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COMPARABILITY OF PARTIAL DIFFERENTIAL
OPERATORS AND MANIFOLD LINEARITY

AL-MOMANI RAID

Abstract. The comparison of differential operators is a problem that
was formulated in sixties by Lars Hormander, it is a part of the theory of
partial differential operators with constant coefficients, this problem up
to now does not have a complete solution.The urgency of this problem
is stipulated by the applications of the solvability theory of differential
equations in special spaces of generalized functions.

In this paper we prove some results in the manifold linearity of a
polynomial, these results play an important role in the comparison of
two linear partial differential operators problem.

1. Introduction

Let Rn be the n-dimensional Euclidean space and let Cn = C× ......×C
be the Cartesian product of n-complex planes C , for x = (x1, ......, xn) from
Rn , set
|x| = (x2

1 + ..... + x2
n)

1
2 , the scalar product in Rn is denoted by (., .)Rn .

Let PolC(n, m) be the set of all polynomials of n variables with complex
coefficients of order at most m. Each such polynomial P (ξ) can be written
in the form

(1.1) P (ξ) =
∑
α

Cαξ
α
,

and by PolR (n,m) we denote the set of all polynomials of n variables with
real coefficients of order m.
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PolC (n, m) and PolR (n,m) are vector spaces of (m+n)!
m!n! dimension over

the fields C and R respectively. We have the vector space PolC (n,m) as a
complexification of the space PolR (n,m). It is helpful to take into account
the following construction. On the direct sum PolR (n,m)⊕PolR (n,m) we
introduce the complex lattice L using the formula

L (P (ξ), Q(ξ)) = (−Q(ξ), P (ξ)).

Identifying PolR (n, m) with the subset of vectors of the form (P (ξ), θ) in
PolR (n,m)⊕ PolR (n,m) and using the fact that

i(P (ξ), θ) = L(P (ξ), θ) = (θ, P (ξ)),

we can write any vector from PolC (n, m) in the form

(P (ξ), Q(ξ)) = P (ξ) + iQ(ξ).

The last sum is a line over R , but not over C.
The standard notation of such constructions is

PolC(n,m) = C ⊕R PolR(n,m).

Lemma 1.1 Any basis PolR(n,m) over R will be basis for PolC(n,m)
over C.It is sometimes said that R (subspace of PolR(n,m) ) is a real form
of the space PolC(n, m).

Linear partial differential operators with complex coefficients take the
form

(1.2) P (∂) =
∑
α

C
α
∂

α

where C
α

are complex numbers.These operators can be obtained from the
polynomial P (ξ) ∈ PolC(n,m) by a formal substitution ξi → ∂i , 1 ≤ i ≤ n.
On the functions of C∞ class its action is defined by the following rule

C∞ 3 ϕ → P (∂)ϕ =
∑
α

C
α
∂

α

ϕ ∈ C∞.

The correspondence
PolC(n,m) 3 P (ξ) → P (∂) ∈ DiffC(n,m)

is linear and isomorphic by virtue of the formula

(1.3) P (ξ) = e−(x,ξ)Rn P (∂)e(x,ξ)Rn

where (x, ξ)Rn is the scalar product in Rn. DiffC(n,m) is by definition the
set of all linear partial differential operators with constant complex coeffi-
cients.
Definition 1.1[2,5] Hormander’s function of the polynomial P (ξ) is called
the function P̃ (ξ) defined by the formula
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(1.4) P̃ (ξ) =
√∑

α

∣∣∂α
P (ξ)

∣∣2.

Definition 1.2 Let P (∂), Q(∂) ∈ DiffC(n, m) . If
eQ(ξ)
eP (ξ)

< C, ξ ∈ R, we shall
say that Q is weaker than P and write Q < P, or that P is stronger than Q
and write P > Q. If P < Q < P, the operators are called equally strong.

Definition 1.2 assigns a partial order on the set PolC(n,m) . Not all poly-
nomials are comparable with each other.

The motivation of introducing definition 1.2 is in the following :
Definition 1.3 A positive function k defined in Rn will be called a temper-
ate weight function if there exist positive constants C and N such that

k(ξ + ζ) ≤ K(1 + C |ξ|)Nk(ζ); ξ, ζ ∈ Rn.

The set of all such functions K will be denoted by K.

The main examples of such functions are Hormander’s functions. With
the help of weight functions of K class, an important class of functional
spaces in the theory of differential equations can be constructed, these classes
of functional spaces are denoted by BP,k(Rn) and their local versions are
denoted by Bloc

p,k(R
n).

We remind here the definition of the Bp,k(Rn) space . The definition of
other spaces that we will use can be found in [1,2,3].
Definition 1.4 If k ∈ K and 1 ≤ P ≤ ∞, we denote by Bp,k(Rn) the set of

all distributions u ∈ S′(Rn) such that the Fourier transform
∧
u is a function

and
‖u‖p,k = ((2π)−n

∫

Rn

|k(ξ)û(ξ)|p dξ)1/p < +∞.

When p = ∞, we shall interpret ‖u‖p,k as

ess sup |k(ξ)û(ξ)| .

Consider the equation

(1.5) P (∂)u = f, f ∈ E′(Rn).

The role of Hormander’s weight function P̃ (ξ) of the operator P (∂) is ex-
plained by the following result [1].
Theorem 1.1 Let u ∈ E′, k ∈ K and 1 ≤ p ≤ ∞. The inclusion u ∈ Bp,k

holds if and only if P (∂)u ∈ Bp,k.Let Bc
p,k = BLoc

p,k ∩ E′(Rn).

