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FIXED POINT THEOREMS FOR EXPANSION MAPPINGS
SATISFYING IMPLICIT RELATIONS

H. K. PATHAK AND RAKESH TIWARI

Abstract. In this note a fixed point theorem for expansion mappings is
established in a complete metric space under certain conditions. Further
a common fixed point theorem for pair of weakly compatible expansion
mappings is established. In this theorem the completeness of space is
replaced with a set of four alternative conditions for functions satisfying
implicit relations. These theorems extend and improve results of S. M.
Kang [4], M. A. Khan et al. [5], B. E. Rhoades [11] and T. Taniguchi
[12].

1. Introduction

Wang et al. [13] proved some fixed point theorems on expansion map-
pings, which correspond some contractive mappings. Further, by using func-
tions, Khan et al. [5] generalized the result of [13]. Also Rhoades [11] and
Taniguchi [12] generalized the result of [13] for pair of mappings. Kang [4]
generalized the result of Khan et al. [5], Rhoades [11] and Taniguchi [12] for
expansion mappings.

Popa [10] improved results of Jha et al. [1], Pant et al. [6], [7] for
Meir and Keeler type mappings by taking weak compatibility property and
replacing the completeness of the space with a set of four alternative condi-
tions for functions satisfying implicit relations.
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The objective of this paper is to prove common fixed point theorem
for surjective mappings satisfying some expansion conditions, which extend
corresponding result of Kang [4] and Khan et al. [5]. In the sequel, we
introduce some implicit relations in section 4 which are found to be viable,
productive and powerful tool in finding the existence of common fixed point
for non-surjective mappings satisfying certain expansion type conditions.

2. Preliminaries

Throughout this paper, R and N denote the set of real numbers and
the set of natural numbers, respectively. We use the following definitions in
the proof of our main theorems.

Definition 2.1. Let X be a topological space and f : X → R a real
valued mapping on X. Then f is called upper semi − continuous on X iff
f−1(−∞, t) is open in X for every t ∈ R. A mapping f is called lower semi
−continuous if -f is upper semi-continuous.

Definition 2.2.[11] The self maps S and T of a metric space (X, d) are said
to be weak compatible if Sx = Tx implies STx = TSx.

Kang [4] proved the following theorem :

Let R+ be the set of all non-negative real numbers and let Φ denote
the family of all real functions φ : R3

+ → R+ satisfying the following condi-
tions (C1) and (C2) according to Khan et al. [5] :
(C1) φ is lower semi-continuous in each coordinate variable,
(C2) Let v, w ∈ R+ be such that either v ≥ φ(v, w,w) or v ≥ φ(w, v, w).
Then v ≥ hw, where φ(1, 1, 1) = h > 1.

Theorem 2.3. Let A and B be surjective mappings from a complete metric
space (X, d) into itself satisfying

d(Ax,By) ≥ φ(d(Ax, x), d(By, y), d(x, y))

for all x, y ∈ X with x 6= y, where φ ∈ Φ. Then A and B have a common
fixed point in X.

3. Main Results

Let R+ be the set of all non-negative real numbers and let Φ denote
the family of all real valued functions φ : R5

+ → R+ satisfying the following
conditions :
(C1) φ is lower semi − continuous in each coordinate variable,
(C2) φ is non-increasing in second and third coordinate variables,
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(C3) Let v, w ∈ R+ be such that either v ≥ φ(v, v + w, 0, w, w) or v ≥
φ(w, 0, v + w, v, w). Then v ≥ hw, where φ(1, 1, 1, 1, 1) = h > 1.

Now we prove our theorem as follows :

Theorem 3.1. Let A and B be surjective mappings from a complete metric
space (X, d) into itself satisfying

(3.1) d(Ax,By) ≥ φ(d(Ax, x), d(Ax, y), d(By, x), d(By, y), d(x, y))

for all x, y ∈ X with x 6= y, where φ ∈ Φ. Then A and B have a common
fixed point in X.

Proof. Let x0 be an arbitrary point in X. Since A and B are surjective, we
choose a point x1 in X such that Ax1 = x0 and for this point x1, there exists
a point x2 in X such that Bx2 = x1. By this way, we can define a sequence
{xn} in X such that

(3.2) Ax2n+1 = x2n and Bx2n+2 = x2n+1.

