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EQUIPARTITION OF SPHERE MEASURES BY
HYPERPLANES

PAVLE V.M. BLAGOJEVIĆ1, ALEKSANDRA S. DIMITRIJEVIĆ BLAGOJEVIĆ1

AND MARKO S. MILOŠEVIĆ23

Abstract. Measure partition problems are classical problems of geo-
metric combinatorics ([1], [2], [3], [4]) whose solutions often use tools
from the equivariant algebraic topology. The potential of the computa-
tional obstruction theory approach is partially demonstrated here. In
this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition
of a measure on S2 by three planes. The advantage of our approach is
that it can be applied on other more complicated questions of the similar
nature.

1. Statement of the main result

A measure µ is a proper measure if
(A) µ([a, b]) = 0 for any circular arc [a, b] ⊂ S2, and
(B) µ(U) > 0 for each nonempty open set U ⊂ S2.

Three planes H1, H2 and H3 in R3 through the origin are in a fan position
if they intersect along the common line. Planes in the fan position cut the
sphere S2 in six parts σ1, .., σ6 which can be naturally oriented up to a cyclic
permutation.
We are interested in the following measure partition problem.

Problem 1. Find all six-tuples (α1, .., α6) ∈ N6 that for every proper Borel
probability measure µ on the sphere S2 there exist three planes in the fan
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position, with angular sectors having the prescribed ration, i.e.

(∀i∈ {1, .., 6}) µ(σi) = αi
α1+..α6

.

The six-tuples which satisfy these conditions are called solutions of the prob-
lem. The particular instance is an equipartition case solved by V. V. Makeev
in [9].

Theorem 2. Let µ be a continuous proper Borel probability measure on
the sphere S2. Then there are three planes in the fan position such that
associated angular sectors have the same amount of measure µ.

In order to reprove the theorem we first formulate a related equivariant
problem which is significantly different from the one V. V. Makeev used.
That allows us to treat other similar cases in the same manner.

Figure 1. Hyperplanes in the fan position and the intersec-
tion with S2.

2. The equivariant problem

2.1. From the partition problem to the equivariant problem. We use
the configuration space / test map scheme to reduce the partition problem
to an equivariant one. The basic idea comes from papers of Imre Bárány
and Jǐri Matoušek [1], [2].
A k-fan (l; H1,H2, . . . , Hk) in R3 is formed of an oriented line l through
the origin and k closed half planes H1,H2, . . . , Hk which intersect along the
common boundary l = ∂H1 = . . . = ∂Hk. The intersection of the k-fan with
the sphere S2 is equally called. Thus the collection (x; l1, . . . , lk) of a point
x ∈ S2 and k great semicircles l1, . . . , lk emanating from x is also a k-fan.
Sometimes instead of great semicircles we use:

(A) open angular sectors σi between li and li+1, i = 1, . . . , k; or
(B) tangent vectors ti on li, i = 1, . . . , k.

We prefer the tangent vector notation (x; t1, . . . , tk). The space of all k-fans
in R3 is denoted by Fk.
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Now we are ready to define elements of the target extension scheme.
The configuration space. For a proper Borel probability measure µ on
S2, the n-configuration space is defined by

Xµ,n = {(x; t1, . . . , tn) ∈ Fn | (∀i = 1, . . . , n) µ(σi) = 1
n}.

Since every n-fan (x; t1, . . . , tn) of the configuration space Xµ,n is completely
determined by the pair (x, t1), there exists a homeomorphism Xµ,n

∼= V2(R3).
The test map. Fix a symmetric six-tuple (α1, α2, α3, α1, α2, α3) ∈ N6 such
that α1 + α2 + α3 = n

2 . For the standard basis e1, e2, . . . , en in Rn the
associated coordinate functions are denoted by x1, x2, . . . , xn. Denote the
hyperplane Wn = {x ∈ Rn | x1 +x2 + . . .+xn = 0}. The test map is defined
by

Φ : Xµ,n → Wn Φ((x; t1, . . . , tn)) = (θ1 − 2π
n , . . . , θn − 2π

n ),

where θi is an angle between tangent vectors ti and ti+1 in the tangent plane.
Here we assume that tn+1 = t1.
The action. The dihedral group D2n = 〈j, ε | εn = j2 = 1, εj = jεn−1 〉
acts both on the configuration space Xµ,n and on the hyperplane Wn in the
following way

