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THE p-TH MOMENT EXPONENTIAL STABILITY OF

NEUTRAL STOCHASTIC FUNCTIONAL DIFFERENTIAL

EQUATIONS

SVETLANA JANKOVIĆ∗ AND MILJANA JOVANOVIĆ

Abstract. Since neutral stochastic functional differential equations are
essentially complex, it is not easy to study stability problems of their
solutions by applying usual procedures based on Lyapunov functionals.
In this paper we present criteria on the bases of which it is relatively
easy to verify the p-th moment exponential stability.

1. Introduction and preliminary results

It is well-known that stochastic modelling including Gaussian white noise
perturbations has played an important role in many areas of science and
engineering for a long time. Having in mind that the Gaussian white noise is
an abstraction, not a real phenomenon, which is mathematically described as
a formal derivative of a Brownian motion process, such stochastic modelling
is based on various stochastic differential equations of the Ito type. Some
of the most frequent and most important stochastic models are described
by very complex neutral stochastic functional differential equations. These
equations were introduced by Kolmanovskii and Nosov [3, 4] to study the
behavior of chemical engineering systems in which the physical and chemical
processes were distinguished by their complexity, and to explore the theory
of aeroelasticity in which aeroelastic efforts present an interaction between
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aerodynamic, elastic and inertial forces. Bearing in mind the complexity of
these equations, the main interest in the field has often been directed to the
existence, uniqueness and stability of their solutions. We refer the reader to
some of the papers and books by X. Mao [5, 7, 8, 9, 10], as well as [2, 4, 6, 12]
among others.

It is also well known that one of the classical and powerful techniques
applied in the study of stability problems is a stochastic version of the
Lyapunov direct method. However, this method is not very convenient in
applications due to the difficulty it causes on effectively finding Lyapunov
functionals. In this paper we present some direct and more applicable crite-
ria to study the p-th moment exponential stability, p ≥ 2, for a very general
neutral stochastic functional differential equation. In fact, we generalize the
results from paper [8] referring only to the exponential stability in mean
square. It should be pointed out that we shall use an elementary inequality,
basically different than the one from paper [8] and from other ones treating
a similar subject. This will enable us to study the p-th moment exponential
stability by applying the technique from [8].

The paper is organized as follows: In the continuation of this section
we introduce some basic notions and notations, analogous to the ones from
[8]. Then we present the neutral stochastic functional differential equation
which will be considered in the sequel. In Section 2 we give our main results,
sufficient conditions under which the trivial solution is the p-th moment
exponentially stable. We also give an example to illustrate the presented
theory.

Our initial assumption is that all random variables and processes are
defined on a complete probability space (Ω,F , {Ft}t≥0, P ) with a natural
filtration {Ft}t≥0 generated by a standard m-dimensional Brownian motion
w = {w(t), t ≥ 0}, w(t) = (w1(t), w2(t), . . . , wm(t)), i.e. Ft = σ{w(s), 0 ≤
s ≤ t}. Let the Euclidean norm be denoted by | · |. For a matrix A, let ||A||
be the operator norm of A, where ||A|| = sup{|Ax| : |x| = 1, x ∈ Rn}, and
AT the transpose of a vector or matrix A.

For a given τ > 0, let Lp([−τ, 0];Rn) be the family of Borel measurable
Rn-valued functions ϕ(s),−τ ≤ s ≤ 0, with the norm

||ϕ||Lp =

(
∫ 0

−τ
|ϕ(s)|p ds

)1/p

<∞.

Let also W([−τ, 0];R+) be the family of Borel measurable bounded non-

negative functions η(s),−τ ≤ s ≤ 0, such that
∫ 0
−τ η(s) ds = 1 (the weighting

functions), and GBF0
([−τ, 0];Rn) be the family of continuous bounded Rn-

valued stochastic processes ξ = {ξ(s),−τ ≤ s ≤ 0}, such that ξ(s) is F0-
measurable for every s (we require that Fs = F0 for −τ ≤ s ≤ 0).