Suppose that x2n = x2n+1 for n ≥ 0. Then x2n is a fixed point of A. If
x2n+1 6= x2n+2 then, from (3.1), we have

d(x2n, x2n+1) = d(Ax2n+1, Bx2n+2)

≥ φ(d(Ax2n+1, x2n+1), d(Ax2n+1, x2n+2),

d(Bx2n+2, x2n+1), d(Bx2n+2, x2n+2), d(x2n+1, x2n+2))

≥ φ(d(x2n, x2n+1), d(x2n, x2n+2),

d(x2n+1, x2n+1), d(x2n+1, x2n+2), d(x2n+1, x2n+2))

≥ φ(d(x2n, x2n+1), d(x2n, x2n+1) + d(x2n+1, x2n+2), 0

d(x2n+1, x2n+2), d(x2n+1, x2n+2)),
which implies, by (C3)

d(x2n, x2n+1) ≥ hd(x2n+1, x2n+2).

This yields a contradiction, and so x2n+1 = x2n+2. Thus x2n is a common
fixed point of A and B. If x2n+1 = x2n+2 for some n ≥ 0, it is similarly
verified that x2n+1 is a common fixed point of A and B. Without loss of
generality, we can suppose xn 6= xn+1, for each n ≥ 0. From (3.1), we have

d(x2n, x2n+1) = d(Ax2n+1, Bx2n+2)

≥ φ(d(Ax2n+1, x2n+1), d(Ax2n+1, x2n+2),

d(Bx2n+2, x2n+1), d(Bx2n+2, x2n+2), d(x2n+1, x2n+2)),

which implies, from (C3)

d(x2n+1, x2n+2) ≤ 1
h

d(x2n, x2n+1).
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Similarly

d(x2n+1, x2n+2) = d(Bx2n+2, Ax2n+3)

≥ φ(d(Ax2n+3, x2n+3), d(Ax2n+3, x2n+2),

d(Bx2n+2, x2n+3), d(Bx2n+2, x2n+2), d(x2n+3, x2n+2))

≥ φ(d(x2n+2, x2n+3), d(x2n+2, x2n+2),

d(x2n+1, x2n+3), d(x2n+1, x2n+2), d(x2n+3, x2n+2)),

which implies, by (C3)

d(x2n+1, x2n+2) ≥ h d(x2n+2, x2n+3),

or

d(x2n+2, x2n+3) ≤ 1
h

d(x2n+1, x2n+2).

Therefore, we obtain

d(xn+1, xn+2) ≤ 1
h

d(xn, xn+1)

Since h > 1, by Lemma of Jungck [2], {xn} is a Cauchy sequence and hence
it converges to some point z in X. Consequentially, the sub-sequences {x2n},
{x2n+1} and {x2n+2} also converge to z.

Since A and B are surjective, there exist two points v and w in X such
that z = Av and z = Bw. Thus, using (3.1), we have

d(x2n, z) = d(Ax2n+1, Bw)

≥ φ(d(Ax2n+1, x2n+1), d(Ax2n+1, w),

d(Bw, x2n+1), d(Bw,w), d(x2n+1, w))

≥ φ(d(x2n, x2n+1), d(x2n, w),

d(Bw, x2n+1), d(Bw,w), d(x2n+1, w)).

Letting n →∞
0 = d(z, z) ≥ φ(d(z, z), d(z, w), d(z, z), d(z, w), d(z, w))

≥ φ(0, d(z, w), 0, d(z, w), d(z, w))

≥ φ(0, 0 + d(z, w), 0, d(z, w), d(z, w)),

which implies, by (C3)
0 ≥ h d(z, w),

so that z = w. Similarly, we have z = v. Therefore, A and B have a common
fixed point in X.