Xµ,n :
{

ε(x; t1, . . . , tn) = (x; tn, t1, . . . , tn−1)
j(x; t1, . . . , tn) = (−x; t1, tn, . . . , t2)

,

Wn :
{

ε(x1, . . . , xn) = (x2, . . . , xn, x1)
j(x1, . . . , xn) = (xn, . . . , x2, x1)

,

for (x; t1, . . . , tn) ∈ Xµ and (x1, . . . , xn) ∈ Wn. It is not hard to check that:

Claim 3. (A) The action of D2n on Xµ,n is free.
(B) The test map Φ : Xµ,n → Wn is D2n-equivariant.

The test space. The test space in this symmetric problem is the union⋃A ⊂ Wn of the smallest D2n-invariant arrangement A, which contains the
linear subspace L ⊂ Wn. The subspace L is defined by linear forms

ξ1(x) = x1 + . . . + xn
2
, ξ2(x) = xα1+1 + . . . + xα1+n

2
,

ξ3(x) = xα1+α2+1 + . . . + xα1+α2+n
2
.

We prove the basic proposition of the configuration space / test map scheme.

Proposition 4. Observe (α1, α2, α3, α1, α2, α3) ∈ N6 such that α1 + α2 +
α3 = n

2 . If there is no D2n-equivariant map

V2(R3) → Wn \
⋃
A

then for every proper Borel probability measure on the sphere S2 there exist
three planes in the fan position with angular sectors σ1, .., σ6 such that

(∀i∈ {1, .., 6}) µ(σi) = αi
n .

In other words, six-tuple (α1, α2, α3, α1, α2, α3) is a solution.
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Proof. We just illustrate how three planes arise from six halfplanes. Let Φ
be the test map for the measure µ and Φ((x; t1, . . . , tn)) ∈ ⋃A. Without
loosing generality we may assume that Φ((x; t1, . . . , tn)) ∈ L, which means
that

θ1 − 2π
n + .. + θn

2
− 2π

n = 0 ⇒ θ1 + .. + θn
2

= π

θα1+1 − 2π
n + .. + θα1+n

2
− 2π

n = 0 ⇒ θα1+1 + .. + θα1+n
2

= π

θα1+α2+1 − 2π
n + .. + θα1+α2+n

2
− 2π

n = 0 ⇒ θα1+α2+1 + .. + θα1+α2+n
2

= π.

Thus, H1
⋃

Hn
2
, Hα1+1

⋃
Hα1+n

2
and Hα1+α2+1

⋃
Hα1+α2+n

2
are hyperplanes

and they cut µ in the prescribed ration. ¤

2.2. The modification of the equivariant problem. This section is a
review of methods used in [3] and [4]. The objective is to simplify or alternate
the question of the existence of a D2n-equivariant map V2(R3) → Wn \

⋃A.
It is done by substituting the Stiefel manifold V2(R3) with the sphere S3,
but to get the equivalent problem we have to extend the group D2n. We use
the “extension of scalars” equivalence, [5] Section III.3 in the same way as
in [3] and [4].
Let X be a left G-space and H C G be a normal subgroup. The space of
cosets X/H can be seen as a G/H-space by gH(Hx) = H(gx). On the
other hand, a G/H-space Z is a G-space via the quotient homomorphism
π : G → G/H, i.e. for g ∈ G and z ∈ Z, g · z = π(g)z.

Proposition 5. Now X and Z are G-spaces and H C G is a normal sub-
group of G that acts trivially on Z. Following maps coexist:

G-map α : X → Z and G/H-map β : X/H → Z,

where on the right, X/H and Z/H = Z are interpreted as G/H-spaces.
By the coexistence we mean that one map exists if and only if the other map
exists, i.e. that one can’t exist without the other.

The proof of this proposition can be found in [3] and [4].
The sphere S3 = S(H) = Sp(1) can be seen as the group of all unit quater-
nions, and let η = η2n = cos π

n + i sin π
n ∈ S(H) be a root of unity. Group

generated by η is a subgroup of S(H) of the order 2n. The generalized
quaternion group, [6] p. 253, is the subgroup of the order 4n generated by
η and j, i.e.