The topic of our analysis is the following n-dimensional neutral stochastic
functional differential equation

(1) d[x(t) −G(xt)] = [f(t, x(t)) + g(t, xt)] dt+ σ(t, xt) dw(t), t ≥ 0
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with an initial data x0 = ξ = {ξ(s),−τ ≤ s ≤ 0} ∈ GBF0
([−τ, 0];Rn). The

coefficients of this equation are

G : Lp([−τ, 0];Rn) → Rn, f : R+ ×Rn → Rn,

g : R+ × Lp([−τ, 0];Rn) → Rn, σ : R+ × Lp([−τ, 0];Rn) → Rn ×Rm,

and xt = {x(t + s),−τ ≤ s ≤ 0} is an Lp([−τ, 0];Rn)-valued stochastic
process.

An Ft-adapted process x = {x(t),−τ ≤ t ≤ ∞} is said to be the solution
of Eq. (1) if it satisfies the initial condition and the corresponding integral
equation holds a.s., i.e. for every t ≥ 0,

x(t) −G(xt) = ξ(0) −G(x0) +

∫ t

0
[f(s, x(s)) + g(s, xs)] ds(2)

+

∫ t

0
σ(s, xs) dw(s) a.s.

Remember that in [4] Kolmanovskii and Nosov proved the basic existence-
and-uniqueness theorem under the following conditions: |G(ϕ) − G(φ)|2 ≤
k
∫ 0
−τ η(s)|ϕ(s) − φ(s)|2ds for all ϕ, φ ∈ L2([−τ, 0];Rn) and for a constant

k ∈ (0, 1), η(·) ∈ W([−τ, 0;R+); the linear growth condition and the usual
global condition, or in a weakened version local Lipschitz condition in the
second argument hold for f, g and σ. Moreover, if there exists the p-th mo-
ment for ξ, then sup−τ≤t<∞E|x(t; ξ)|p <∞ (for more details see [4, 9, 12]).
Since our investigation is devoted to stability problems, we always assume,
with no special emphasis on the conditions, that Eq. (1) has a unique
solution x(t; ξ) for arbitrary initial data ξ ∈ GBF0

([−τ, 0];Rn) satisfying
sup−τ≤t<∞E|x(t; ξ)|p < ∞, and that all Lebesgue’s and Ito’s integrals em-
ployed further are well defined.

We also need the following inequality in our investigation: For p ≥ 1,
x, y ∈ Rn and θ ∈ (0, 1),

(3) |x+ y|p ≤ |x|p
(1 − θ)p−1

+
|y|p
θp−1

.

The proof immediately holds by putting α = 1−θ
θ in the inequality (X.

Mao [11], Lemma 4.1): If p ≥ 1, x, y ∈ Rn and α > 0, then |x + y|p ≤
(1 + α)p−1(|x|p + α−(p−1)|y|p).

2. Main results

As it was mentioned in Section 1, we will study the p-th moment exponen-
tial stability of the solutions of Eq. (1), by mainly applying the procedures
from paper [8]. As usual, we assume that G(0) = 0, f(t, 0) ≡ 0, g(t, 0) ≡ 0
and σ(t, 0) ≡ 0, so that Eq. (1) admits a trivial solution x(t; 0) ≡ 0.

We first present an auxiliary result which is basically used in the proofs
of the forthcoming assertions. Note again that we suppose p ≥ 2.
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Lemma 1. Let there exist a constant k∈(0, 1) and a function η∈W([−τ, 0];
R+) such that the functional G : Lp([−τ, 0];Rn) → Rn satisfies the condition

(4) |G(ϕ)|p ≤ k

∫ 0

−τ
η(s) |ϕ(s)|p ds

for all ϕ ∈ Lp([−τ, 0];Rn). Let also {x(t),−τ ≤ t <∞} be an n-dimensional
stochastic process satisfying sup

−τ≤t<∞
E|x(t)|p < ∞, and for some constants

α > 0, δ ∈ [0, 1) and c > 0

(5) E|x(t) −G(xt)|p ≤ c e−αt + δ sup
t−τ≤s≤t

E|x(s)|p

for all t ≥ 0. If δ
1

p + k
1

p < 1, then

(6) lim sup
t→∞

lnE|x(t)|p
t

≤ −(α ∧ β),

where β = − p
τ ln(δ

1

p + k
1

p ) > 0.