Remark 3.2. Our Theorem 3.1 extends corresponding results of Kang [4]
and for A = B it extends result of Khan et al. [5].
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Corollary 3.3. Let A and B be surjective mappings from a complete metric
space (X, d) into itself satisfying

d(Ax,By) ≥ a d(Ax, x) + b d(By, y) + c d(x, y) + e d(Ax, y) + f d(By, x)

for all x, y ∈ X with x 6= y, where a, b, c, e, f are non-negative real numbers
with a + e < 1, f + b < 1, a + b + c + e + f > 1. Then A and B have a
common fixed point in X.
Proof. Let h = a+b+c+e+f and φ(t1, t2, t3, t4, t5) = at1+bt2+ct3+et4+ft5
for every t1, t2, t3, t4, t5 ∈ R+.
If v ≥ av + ev + fw + bw + cw for some v, w ∈ R+, then

v(1− a− e) ≥ (f + b + c)w

v ≥ (f + b + c)
(1− a− e)

w

≥ (a + b + c + e + f)w
≥ hw.

If v ≥ aw + ew + fw + bv + cw for some v, w ∈ R+, then similarly we have

v ≥ hw.

Therefore φ ∈ Φ. And so the proof of the Corollary is complete by Theorem
3.1.

Remark 3.4. (I) If we take e = f = 0 in Corollary 3.3 we get Corollary 2.3
of Kang [4].
(II) The surjective condition of mappings A and B can not be dropped in
Theorem 3.1 and Corollary 3.3 as shown below :

Example 3.5. Let X = [0,∞) with the Euclidean metric d. Define A and
B : X → X by
Ax = h(x + 1) and

Bx =
{

hx if x < 1
2

h(x + 1) if x ≥ 1
2

for each x in X, where h > 1. Consider φ(t1, t2, t3, t4, t5) = ht5 for every
t1, t2, t3, t4, t5 ∈ R+, where h > 1. Then φ ∈ Φ and we have

d(Ax,By) =
{

h|x− y + 1| if y < 1
2

h|x− y| if y ≥ 1
2

≥ h|x− y|
≥ hd(x, y)

= φ(d(Ax, x), d(Ax, y), d(By, x), d(By, y), d(x, y))
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for all x and y in X. In this example all the hypothesis of Theorem 3.1
are satisfied except that A and B are surjective, but A and B have no
common fixed point in X. Therefore, the surjectivity of mappings A and B
is a necessary condition in Theorem 3.1 .

Next, let Φ∗ denotes the family of all real functions ψ : R5
+ → R+

satisfying (C1), (C2) and
(C4) Let v, w ∈ R+ − {0} be such that either v ≥ ψ(v, v + w, 0, w, w) or
v ≥ ψ(w, 0, v + w, v, w). Then v ≥ hw, where ψ(1, 1, 1, 1, 1) = h > 1.

Theorem 3.6. Let A and B be continuous surjective mappings from a com-
plete metric space (X,d) into itself satisfying

d(Ax,By) ≥ ψ(d(Ax, x), d(Ax, y), d(By, x), d(By, y), d(x, y))
for all x,y in X with x 6= y, where ψ ∈ Φ∗. Then A or B has a fixed point or
A and B have a common fixed point in X.

Proof. Let {xn} be a sequence in X defined by
Ax2n+1 = x2n and Bx2n+2 = x2n+1.
If xn = xn+1 for some n ≥ 0, then A or B has a fixed point in X. Now,
we suppose that xn 6= xn+1 for each n ≥ 0. As in the proof of Theorem
3.1, it can be shown that {xn} is a Cauchy sequence and hence it converges
to some point z in X. Consequently, the sub-sequences{x2n}, {x2n+1} and
{x2n+2} also converges to z. Since A and B are continuous, we get
Ax2n+1 = x2n → Az and Bx2n+2 = x2n+1 → Bz as n →∞.
Thus, A and B have a common fixed point in X.

From Theorem 3.6, we obtain the following corollary :

Corollary 3.7. Let A and B be continuous surjective mappings from a
complete metric space (X, d) into itself satisfying

d(Ax, By) ≥ h min{d(Ax, x), d(By, y), d(x, y),max{d(Ax, y), d(By, x)}}
for all x and y in X with x 6= y, where h > 1. Then the same conclusion of
Theorem 3.6 holds.