Q4n = {1, η, . . . , η2n−1, j, ηj, . . . , η2n−1j}.
The group Q4n acts on S3 as a subgroup, and on Wn via the already defined
D2n action by the quotient homomorphism Q4n → Q4n/{1,−1} ∼= D2n. The
Q4n action on S3 is free. Also, the Q4n action on Wn is the restriction of
the following Q4n action on Rn. Let e1, .., en be the standard orthonormal
basis in Rn. The action is defined by

η · ei = eimodn+1 and j · ei = en−i+1.



EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES 5

If H from the proposition is {1, ηn} = {1,−1} ⊂ Q4n, then the quotient
group Q4n/H is isomorphic to the dihedral group D2n of the order 2n. Also,
the group H acts on Wn and Rn trivially. Thus, the proposition implies.

Corollary 6. Following maps coexist:

D2n-map V2(R3) → Wn \
⋃
A and Q4n-map S3 → Wn \

⋃
A.

Remark 7. Since Q4n-action on S3 is free and S3 is 2-connected, it turns
out that the particular Q4n-action on S3 is not significant. An exercise in
the equivariant obstruction theory says that:

If ◦ and ∗ are G-actions on S3 and ◦ is free, then there exists a G-map
f : S3 → S3 such that

(∀g ∈ G) (∀x ∈ S3) f(g ◦ x) = g ∗ f(x).

2.3. The new equivariant problem. Applying the results of preceding
sections, in light of our combinatorial problem, we study the following prob-
lem.

Problem 8. Prove that there is no Q4n-map S3 → Wn \
⋃A, where A

is minimal Q4n(=D2n) arrangement containing subspace L defined by the
linear form:

ξ1(x) = x1 + x2 + x3, ξ2(x) = x2 + x3 + x4, ξ3(x) = x3 + x4 + x5;

3. Equivariant Obstruction Theory Approach

The basic objective of the equivariant obstruction theory is to define an in-
variant associated to a question of the extension of the equivariant map in
such a way that the nature of the invariant points out whether the exten-
sion can or can not be performed. We are going to consider following two
basic problems of the (equivariant) obstruction theory. Some of the classical
references concerning the obstruction theory are [7], pp.111-122 and [11].

3.1. The Obstruction Theory in a few lines. Let (X, A) be a relative
G cellular complex such that G action on X\A is free and let Y be a G
space.
The extension problem. Let f : A → Y be a G map. Is there a G map
F : X → Y such that f = F ◦ i, where i : A → X denotes the inclusion.
The homotopy problem. Let f0 : X → Y and f1 : X → Y be G maps such
that there is a G homotopy h : I × A → Y from f0|A to f1|A. Is there a G
homotopy H : I×X → Y which extends h, i.e. H|{0}×X = f0, H|{1}×X = f1

and H|I×A = h.
The basic theorem of the equivariant obstruction theory can be stated in
the following way.

Theorem 9. Let n ≥ 1 be a fixed integer and Y path-connected n-simple G
space. For every G relative cell complex (X, A) with the free action on X\A
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there exists an obstruction exact sequence

(1) [Xn+1, Y ]G −→ im ([Xn, Y ]G → [Xn−1, Y ]G)
On+1

G−→ Hn+1
G (X, A; πnY )

which is natural both in X and Y .

The exactness of the sequence stands for:
(A) Every G-map on (n−1)-skeleton f : Xn−1 → Y which can be equivari-

antly extended to the n-skeleton f : Xn → Y has a unique element On+1
G (f)

in Hn+1
G (X, A; πnY ) called the obstruction element ;

(B) The exactness of the sequence means that the obstruction element
On+1

G (f) is zero if and only if there is a map in the homotopy class of the
restriction f |Xn−1 which can be extended to the (n + 1)-skeleton Xn+1.
Here Hn+1

G (X, A;πnY ) denotes the equivariant cohomology defined for ex-
ample in [7].

Corollary 10. Let n ≥ 1 be a fixed integer and Y path-connected, n-simple
and (n−1)-connected G space. Then for every G relative cell complex (X, A)
with the free action on X\A:

(A) There exists a G-map f : Xn → Y .
(B) Every two G-maps f, g : Xn → Y are G-homotopic on Xn−1.
(C) im ([Xn, Y ]G → [Xn−1, Y ]G) = {∗}.

Now the obstruction sequence (1) from the preceding theorem becomes

(2) [Xn+1, Y ]G −→ {∗} On+1
G−→ Hn+1

G (X, πnY ).