Proof. By applying the inequality (3) for an arbitrary θ ∈ (0, 1), then (4)
and (5), we obtain

E|x(t)|p ≤ 1

(1 − θ)p−1
E|x(t) −G(xt)|p +

1

θp−1
E|G(xt)|p(7)

≤ 1

(1 − θ)p−1

[

c e−αt + δ sup
t−τ≤s≤t

E|x(s)|p
]

+
k

θp−1
E

∫ 0

−τ
η(s)|x(s+ t)|pds

≤ c

(1 − θ)p−1
e−αt +

[

δ

(1 − θ)p−1
+

k

θp−1

]

sup
t−τ≤s≤t

E|x(s)|p.

Let δ > 0 and θ =
k

1

p

δ
1

p + k
1

p

. Then

E|x(t)|p ≤ c (δ
1

p + k
1

p )p−1

δ
p−1

p

e−αt + (δ
1

p + k
1

p )p sup
t−τ≤s≤t

E|x(s)|p

= c1 e
−αt + (δ

1

p + k
1

p )p sup
t−τ≤s≤t

E|x(s)|p,

where c1 is a generic constant.
Let us denote that

ψk = sup
(k−1)τ≤t≤kτ

E|x(t)|p

for all k = 0, 1, 2, . . . Then, for k ≥ 1

ψk ≤ c1e
−α(k−1)τ + (δ

1

p + k
1

p )p (ψk−1 ∨ ψk).
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Let 0 < ε < α ∧ β be arbitrary. Then,

eεkτψk < c1e
ατ−(α−ε)kτ + (δ

1

p + k
1

p )peετ (eε(k−1)τψk−1 ∨ eεkτψk).

Since

max
1≤i≤k

(eεiτψi) ≤ c1e
ατ + (δ

1

p + k
1

p )peετ [ψ0 + max
1≤i≤k

(eεiτψi)],

and since (δ
1

p + k
1

p )peετ < (δ
1

p + k
1

p )peβτ = 1, then

max
1≤i≤k

(eεiτψi) ≤ C,

where C =
[

c1e
ατ + (δ

1

p + k
1

p )peετψ0

]

/
[

1 − (δ
1

p + k
1

p )peετ
]

> 0. Therefore,

ψk ≤ Ce−εkτ

for all k ≥ 1, which implies that

lim sup
k→∞

lnψk

kτ
≤ −ε.

By the definition of ψk it follows that

lim sup
t→∞

lnE|x(t)|p
t

≤ −ε.

Now the proof of this lemma, i.e., the relation (6), immediately holds letting
ε→ α ∧ β.

If δ = 0, we choose k < θ < 1, start form (7) and repeat the previous
procedure. Thus, the proof becomes complete. �

We can now give the conditions under which the trivial solution of Eq.
(1) is the p-th moment exponentially stable (for simplicity, we denote that
trace [BTB] = |B|2 for any matrix B).

Theorem 1. Let there exist a function η1(·) ∈ W([−τ, 0];R+) and a pair
of constants 0 ≤ λ2 < λ1 such that

p

2
|ϕ(0) −G(ϕ)|p−4

{

|ϕ(0) −G(ϕ)|2
[

2[ϕ(0) −G(ϕ)]T [f(t, ϕ(0)) + g(t, ϕ)]

+|σ(t, ϕ)|2
]

+ (p− 2)|[ϕ(0) −G(ϕ)]Tσ(t, ϕ)|2
}

(8)

≤ −λ1|ϕ(0)|p + λ2

∫ 0

−τ
η1(s) |ϕ(s)|p ds

for all t ≥ 0 and ϕ ∈ Lp([−τ, 0];Rn). Let also the condition (4) hold with
a constant k ∈ (0, 1) and a function η ∈ W([−τ, 0];R+). Then the p-th
moment Lyapunov exponent of the solution of Eq. (1) is not greater than
−(α ∧ β), that is,

(9) lim sup
t→∞

lnE|x(t; ξ)|p
t

≤ −(α ∧ β),
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where α ∈ (0, λ1 − λ2) is the unique root of the equation

(10) λ1 − 2p−1α− (2p−1αk + λ2) e
ατ = 0,

and β = − 1
τ ln k > 0.