Remark 3.8. If max{d(Ax, y), d(By, x)} is greater than or equal to any
one of d(Ax, x), d(By, y), d(x, y) for all x, y ∈ X, then we get the Corollary
2.7 of Kang [4]. For A = B, our Theorem 3.6 extends corresponding results
of Rhoades [11] and Khan et al. [5].

Finally, let Ψ denotes the family of all real valued functions ψ : R+ →
R+, satisfying the following conditions :
(C5) ψ is upper semi − continuous and non decreasing,
(C6) ψ(t) < t for each t > 0.
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Theorem 3.9. Let A and B be continuous surjective mappings from a com-
plete metric space (X,d) into itself satisfying

ψ(d(Ax,By)) ≥ min{d(Ax, x), d(By, y), d(x, y),max{d(Ax, y), d(By, x)}}

for all x, y in X with x 6= y, where ψ ∈ Ψ and
∑

ψn(t) < ∞ for each t > 0.
Then A or B has a fixed point or A and B have a common fixed point in X.

Proof. Let {xn} be a sequence in X defined by
Ax2n+1 = x2n and Bx2n+2 = x2n+1.
If xn = xn+1 for some n ≥ 0, then A or B has a fixed point in X. Now, we
suppose that xn 6= xn+1 for each n ≥ 0. Then

ψ(d(x2n, x2n+1)) = ψ(d(Ax2n+1, Bx2n+2))

≥ min{d(Ax2n+1, x2n+1), d(Bx2n+2, x2n+2), d(x2n+1, x2n+2),

max{d(Ax2n+1, x2n+2), d(Bx2n+2, x2n+1)}}
≥ min{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n+1, x2n+2),

max{d(x2n, x2n+2), d(x2n+1, x2n+2)}}
≥ min{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n+1, x2n+2),

max{d(x2n, x2n+1) + d(x2n+1, x2n+2), d(x2n+1, x2n+2)}}
≥ min{d(x2n, x2n+1), d(x2n+1, x2n+2), d(x2n, x2n+1)

+ d(x2n+1, x2n+2)}
= d(x2n+1, x2n+2).

Similarly we have

ψ(d(x2n+1, x2n+2)) = ψ(d(Ax2n+3, Bx2n+2))

≥ d(x2n+2, x2n+3).

Therefore, d(xn+1, xn+2) ≤ ψ(d(xn, xn+1)).
For any n > m ≥ 0 we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xn)

≤ d(xm, xm+1) + d(xm+1, xm+2)

+ d(xm+2, xm+3) + ...... + d(xn−1, xn)

≤ ψm(d(x0, x1)) + ....... + ψn−1(d(x0, x1)).

From
∑

ψn < ∞ for each t > 0, it follows that {xn} is a Cauchy sequence
in X. And as the proof of Theorem 3.6, it is obvious that A and B have a
common fixed point in X.

4. Implicit Relations
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In this section, we use implicit relations satisfied by a quadruple of
mappings. The essence of implicit relations as a tool in finding common
fixed point of mappings lies on the fact that these relations help us to ensure
coincidence point of pair of mappings that ultimately leads to the existence
of common fixed points of a quadruple of mappings satisfying weak compat-
ibility criterion.

Let F6 be the set of all continuous functions F (t1, . . . , t6) : R6
+ → R satis-

fying the following conditions :

(F1) : F (u, 0, u, 0, 0, u) ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) ≥ 0 implies u = 0.

The function F (t1, . . . , t6) : R6
+ → R satisfies the condition (Fu) if

(Fu) : F (u, u, 0, 0, u, u) ≤ 0, for all u > 0.

Example 4.1. Let F (t1, . . . , t6) = pt2 + q(t3 + t4) + r(t5 + t6) − t1, where
p, q, r ≥ 0, 0 ≤ q + r < 1 and 0 ≤ p + 2r ≤ 1.

(F1) : F (u, 0, u, 0, 0, u) = u(q + r − 1) ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = u(q + r − 1) ≥ 0 implies u = 0 :
and

(Fu) : F (u, u, 0, 0, u, u) = u(p + 2r − 1) ≤ 0; for each u > 0.