Thus the possibility for the extension of any G-map Xn → Y to the next
(n+1)-skeleton Xn+1 depends only of one element On+1

G (∗) ∈ Hn+1
G (X,πnY )

which is called the primary obstruction.

Conclusion 11. To compute the primary obstruction On+1
G (∗) it is enough

to choose a specially convenient G-map f on the n-skeleton Xn and to com-
pute its obstruction On+1

G (f) which must be equal to the primary obstruc-
tion On+1

G (∗). This method is sometimes called the general position map
scheme.

3.2. Our problem in light of the Obstruction Theory.

Computing the obstruction cocycle. Let us discuss the problem 8 in light of
Corollary 10 and lay down a methodology for the proof of Theorem 2. The
Q4n-spaces S3 and Wn\

⋃A which participate in our problem have following
properties:

(A) sphere S3 is a 3-dimensional free Q4n-space,
(B) complement Wn \

⋃A is a 3-simple and 2-connected Q4n-space.
The problem of the existence of a Q4n-map S3 → Wn \

⋃A transforms the
obstruction sequence (1) in

[S3
(3), Y ]Q4n −→ {∗}

O3
Q4n−→ H3

Q4n
(X,H2(Wn \

⋃
A,Z)).
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We used the Hurewicz isomorphism π2(Wn \
⋃A) = H2(Wn \

⋃A,Z). The
equivalence(

There is a Q4n-map S3 → Wn \
⋃
A

)
⇔ O3

Q4n
(∗) = 0

indicates the necessity of computing O3
Q4n

(∗).
The computation of the primary obstruction is done by the general position
map scheme. The scheme proceeds in following three steps:
(1) Fix the Q4n cell structures on S3, specially the simplicial structure and
the cell structure. The cell structure has only one equivariant generator of
the maximal dimension. The description of concrete Q4n simplicial and cell
structures of sphere S3 that we use can be found in [6] pp. 250-254, [4] and
[3].
(2) Carefully define a Q4n-map f : S3 → Wn such that:

(i) the image of the 2-skeleton does not intersect the arrangement
⋃A,

i.e.
f(S3

(2)) ∩
⋃
A = ∅,

(ii) the set f(S3) ∩⋃A is finite,
(iii) (∀y ∈ f(S3) ∩⋃A) f(S3) and

⋃A intersect transversely along y,
(iv) f−1

(
f(S3) ∩⋃A) ⊂ ⋃

e∈S3
(3)

relint(e).

(3) The inverse image

f−1
(
f(S3) ∩

⋃
A

)
⊂

⋃

e∈S3
(3)

relint(e)

”enumerates” the obstruction cocycle in the following way

(3) OQ4n(f)(e) =
∑

x∈f−1(f(e)∩(
SA))

I(e, Lf(x)) ‖f(x)‖

where e is a 3-cell of S3. Here I(e, Lf(x)) denotes the intersection number of
the image f(e) and the appropriate oriented element Ly of the arrangement
A. The class ‖f(x)‖ can be a point or a broken point class. The notion of
point and broken point classes is discussed in greater details in [3] and we
relay on it. In general, ‖f(x)‖ is determined by the tangent space on f(e)
at the point f(x). But since we work with a simplicial Q4n structure on S3

and require that f is affine on every simplex, the class ‖f(x)‖ is easier to
describe.

The nature of the obstruction cocycle. Let us note two properties about the
obstruction cocycle which allow us to narrow our computations. First, we
describe what kind of element is the obstruction cocycle On+1

G (f) in the
group Hn+1

G (X, πnY ).

Proposition 12. Let Y be a path-connected n-simple G space and X a free
(n + 1)-dimensional G cell complex. If f : Xn → Y is a G-map, then the
obstruction element On+1

G (f) ∈ Hn+1
G (X,πnY ) is a torsion element.
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Second, we point out how to compute the group Hn+1
G (X,πnY ) in the case

when X = S3, Y = Wn \
⋃A and G = Q4n.

Proposition 13. There is an isomorphism

H3
Q4n

(S3, H2(Wn \
⋃
A;Z)) ∼= H2(Wn \

⋃
A;Z)Q4n,

where H2(Wn \
⋃A;Z)Q4n denotes a group of Q4n-coinvariants of the Q4n-

module H2(Wn \
⋃A;Z).