Proof. For reasons of notational simplicity, we use x(t) instead of x(t, ξ)
to denote the solution of Eq. (1) for given initial data ξ ∈ GBF0

([−τ, 0];Rn).
By applying the Ito formula [1, 9] we have

E(eαt|x(t) −G(xt)|p) = E|ξ(0) −G(ξ)|p

+E

∫ t

0
αeαs|x(s) −G(xs)|p ds

+pE

∫ t

0
eαs|x(s) −G(xs)|p−2[x(s) −G(xs)]

T [f(s, x(s)) + g(s, xs)] ds

+pE

∫ t

0
eαs|x(s) −G(xs)|p−2[x(s) −G(xs)]

Tσ(s, xs) dws

+
p

2
E

∫ t

0
eαs|x(s) −G(xs)|p−2|σ(s, xs)|2 ds

+
p(p− 2)

2
E

∫ t

0
eαs|x(s) − g(xs)|p−4|[x(s) −G(xs)]

Tσ(s, xs)|2 ds.

Then (8) and (4) imply that

E(eαt|x(t) −G(xt)|p) ≤ E|ξ(0) −G(ξ)|p

+2p−1αE

∫ t

0
eαs[|x(s)|p + |G(xs)|p] ds(11)

+E

∫ t

0
eαs

(

−λ1|x(s)|p + λ2

∫ 0

−τ
η1(v)|x(s+ v)|pdv

)

ds

≤ E|ξ(0) −G(ξ)|p + [−(λ1 − 2p−1α)]E

∫ t

0
eαs|x(s)|pds

+2p−1αk E

∫ t

0
eαs

∫ 0

−τ
η(v)|x(s+ v)|p dv ds

+λ2E

∫ t

0
eαs

∫ 0

−τ
η1(v)|x(s+ v)|p dv ds.
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By replacing the order of integration we have
∫ t

0
eαs

∫ 0

−τ
η1(v)|x(s+ v)|pdv ds

=

∫ t

0
eαs

∫ s

s−τ
η1(v − s)|x(v)|pdv ds

=

∫ t

−τ

(

∫ (v+τ)∧t

v∨0
eαsη1(v − s) ds

)

|x(v)|pdv(12)

≤
∫ t

−τ
eα(v+τ)|x(v)|pdv

∫ 0

−τ
η1(s) ds

=

∫ t

−τ
eα(v+τ)|x(v)|pdv,

and similarly,

(13)

∫ t

0
eαs

∫ 0

−τ
η(v)|x(s+ v)|pdv ds ≤

∫ t

−τ
eα(v+τ)|x(v)|pdv.

By taking (12) and (13) into (11) we deduce that

E(eαt|x(t)−G(xt)|p) ≤ C1−[λ1−2p−1α−(2p−1αk+λ2) e
ατ ]

∫ t

0
eαsE|x(s)|pds,

where C1 = E|ξ(0) − G(ξ)|p + (2p−1αk + λ2) e
ατ
∫ 0
−τ E|ξ(s)|pds. Now, (10)

implies that

E|x(t) −G(xt)|p ≤ C1e
−αt,

so that the condition (5) is satisfied for δ = 0. Therefore, (6) follows imme-
diately by applying Lemma 1, which completes the proof. �

The fact that there exists a unique root α ∈ (0, λ1 − λ2) of the equation
(10) follows from the properties of the function h(α) = 2p−1α + (2p−1αk +
λ2)e

ατ − λ1: h(0) = λ2 − λ1 < 0, h(λ1 − λ2) > 0 and h′(α) > 0.

Theorem 2. Let there exist a function η1(·) ∈ W([−τ, 0];R+) and a pair
of constants 0 ≤ λ1 < λ2 such that

p

2
|ϕ(0) −G(ϕ)|p−4

{

|ϕ(0) −G(ϕ)|2
[

2[ϕ(0) −G(ϕ)]T [f(t, ϕ(0)) + g(t, ϕ)]

+|σ(t, ϕ)|2
]

+ (p− 2)|[ϕ(0) −G(ϕ)]Tσ(t, ϕ)|2
}

(14)

≤ λ1|ϕ(0)|p − λ2

∫ 0

−τ
η1(s) |ϕ(s)|p ds

for all t ≥ 0 and ϕ ∈ Lp([−τ, 0];Rn). Let also the condition (4) hold with a
constant k ∈ (0, 1) and a function η ∈ W([−τ, 0];R+). If

(15) λ2 <
(

1 − k
1

p

)p
/τ,
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then the p-th moment Lyapunov exponent of the solution of Eq. (1) is not
greater than −(α ∧ β), that is,

(16) lim sup
t→∞

lnE|x(t; ξ)|p
t

≤ −(α ∧ β),

where α ∈ (0, λ2 − λ1) is the unique root of the equation

(17) λ1 + 2p−1α(1 + keατ ) − λ2 = 0,

and β = − p
τ ln[(λ2τ)

1

p + k
1

p ] > 0.