Example 4.2. Let F (t1, . . . , t6) = min{(t2 + t3)/2, k(t4 + t5)/2, t6} - t1;
where 0 ≤ k < 1.

(F1) : F (u, 0, u, 0, 0, u) = min{u/2, 0, u} − u ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = min{0, ku, 0} − u ≥ 0 implies u = 0;

(Fu) : F (u, u, 0, 0, u, u) = min{u/2, ku/2, u} − u ≤ 0; for each u > 0.

Example 4.3. Let F (t1, . . . , t6) = max{k1t2, k2(t3 + t5)/2, (t4 + t6)/2} - t1;
where 0 ≤ k1 < 1, 1 ≤ k2 < 2.

(F1) : F (u, 0, u, 0, 0, u) = max{0, k2u/2, u/2} − u ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = max{0, k2u/2, u/2} − u ≥ 0 implies u = 0;

(Fu) : F (u, u, 0, 0, u, u) = max{k1u, k2u/2, u/2} − u ≤ 0; for each u > 0.

Example 4.4. Let F (t1, . . . , t6) = h.max{t2, t3, t4, t5, t6} - t1; where 0 ≤
h < 1.

(F1) : F (u, 0, u, 0, 0, u) = h. max{0, u, 0, 0, u} − u ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = h. max{0, 0, u, u, 0} − u ≥ 0 implies u = 0;

(Fu) : F (u, u, 0, 0, u, u) = h. max{u, 0, 0, u, u} − u ≤ 0; for each u > 0.
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Example 4.5. Let F (t1, . . . , t6) = pt22+t3t4+qt25+rt26 - t21; where p, q, r ≥ 0,
0 ≤ p + q + r < 1.

(F1) : F (u, 0, u, 0, 0, u) = ru2 − u2 ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = qu2 − u2 ≥ 0 implies u = 0;

(Fu) : F (u, u, 0, 0, u, u) = (p + q + r)u2 − u2 ≤ 0; for each u > 0.

Example 4.6. Let F (t1, . . . , t6) = k(t32 + t33 + t34 + t35 + t36) - t31; where
0 ≤ k ≤ 1/3.

(F1) : F (u, 0, u, 0, 0, u) = (2k − 1)u3 ≥ 0 implies u = 0;

(F2) : F (u, 0, 0, u, u, 0) = (2k − 1)u3 ≥ 0 implies u = 0;

(Fu) : F (u, u, 0, 0, u, u) = (3k − 1)u3 ≤ 0; for each u > 0.

5. Application of Implicit Relations in Fixed Point Theory

In this section we prove a common fixed point theorem for a quadruple
of expansion mappings satisfying implicit relations.

Theorem 5.1. Let A, B, S and T be the self mappings of a metric space
(X, d), such that

(I) A(X) ⊂ S(X) and B(X) ⊂ T (X),

(II) d(Tx, Sy) ≥ h min{d(Ax,By), d(Tx, Ax), d(Sy, By),

1
2
max{d(Tx, By), d(Sy,Ax)}},

where h > 1.
(III) there exists F ∈ F6 such that
F(d(Ax, By), d(Tx, Sy), d(Tx, Ax), d(Sy, By), d(Tx, By), d(Sy, Ax)) > 0
for all x, y in X, x 6= y.
If one of A(X), B(X), S(X) or T(X) is complete subspace of X, then
(IV) A and T have a coincidence point,
(V) B and S have a coincidence point.
Moreover, if the pairs (A, T) and (B, S) are weakly compatible, then A, B,
S and T have a unique common fixed point.

Proof. Since (I) holds, we can define a sequence by choosing an arbitrary
point x0 in X, such that

y2n = Ax2n = Sx2n+1 and y2n+1 = Bx2n+1 = Tx2n+2

for n = 0, 1, 2, . . . .
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Now we first prove that {yn} is a Cauchy sequence in X. For this, put
x = x2n and y = x2n+1 in (II), we get

d(Tx2n, Sx2n+1) ≥ h min{d(Ax2n, Bx2n+1), d(Tx2n, Ax2n),

d(Sx2n+1, By),
1
2
max{d(Tx2n, Bx2n+1), d(Sx2n+1, Ax2n)}},

or

d(y2n−1, y2n) ≥ h min{d(y2n, y2n+1), d(y2n−1, y2n),

d(y2n, y2n+1),
1
2
max{d(y2n−1, y2n+1), d(y2n, y2n)}}

≥ h min{d(y2n, y2n+1), d(y2n−1, y2n), d(y2n, y2n+1),
1
2
max{d(y2n−1, y2n) + d(y2n, y2n+1), 0}}.