The proofs for preceding two propositions can be found in [3] and [4].

Proving that the obstruction cocycle is or is not zero. With the desire to
determine the cohomology class of the primary obstruction OQ4n(f) we have
to dive in the topology of the Q4n-arrangement A. The knowledge of the
nature of the obstruction cocycle suggests the following strategy

(A) Change the Q4n simplicial structure on S3 with the Q4n cell
structure which has only one equivariant 3-dimensional generator e in
C3
Q4n

(S3,H2(Wn\
⋃A;Z)). Express OQ4n(f), computed in the simplicial

structure, in terms of the new cell structure. The reason for this change is
that the obstruction element is now completely determined by it’s value on
e,

OQ4n(f)(e) ∈ H2(Wn \
⋃
A;Z).

(B) Since H3
Q4n

(S3,H2(Wn \
⋃A;Z)) ∼= H2(Wn \

⋃A;Z)Q4n we first
compute H2(Wn \

⋃A;Z). With a little help of the Poincaré-Alexander
duality isomorphism and the Universal coefficient isomorphism, we have
(assuming Z coefficients)

H2(Wn \
⋃
A) ∼= H(n−1)−2−1(

⋃
Â) ∼=(4)

Hom(Hn−4(
⋃
Â),Z)⊕ Ext(Hn−5(

⋃
Â),Z)(5)

where Â denotes the one-point compactification of the arrangement A. The
calculations of Hn−4(

⋃ Â;Z) and Ext(Hn−5(
⋃ Â;Z),Z) can be carried on by

the Goresky-MacPherson formula [8]. For example, there is a decomposition
(assuming Z coefficients)
(6)

Hn−4(
⋃
Â) ∼=

⊕

V ∈P

Hn−4(∆(P<V )∗Sdim V ) ∼=
n−4⊕

d=0

⊕

V ∈P :dim V =d

H̃n−5−d(∆(P<V ))

where P is the intersection poset of the arrangement A. By convention,
H̃−1(∅) = Z. When arrangement does not contain inclusions of codimension
one the decomposition is also a decomposition of Q4n modules.

(C) To compute the coinvariants H2(Wn \
⋃A;Z)Q4n we have to

keep in mind that Poincaré-Alexander duality isomorphism is not the iso-
morphism of Q4n-modules. Fortunately, it is a Q4n-map up to an orientation
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character. On the other hand, Universal coefficient isomorphism is a Q4n-
map. To overcome this difficulty we introduce a new Q4n-action by

g ∗ x = det(g) g−1 · x.

where x ∈ Hn−4(
⋃ Â;Z) and g ∈ Q4n. If we define the relation v on

Hn−4(
⋃ Â;Z) by

(∀x ∈ Hn−4(
⋃
Â;Z)) (∀g ∈ Q4n) g ∗ x v x

and assume that Ext(Hn−5(
⋃ Â;Z),Z) = 0 (which is often the case), then

there exists an isomorphism

H2(Wn \
⋃
A;Z)Q4n

∼= Hn−4(
⋃
Â;Z)/ v .

(D) To prove that the cohomology class [OQ4n(f)(e)] is or is not zero
we first identify every point class from the sum

OQ4n(f)(e) =
∑

x∈f−1(f(e)∩(∪A))

I(e, Lf(x)) ‖f(x)‖

along the isomorphism ϕ : H2(M(α),Z) → Hom(Hn−4(∪Â(α),Z),Z).
Since this isomorphism is actually a computation of the linking number
(when it is correctly defined), then for example

‖f(x)‖ −→
∑

i∈I

link(li, ‖f(x)‖)li

where {li|i ∈ I} is a basis of the group Hn−4(
⋃ Â;Z). The final step in this

long procedure is to find if

ϕ (OQ4n(f)(e)) / v ∈ Hn−4(
⋃
Â;Z)/ v∼= H2(Wn \

⋃
A;Z)Q4n

is or is not zero.