Proof. Again, by applying the Ito formula, then (4) and (14), we find

E(eαt|x(t) −G(xt)|p) ≤ E|ξ(0) −G(ξ)|p(18)

+ (λ1 + 2p−1α)E

∫ t

0
eαs|x(s)|pds

+ 2p−1αk E

∫ t

0
eαs

∫ 0

−τ
η(v)|x(s+ v)|pdv ds(19)

− λ2E

∫ t

0
eαs

∫ 0

−τ
η1(v)|x(s+ v)|pdv ds.

Then,
∫ t

0
eαs

∫ 0

−τ
η1(v)|x(s+ v)|pdv ds

=

∫ t

−τ

(

∫ (v+τ)∧t

v∨0
eαsη1(v − s) ds

)

|x(v)|pdv

≥
∫ (t−τ)∨0

0

(
∫ v+τ

v
eαsη1(v − s) ds

)

|x(v)|pdv(20)

≥
∫ (t−τ)∨0

0
eαv|x(v)|pdv.

By taking (13) and (20) into (19) we finally obtain that

E(eαt|x(t) −G(xt)|p) ≤ C2 + [λ1 + 2p−1α(1 + keατ )]

∫ t

0
eαsE|x(s)|pds

− λ2E

∫ (t−τ)∨0

0
eαs|x(s)|pds

≤C2+[λ1+2p−1α(1+keατ )−λ2]

∫ t

0
eαsE|x(s)|pds

+ λ2τe
αt sup

t−τ≤s≤t
E|x(s)|p,

where C2 = E|ξ(0) − G(ξ)|p + 2p−1αkeατ
∫ 0
−τ E|ξ(s)|pds. But (17) implies

that
E|x(t) −G(xt)|p ≤ C2e

−αt + λ2τ sup
t−τ≤s≤t

E|x(s)|p,
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and since (5) holds, the proof of this theorem immediately follows by virtue
of Lemma 1. �

To conclude that α is a unique root of the equation (17) over (0, λ2 −λ1),
we will proceed as above: h(α) = λ2 − λ1 − 2p−1α(1 + keατ ) and h(0) =
λ2 − λ1 > 0, h(λ2 − λ1) < 0 and h′(α) < 0.

We now use Theorem 1 to estabilish an applicable corollary.

Corollary 1. Let (4) hold with k ∈ (0, 1) and η(·) ∈ W([−τ, 0];R+). Let
there also exist positive constants l1, l2, l3, l4 and functions η1(·), η2(·) ∈
W([−τ, 0];R+) such that

xT f(t, x) ≤ −l1|x|2, |f(t, x)|2 ≤ l2|x|2,(21)

|g(t, ϕ)|p ≤ l3

∫ 0

−τ
η1(s)|ϕ(s)|pds, |σ(t, ϕ)|p ≤ l4

∫ 0

−τ
η2(s)|ϕ(s)|pds(22)

for all t ≥ 0, x ∈ Rn and ϕ ∈ Lp([−τ, 0];Rn). Let also the following
condition be valid:

0 ≤ (p+ 2)
(

√

kl2 +
√

kl3
)

+ 4
[

√

kl3 +
√

l3 + (p− 1)l4
]

+k(p− 2)

(

− 2l1 +
√

kl2 +
√

l3 +
1 +

√
k√

l3
+ p− 1

)

(23)

< (p+ 2)
(

2l1 −
√

kl2 −
√

l3
)

− (p− 2)

(√
l2 +

√
l3√

k
+

1 +
√
k√

l3
+ p− 1

)

Then the trivial solution of Eq. (1) is the p-th moment exponentially stable.