If

d(y2n, y2n+1) > d(y2n−1, y2n),

then we have

d(y2n−1, y2n) ≥ h min{d(y2n, y2n+1), d(y2n−1, y2n)}
≥ h d(y2n−1, y2n),

a contradiction. Therefore

d(y2n, y2n+1) ≤ d(y2n−1, y2n).

This gives

d(y2n, y2n+1) ≤ 1
h

d(y2n−1, y2n).

Similarly, for x = x2n+2 and y = x2n+1 with (II), we get

d(y2n+1, y2n+2) ≤ 1
h

d(y2n, y2n+1).

Thus we have

d(yn, yn+1) ≤ 1
h

d(yn−1, yn)

≤ 1
h2

d(yn−2, yn−1)

· · ·

· · ·
<

1
hn

d(y0, y1).
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Moreover, for every integer p > 0, we have

d(yn, yn+p) ≤ d(yn, yn+1) + d(yn+1, yn+2) + · · ·+ d(yn+p−1, yn+p)

≤ 1
hn

[1 +
1
h

+ · · ·+ 1
hp−1

]d(yn, yn+1)

≤ 1
hn

[
1

1− 1
h

]d(y0, y1).

This means that d(yn, yn+p) → 0 as n → ∞. Therefore {yn} is a Cauchy
sequence in X.
Now suppose that S(X) is a complete subspace of X, then the sequence
y2n = Sx2n+1, is a Cauchy sequence in S(X) and hence has a limit u (say).
Let v ∈ S−1u, then Sv = u. Since {y2n} is converges to u, it follows that
{y2n+1} also converges to u. Setting x = x2n and y = v in (III), we have

F (d(Ax2n, Bv), d(Tx2n, Sv), d(Tx2n, Ax2n), d(Sv, Bv),

d(Tx2n, Bv), d(Sv, Ax2n)) > 0,

which implies

F (d(y2n, Bv), d(y2n−1, Sv), d(y2n−1, y2n), d(Sv,Bv),

d(y2n−1, Bv), d(Sv, y2n)) > 0,

letting n →∞, we obtain

F (d(u,Bv), d(u, Sv), d(u, u), d(Sv,Bv), d(u,Bv), d(Sv, u)) ≥ 0,

or
F (d(u,Bv), d(u, u), d(u, u), d(u,Bv), d(u,Bv), d(u, u)) ≥ 0,

or
F (d(u,Bv), 0, 0, d(u,Bv), d(u,Bv), 0) ≥ 0.

By (F2), we have u = Bv. Thus B and S have a coincidence point.
Since B(X) ⊂ T (X), u = Bv implies u ∈ T (X).
Let w ∈ T−1u, then Tw = u.
Now by setting x = w and y = x2n+1 in (III), we obtain

F (d(Aw, Bx2n+1), d(Tw, Sx2n+1), d(Tw, Aw), d(Sx2n+1, Bx2n+1),

d(Tw, Bx2n+1), d(Sx2n+1, Aw)) > 0,

which implies

F (d(Aw, y2n+1), d(Tw, y2n), d(Tw, Aw), d(y2n, y2n+1),

d(Tw, y2n+1), d(y2n, Aw)) > 0,

letting n →∞, we obtain

F (d(Aw, u), d(u, u), d(u,Aw), d(u, u), d(u, u), d(u,Aw)) ≥ 0,

or
F (d(Aw, u), 0, d(u,Aw), 0, 0, d(u,Aw)) ≥ 0,

we obtain Aw = u, by (F1). It means A and T have a coincidence point.
Similarly if we assume that T(X) is complete, then we can easily establish
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that both B, S and A, T have a coincidence point.
The remaining two cases are the same as the previous cases.
Thus results (IV) and (V) are completely established. Now by u = Sv = Bv
and weak compatibility of (B, S), we have

Bu = BSv = SBv = Su.

