clear for products: it does not generally
follow that hermitian or normal tuples a, b lead to hermitian or normal L, o
Ryp. Shulman/Turowska ([22] Proposition 9.8) has an example of commuting
normal a € A", b € A" for which L, o R} is not a Fuglede operator.

One way to achieve normality of L, o Ry is for M to be a Hilbert space:

9. Theorem If the (A, B)-bimodule M is a Hilbert space and a € A"
and b € B™ are commuting tuples of normal elements then

9.1 La* ORb* 1 La ORb .

Proof. If a € A™ and b € B™ are tuples of complex combinations of
hermitian elements then, acting on the Hilbert space M with the standard
involution s,

9.2 (La o Rb)* = La* o Rb* .

In particular if the a; and b; are normal then so are the L,; and R;,, and
hence also T' = L, o Ry: now (6.1) applies o

Theorem 9 applies in particular [28] if A = B = B(X) for a Hilbert
space X and M = C3(X) is the Schatten class of Hilbert-Schmidt operators.
Theorem 4 suggests that if L, o Ry, is orthogonal on A = B = B(X) then
it is also orthogonal on the ideal M = C3(X): more pertinent is Theorem 5
which suggests that if L, o Ry, is orthogonal on Cy(X) then it is orthogonal
on B(X).

The context of Theorem 9 can be marginally extended: Turnsek ([27]
Theorem 2.8) has the result that if M is one of the Schatten ideals C,(X)
in the algebra A = B(X) for a Banach space X then, for commuting normal
pairs a € A% and b € A? and a Hilbert space X, there is inclusion

9.3 ClM(Mﬂ(La o Rb)(A)) - CIM(La 9] Rb)(M) .

Without normality (9.3) may fail ([27] Example 2.9); with A = B(X) for
Hilbert space X and M = C;(X) the trace class take

9.4 T=1- L,R, with u,v the forward and backward shifts :

claim

9.5 l—w=T01)eT(A)nM and 1 —wv & cly T(M) .
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Indeed there is duality between A and M implemented by the mapping

9.6 arsa® e M S0 0& — Xip,at;) ,

under which the Banach space dual of the mapping T is given by

9.7 (I —L,R,) =T1—-L,R,:A— A.
Evidently

9.8 {A:AeC}C(I-L,R,)*0)CA
while

9.9 AN£0= \¢&cly(I —L,R,)(M) .

When the involution is derived from numerical range there is [17] an
alternative concept of “hyponormal”:

10. Definition Call a € A positive if it has positive real numerical range

10.1 Va(a) C[0,00) ,

and hyponormal if it has a positive self commutator:

10.2 a € Re(A) + i Re(A) with Va(a*a — aa™) C [0,00) .

In this sense Mattila ([17] Theorem 4.3) and Shaw ([20] §3) have partially
extended (8.10):
10.3 ¢, d* hyponormal = L. — R4 hyponormal .

Part of the argument is a partial extension of (8.8): if A = B(X) and
B = B(Y) then ([20] Theorem 1.1)
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10.4 XtoycM= V) (Le — Ra) = Val(e) — Vi(d) .

The non trivial part of the argument passes through the “spatial” numer-
ical range of L. — Rq: if || f[| = [z| = f(x) = 1 and [|g|| = [lyll = g(y) =1
define ® € B(M)T by setting

O(T) = f(T(gox))y = (foy)(T(gor),
so that ®(L. — R4) = f(cx) — g(yd). For (10.3) we now observe

(Le = Rq)*(Le — Rq) — (Le — Rq)(Le — Rg)* = Ly — Ry

10.
0-5 witha =c*c—cc* , b=d"d —dd* .

Shulman has the result that if a € A™ and b € A™ are commuting tuples
of normal C*-algebra elements and T'= L, o R, then there is implication

10.6 T 0)nT(X) = {0} = T Fuglede :

the involution here is given by taking (9.2) as the definition of its left hand
side, hoping that this is good. Keckic [15] and Turnsek [25] have, for com-
muting pairs of normal operators a,b € A2,

10.7 L1 (0)nR; 1(0) = {0} <= L, o Ry, orthogonal .

a

Part of the argument is the observation that if ¢ and d are commuting nor-
mals with invertible d then, with a = (¢,d) and b = (d, —c),

La o Rb = LCRd - LdRC = Ld(Ld—lc - Rd—lc)Rd .

More generally if a € A™ and ¢ € A™ are “similar”, and also b € B™ and
d € B™, then so are L, o Ry and L. o Ry:

uc; = aju and vd; = bjv (j =1,2,... ,n) =

10.8
Ly(Leo Ry)Ry = Ry(Lg o Ry) Ly, .
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Thus if w € A" and v € B~! are invertible so that also L, and R, are
invertible in B(M), then (1.1) is satisfied when S = T = L, o R, and
S’ =T' = L. o R,. Another reduction is that

_|lan O _—CLQO _0$
S I R I R [

gives

0 (Lgo Ry)(x)

(LeRg — RcLg)(w) = [0 0

] with
10.9

L7 (0)n Ry (0) = [g;igg;} |

It is an interesting problem how or whether numerical range hyponormal-
ity (11.2) relates to conditions (6.4) and (6.6). It would be tempting to try
and extend the Fong argument for the second part of (8.6) from normal to
hyponormal T, which would then offer an extension of (10.7) to commuting
hyponormal pairs a,b* in A2.
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