4. The proof of Theorem 2

The proof goes via the Proposition 4 and Corollary 6. Thus we are going to
prove that there is no

Q24-map S3 → W6 \
⋃
A

where A denotes the appropriate arrangement defining the test space. We
apply the general position map scheme.
(1) Definition of the general position map f : S3 → Wn. The sphere S3

is a Q4n simplicial complex P
(1)
2n ∗ P

(2)
2n where P

(i)
2n represents the sphere

S1 as 2n-gon simplical complex. It is enough to define the image of the
single vertex t and everything extends equivariantly. Let f : S3 → W6 be
defined on the vertex t by f(t) = (2,−1, 3,−3, 2,−3). Then for example
f(jt) = (−3, 2,−3, 3,−1, 2).
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(2) Computation of the singular set, i.e. the intersection of the image of the
maximal cell

e = [t, ηt] ∗ [jt, ηjt] ∪ [ηt, η2t] ∗ [jt, ηjt] ∪ ... ∪ [ηn−1t, ηnt] ∗ [jt, ηjt]

and the union of the arrangement
⋃A. Then

OQ4n(f)(e) =
∑

x∈f−1(f(e)∩(
SA))

I(e, Lf(x)) ‖f(x)‖ .

The arrangementA is the minimal Q24 arrangement containing the subspace
L defined by

x1 + x2 + x3 = x2 + x3 + x4 = x3 + x4 + x5 = x4 + x5 + x6 = 0 .

Since (∀g ∈ Q4n) gL = L the arrangement A ”deforms” to just one subspace
{L}. To find the intersection of the f image of the maximal cell

e =
(
[t, ηt] ∪ [ηt, η2t] ∪ [η2t, η3t] ∪ [η3t, η4t] ∪ [η4t, η5t] ∪ [η5t, η6t]

) ∗ [jt, ηjt]

with the union of the arrangement
⋃A = L we shell intersect L with 6-

simplexes which form the maximal cell e. We compute that there is only
one simplex whose image intersects L, specially

L ∩ f
(
[ηt, η2t] ∗ [jt, ηjt]

)
= {1

3f(ηt) + 1
6f(η2t) + 1

6f(jt) + 1
3f(ηjt)}.

If we denote the intersection point by y, then

OQ24(f)(e) = α ‖y‖
where α ∈ {+1,−1} is an associated intersection number.
(3) Identification of the cohomology class of the obstruction cocycle OQ4n(f)(e)
in the group of coinvariants H2(Wn \

⋃A;Z)Q4n
∼= Hn−4(

⋃ Â;Z)/ v. First
let us observe that W6 \

⋃A = W6 \ L ' S6−4. Thus H2(
⋃ Â;Z) = Z and

Ext(H1(
⋃ Â;Z),Z) = 0, and consequently

H2(W6 \
⋃
A;Z) ∼= H2(

⋃
Â;Z) = Z.

Since (∀g ∈ Q24) gL = L we check whether some g ∈ Q24 changes the
orientation of L. The element η5 acts on W6 by changing its orientation.
On the orthogonal complement L⊥ of L the operator η5, for the basis {e1 +
e2 + e3, e2 + e3 + e4, e3 + e4 + e5, e1 + ... + e6} of L⊥, has the matrix

Ξ =




0 1 0 0
0 0 1 0
−1 0 0 1
0 0 0 1


 .

Since det Ξ = −1, the element η5 also changes the orientation of L⊥ and
consequently does not change the orientation on L. If l ∈ H2(

⋃ Â;Z) is the
generator associated to the subspace L, then after the discussion about the
orientation the set equality η5L = L implies the homology equality η5l = l.
The relation

l v η−5 ∗ l = det(η5)η5l = −η5l = −l
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provides the conclusion that

H2(W6 \
⋃
A;Z)Q24

∼= H2(
⋃
Â;Z)/ v ∼= Z2.

From the definition of the point class ([3] and [4]) it is obvious that
OQ24(f)(e) = α ‖y‖ is the Poincare dual of l and consequently not zero.
Moreover, after factoring by v the element ϕ (OQ24(f)(e)) / v is a generator
of H2(

⋃ Â;Z)/ v and so

[OQ24(f)(e)] 6= 0.

Therefore, there is no Q24-map f : S3 → W6\L and the Theorem 2 is proved.

Concluding Remarks. The exposition of the general problem and the eledged
techniques are motivated by results jet to come.
The particular result we presented is derived from the fact that there are no
Q24-map S3 → S2. It looks like some type of Borsuk-Ulam theorem could
be applied. The reason we have to use the obstruction theory lies in the
rather complicated group Q24 and the fact that its action on S2 is not free.
Therefore, there are no short cuts in solving this problem.
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