Similarly by u = Tw = Aw and weak compatibility of (A, T), we have

Au = ATw = TAw = Tu.

By (III), we have

F (d(Aw,Bu), d(Tw, Su), d(Tw,Aw), d(Su,Bu), d(Tw, Bu), d(Su, Aw)) > 0,

or

F (d(u,Bu), d(u, Su), d(u, u), d(Su, Bu), d(u,Bu), d(Su, u)) > 0,

or
F (d(u,Bu), d(u,Bu), 0, 0, d(u,Bu), d(Bu, u)) > 0,

which contradicts (Fu). Thus u = Bu. Similarly we can show that Au = u.
Therefore u = Au = Bu = Su = Tu and thus u is a common fixed point of
A,B, S and T .
For uniqueness of common fixed point, let z and v be two common fixed
points of A,B, S and T . Then from (III), we have

F (d(Az, Bv), d(Tz, Sv), d(Tz,Az), d(Sv, Bv), d(Tz,Bv), d(Sv, Az)) > 0,

or
F (d(z, v), d(z, v), 0, 0, d(z, v), d(v, z)) > 0,

which contradicts (Fu). Thus z = v.

Remark 5.2. Theorem 5.1 improves Theorem 2 and Theorem 3 of Taniguchi
[12] and Corollary 3.7 above.

Corollary 5.3. Let A, B, S and T be the self mappings of a complete metric
space satisfying conditions (I), (II) and (III) of Theorem 5.1 . Then (IV)
and (V) hold. Moreover, if the pairs (A, T) and (B, S) are compatible ( com-
patible of type(A), compatible of type (B), compatible of type (P)) then A,
B, S and T have a common fixed point.

Proof. It follows by Theorem 5.1 and the fact that every compatible ( com-
patible of type (A), compatible of type (B), compatible of type (P)) pair of
mappings is weakly compatible( see [3], [8], [9]).

Corollary 5.4. Let the pairs (A, T) and (B, S) be compatible mappings of
a complete metric space into itself, such that

(I) A(X) ⊂ S(X) and B(X) ⊂ T (X),

(II) d(Tx, Sy) ≥ a d(Ax,By) + b d(Tx,Ax) + c d(Sy,By)
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−e [d(Tx, By) + d(Sy, Ax)],
for all x, y in X, x 6= y, where a, b, c, e are non-negative real numbers with
0 < max{e − b, e − c} < 1 and a + b + c − 2e > 1. If one of the mappings
A,B, S and T is continuous then A, B, S and T have a unique common fixed
point.

Proof. It follows by Corollary 5.2 and Example 4.1 above.

Remark 5.5. Corollary 5.4 improves corresponding Theorem 1 of Taniguchi
[12] and Corollary 3.3 above.

Example 5.6. Let X = {0, 1, 1
3 , 1

32 , 1
33 , . . .} be a metric space with the usual

metric d(x, y) = |x− y| for all x, y in X. Define mappings A, T : X → X by

A(0) =
1
32

, A(
1
3n

) =
1

3n+2
and T (0) =

1
3
, T (

1
3n

) =
1

3n+1
,

for n = 0, 1, 2, . . ., respectively. Also let A = B and S = T . Then clearly

A(X) = { 1
32

,
1
33

,
1
34

, . . .} ⊂ {1
3
,

1
32

,
1
33

, . . .} = T (X)

Define a continuous function F = R6
+ → R by

F (t1, . . . , t6) = pt22 +
qt5t6

t23 + t24 + r
− t21;

where 0 ≤ p ≤ 1
2 , 0 ≤ q ≤ 1

2 , r ∈ N.
Then
(F1) : F(u, 0, u, 0, 0, u) = p0 + q0

u2+0+r
− u2 ≥ 0 implies u = 0;

(F2) : F(u, 0, 0, u, u, 0) = p0 + q0
0+u2+r

− u2 ≥ 0 implies u = 0;

(Fu) : F(u, u, 0, 0, u, u) = pu2 + qu2

0+0+r − u2

= (p +
q

r
− 1)u2 ≤ 0, for all u > 0.