Proof. If we put

I1(t) ≡ [ϕ(0) −G(ϕ)]T [f(t, ϕ(0)) + g(t, ϕ)]

≤ ϕT (0) · f(t, ϕ(0)) + |G(ϕ)| · |f(t, ϕ(0))| + |ϕ(0)| · |g(t, ϕ)|
+|G(ϕ)| · |g(t, ϕ)|,

I2(t) ≡ |σ(t, ϕ)|2,
I3(t) ≡ |[ϕ(0) −G(ϕ)]Tσ(t, ϕ)|2

≤ |ϕ(0) −G(ϕ)|2 · |σ(t, ϕ)|2,

the left hand side in (8) becomes

I(t) ≡ p

2
|ϕ(0) −G(ϕ)|p−4

[

|ϕ(0) −G(ϕ)|2
(

2I1(t) + I2(t)
)

+ (p− 2)I3(t)
]

≤ p |ϕ(0) −G(ϕ)|p−2
[

ϕT (0) · f(t, ϕ(0)) + |G(ϕ)| · |f(t, ϕ(0))|
+|ϕ(0)| · |g(t, ϕ)| + |G(ϕ)| · |g(t, ϕ)| + 2(p− 1)|σ(t, ϕ)|2

]

.
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By using the inequalities (|a| + |b|)p−2 ≤ 2p−3(|a|p−2 + |b|p−2) and |a| · |b| ≤
(|a|2 + |b|2)/2, we deduce that

I(t) ≤ p 2p−4
[

|ϕ(0)|p−2 + |G(ϕ)|p−2
]

[

− 2l1|ϕ(0)|2 +

√

l2
k
|G(ϕ)|2

+

√

k

l2
|f(t, ϕ(0))|2 +

√

l3|ϕ(0)|2 +
1√
l3
|g(t, ϕ)|2 +

√

l3
k
|G(ϕ)|2

+

√

k

l3
|g(t, ϕ)|2 + (p− 1)|σ(t, ϕ)|2

]

.

Now, we can apply Young inequality (|a|p)
2

p (|b|p)
p−2

p ≤ 2
p |a|p + p−2

p |b|p to

estimate the terms of the form |a|2|b|p−2, then use (21) and (22) and finally
obtain

I(t) ≤ 2p−4

{[

(p+ 2)
(

− 2l1 + (
√

kl2 +
√

l3
)

+(p− 2)

(√
l2 +

√
l3√

k
+

1 +
√
k√

l3
+ p− 1

)]

|ϕ(0)|p

+

[

k(p− 2)

(

− 2l1 +
√

kl2 +
√

l3 +
1 +

√
k√

l3
+ p− 1

)

+(p+ 2)
(

√

kl2 +
√

kl3
)

]

∫ 0

−τ
η(s)|ϕ(s)|pds

+4
(

√

kl3 +
√

l3
)

∫ 0

−τ
η1(s)|ϕ(s)|pds

+4(p− 1)l4

∫ 0

−τ
η2(s)|ϕ(s)|pds

}

≡ d1|ϕ(0)|p +

∫ 0

−τ

[

d2η(s) + d3η1(s) + d4η2(s)
]

|ϕ(s)|pds,

where d1, d2, d3, d4 are some generic constants. Therefore,

I(t) ≤ d1|ϕ(0)|p + (d2 + d3 + d4)

∫ 0

−τ
η3(s)|ϕ(s)|pds,

where η3(s) = d2η(s)+d3η1(s)+d4η2(s)
d2+d3+d4

and η3(·) ∈ W([−τ, 0];R+).

On the basis of (23) we deduce that d1 ≤ 0 and d2 + d3 + d4 > 0. If we
put λ1 = −d1, λ2 = d2 + d3 + d4, we also find that 0 ≤ λ2 < λ1. Thus, all
the conditions of Theorem 1 are valid and, therefore, the trivial solution of
Eq. (1) is the p-th moment exponentially stable. This completes the proof.
�
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Note that for p = 2 the condition (23) is reduced to 2l1 > 2
√
kl2+2

√
kl3+

2
√
l3 + l4, i.e. to the one from paper [8].
Note also that a corollary based on Theorem 2 cannot be analogously

formulated because it is not possible to obtain d1 +d2 +d3 < 0 by using the
previous procedure.

We conclude the paper by an example to illustrate the previous theoretical
considerations.

Example. Let us determine sufficient conditions under which the trivial
solution of Eq. (1) is the p-th moment exponentially stable. We suppose
that w(t) is a one-dimensional Brownian motion and

f(t, x(t)) = −
( [

a+ 1
1+|x2(t)|

]

x1(t)

a x2(t)

)

,

G(xt) =
k

1

p

τ

∫ 0

−τ

(

sin(x1
t (s))

− sin(x2
t (s))

)

ds,

g(t, xt) = θ

∫ 0

−τ

(

ln[1 + x1
t (s)]

−x2
t (s)

)

ds,

σ(t, xt) =
γ3

1

p

τ
2

p

∫ 0

−τ
s

2

p

(

x1
t (s)
x2

t (s)

)

ds,

where a > 0, 0 < k < 1, θ, γ are constants and x(t) = (x1(t), x2(t))T ,
xt(s) = (x1

t (s), x
2
t (s))

T . It is easy to check that

(x(t))T f(t, x(t)) ≤ −a |x(t)|2,
|f(t, x(t))|2 ≤ (a+ 1)2|x(t)|2,

so that l1 = a, l2 = (a + 1)2. Likewise, by applying Hölder inequality we
have

|G(xt)|p ≤ k

τp
τp−1

∫ 0

−τ
|xt(s)|p ds = k

∫ 0

−τ

1

τ
|xt(s)|p ds,

|g(t, xt)|p ≤ (θτ)p

∫ 0

−τ

1

τ
|xt(s)|p ds,

|σ(t, xt))|p ≤ (γτ)p

∫ 0

−τ

3

τ3
s2|xt(s)|p ds,

so that l3 = (θτ)p, l4 = (γτ)p, η(s) = η1(s) ≡ 1/τ , η3(s) = 3s2/τ3. By using
the condition (23) from Corollary 1, we conclude that the trivial solution
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will be the p-the moment exponentially stable if

0 ≤ (p+ 2)
√
k
[

a+ 1 + (θτ)
p

2

]

+ 4
[√

k(θτ)
p

2 + (θτ)
p

2 + (p− 1)(γτ)p
]

+(p− 2)
√
k

[

−2a+
√
k(a+ 1) + (θτ)

p

2 +
1 +

√
k

(θτ)
p

2

+ p− 1

]

< (p+ 2)
[

2a−
√
k(a+ 1) − (θτ)

p

2

]

−(p− 2)

[

a+ 1 + (θτ)
p

2

√
k

+
1 +

√
k

(θτ)
p

2

+ p− 1

]

.

Let us specify p = 4, θ = γ = 1/4, for example. Then, from the previous
relation we find that

a ≡ h(k, τ) >
1

2(1 −
√
k)(5

√
k + k

√
k − k − 1)

·
[

32

τ2
(k2 + k + k

√
k +

√
k)

+
τ2

8

(

5k + k
√
k +

43

8

√
k + 1

)

+ 2k2 + 12k + 6k
√
k + 6

√
k + 2

]

,

where 5
√
k + k

√
k − k − 1 > 0, i.e. k ∈ (0.04271, 1). In Figure 1 the plot
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Figure 1. Graph of the function a = h(k, τ), for k ∈
(0.0427, 1) and τ ∈ (0, 100)

a = h(k, τ) is given for k ∈ (0.0427, 1), τ ∈ (0, 100). Clearly, all points
(k, τ, a) over this plot represent the area of the fourth moment exponential
stability of the considered equation. Let us analyze this area.

For a fixed k ∈ (0.04271, 1), if τ goes to zero, then a increases very quickly.
In Figure 2 a dependence between τ and a is represented for k = 0.5. So, for
τ = 0.5, for example, we find a > 16571.2. It can be shown that for every
k ∈ (0.04271, 1) the least a is obtained for τ ∈ (2, 4). Thus, for k = 0.5,
τ = 2.4, for example, we find a > 21.2617. If k increases, then a increases
too, which can be seen in Figure 1 and Figure 3.
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τ

a

5 10 15

176.332

270.695

Figure 2. Graph of the function a = h(0.5, τ)

k

a

0.2 0.4 0.6 0.8 1

683.14

18.2598

1094.3

Figure 3. Graph of the function a = h(k, 5)

For a fixed τ , τ = 5, for example, and for k close to 0.04271, parameter a
is very big, but it decreases very quickly if k increases up to the minimum
point k = 0.192764, a = 18.2598 (see Figure 3). After that, if k > 0.192764
parameter a increases and, clearly, the stability area is a > h(k, 5).
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