Thus F satisfies F1, F2 and Fu.
Furthermore, for x = 0, y = 1 we have

F
(
d(Ax,By), d(Tx, Sy), d(Tx,Ax), d(Sy, By), d(Tx, By), d(Sy, Ax)

)

= F
(
d(Ax,By), d(Tx, Sy), d(Tx, Ax), d(Sy,By), d(Tx,By), d(Sy,Ax)

)

= F
(
d( 1

32 , 1
32 ), d(1

3 , 1
3), d(1

3 , 1
32 ), d(1

3 , 1
32 ), d(1

3 , 1
32 ), d(1

3 , 1
32 )

)

= F (0, 0, 2
9 , 2

9 , 2
9 , 2

9)

= 0 + q 2
9

2
9

( 2
9
)2+( 2

9
)2+r

− 0

= 4q
8+81r

> 0.
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Similarly, for x = 0, y = 1
3m , we obtain

F
(
d(Ax,By), d(Tx, Sy), d(Tx,Ax), d(Sy, By), d(Tx, By), d(Sy,Ax)

)

= F
(
d(A0, B

1
3m

), d(T0, S
1

3m
), d(T0, A0), d(S

1
3m

, B
1

3m
), d(T0, B

1
3m

),

d(S
1

3m
, A0)

)

= F
(
d(

1
32

,
1

3m+2
), d(

1
3
,

1
3m+1

), d(
1
3
,

1
32

), d(
1

3m
,

1
3m+2

), d(
1
3
,

1
3m+2

),

d(
1

3m+1
,

1
32

)

= F
( 1

32
|1− 1

3m
|, 1

3
|1− 1

3m
|, 1

3
|1− 1

3
|, 1

3m
|1− 1

3m+1
|, 1

3
|1− 1

3m+1
|,

1
3
| 1
3m

− 1
3
|
)

= p
1
9
|1− 1

3m
|2 +

q 1
9 |1− 1

3m+1 || 1
3m − 1

3 |
1
9

4
9 + 1

3m
64
81 + r

− 1
92
|1− 1

3m
|2

= (p− 1
9
)
1
9
|1− 1

3m
|2 +

q 1
9 |1− 1

3m+1 || 1
3m − 1

3 |
4
92 + 64

32m+4 + r

> 0.

Also for x = 1
3n and y = 1

3m (n,m = 0, 1, 2, . . . , n 6= m), we have

F
(
d(Ax,By), d(Tx, Sy), d(Tx,Ax), d(Sy, By), d(Tx, By), d(Sy, Ax)

)

= F
(
d(

1
3n+2

,
1

3m+2
), d(

1
3n

,
1

3m
), d(

1
3n+1

,
1

3m+2
),

d(
1

3m+1
,

1
3m+2

), d(
1

3n+1
,

1
3m+2

), d(
1

3m+1
,

1
3n+2

)
)

= F
( 1

32
| 1
3m

− 1
3n
|, 1

3n+1
|1− 1

3
|, 1

3m+1
|1− 1

3
|,

1
3m+1

|1− 1
3
|, 1

3
| 1
3n
− 1

3m+1
|, 1

3
| 1
3m

− 1
3n+1

|
)

= p
1
32
| 1
3n
− 1

3m
|2 +

q 1
3

1
3 | 1

3n − 1
3m+1 || 1

3m − 1
3n+1 |

22

32(n+2) + 22

32(m+2) + r

− 1
32
| 1
3n
− 1

3m
|2

= p
1
32

(p− 1
32

)| 1
3n
− 1

3m
|2 +

q 1
3

1
3 | 1

3n − 1
3m+1 || 1

3m − 1
3n+1 |

22

32(n+2) + 22

32(m+2) + r

> 0

for all 1
9 ≤ p. Thus all the conditions of theorem 5.1 are satisfied except

the completeness of the subspace A(X) and B(X). Note that A and T have
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no coincidence point. Here it is interesting to note that in Theorem 5.1 the
completeness of the space can not ensure the existence of coincidence point
as the space X is complete in the given example. Also note that A and T
are not continuous at the origin.
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