Theorem 1.2 Let f ∈ Bc
p,k . If Q < P , then, for the solution u = E ∗ f of

equation (1.5), where E is a fundamental solution, the following inclusion
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Q(∂)u ∈ BLoc
p,k is correct. The converse is true, if for some k ∈ K, and

1 ≤ p ≤ ∞, equation (1.5) has the solution u such that Q(∂)u ∈ BLoc
p,k for

each f ∈ Bc
p,k , then Q < P.

This theorem and the next completely motivate the role of definition 1.2
in the theory of differential equations with constant coefficients, see [2].
Theorem 1.3 If k ∈ K and 1 ≤ p ≤ ∞, then the condition Q < P is
equivalent to the following statement: the inclusions u ∈ E′ and P (∂)u ∈
Bp,k imply Q(∂)u ∈ Bp,k. In Summary we can say that the distribution
Q(∂)u is vaild if and only if it has the same smoothness of P (∂)u, when
Q < P.

2. Definitions and Auxiliary Constructions

Let C {x1, . . . , xn} be the set of all formal power series of the unknowns
x1, . . . , xn with complex coefficients. Any element f ∈ C {x1, . . . , xn} has
the form

f =
∑
α

aαx
α
.

For each element f ∈ C {x1, . . . , xn} we set

‖f‖t =
∑

|aα | tα1
1 . . . tαn

n ,

where t = (t1, . . . , tn) ∈ IRn
+ is a fixed collection from n positive numbers.

Let Bt < x1, . . . , xn >= {f ∈ C {x1, . . . , xn} : ‖f‖t < +∞} . It’s known
that Bt is Banach C−algebra, that is, Bt is a complex normed space over C
with the norm ‖.‖t and for any f, g ∈ Bt, we have

‖f · g‖t ≤ ‖f‖t · ‖g‖t

The algebra Bt does not have zero divisors. C [x1, . . . , xn] is the algebra of
polynomials, that is, a subspace C {x1, . . . , xn} composed from these formal
series f which have only a finite number of coefficients {aα}α∈Z , other than
zero.

The algebra of polynomials is dense in any algebra Bt < x1, . . . , xn >
see[4].
Definition 2.1 The formal series f ∈ C {x1, . . . , xn} is consedered conver-
gent if f ∈ Bt for some t ∈ IRn

+. The set of all convergent power series is
denoted by

C < x1, . . . , xn >= Cn < x >, n > 0.

The system which forms the algebra Diff C(n, m) will be denoted by
∂1, . . . , ∂n . It’s clear that the symbols ∂1, . . . , ∂n are pairwise commutative
and

∂
m+1
i = 0, i = 1, . . . , n.

The space PolC(n,m) has the dimension υ = (m+n)!
m! n! .
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We denote by τ
ξ

the linear operator of translation on the vector ξ ∈ Cn

acting by the formula

PolC(n,m) 3 P (ξ) → P (ξ + ζ) ∈ PolC(n, m).
The following formula is correct :

(2.1)
∥∥τ

ξ
P

∥∥
0

=

√∑
α

1
α!

∣∣∣(∂
α

P )(ξ)
∣∣∣
2

.

The space PolC(n,m) provides the standard structure of a Hilbert space.
For any two elements P (ξ) and Q(ξ) from PolC(n,m) we put

(P, Q)0 =
∑
α

1
α!

(∂
α

P )(0)(∂
α

Q)(0) ,

which is the scalar product that will generate on PolC(n,m) the norm

‖P‖0 =

√∑
α

1
α!

∣∣∣(∂
α

P )(0)
∣∣∣
2

.

Lemma 2.1 The polynomial Q is weaker than the polynomial P if and only
if

‖τQ‖0 ≤ C ‖τP‖0

for all ξ ∈ Rn with C > 0, where C is a constant depending only on P and
Q.

Proof. The proof is immediately implied from (2.1) and definition 1.2.

Definition 2.2:[5] C− mainfold linearity of the polynomial P ∈ PolC(n,m)
is called the set

ΛCn(P ) = {ζ ∈ Cn : P (ξ + ζ) = P (ξ) for all ξ ∈ Rn}
R− mainfold linearity of the polynomial P is called the set

ΛRn(P ) = {ξ ∈ Rn : P (x + ξ) = P (x) for all x ∈ Rn} .

For justification of the terminology introduced in definition 2.1 we will
prove that ΛCn(P ) and ΛRn(P ) are vector subspaces of Cn and Rn respec-
tively.

In the algebra DiffC(n,m) we consider the operators of class

V (ζ) =
∑

|α|≤m

ζα1
1 . . . ζαn

n

α1! . . . αn!
∂

α1

1 . . . ∂
αn

n , ζ ∈ Cn.

By virtue of Taylor’s formula we have
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P (ξ + ζ) =
m∑

k=0

1
k!

(ζ1∂1 + . . . + ζn∂n)kP (ξ) =

= V (ζ)P (ξ) = (eζ1∂1+...+ζn∂nP )(ξ).

Lemma 2.2 The sets ΛCn(P ) and ΛRn(P ) are vector subspaces.

Proof. We will prove that ΛCn(P ) is a vector subspace in Cn . In the algebra
DiffC(n,m) we consider the equality

eζ1∂1+...+ζn∂n =
m∑

k=0

1
k!

(ζ1∂1 + . . . + ζn∂n)k.

Taking the logarithm for both sides we have

ζ1∂1 + . . . + ζn∂n = Log(1 + eζ1∂1+...+ζn∂n − 1) =

= (eζ1∂1+...+ζn∂n − 1)(
m∑

k=0

(−1)k−1

k
(eζ1∂1+...+ζn∂n − 1)k−1).

The operator

σζ(∂) =
m∑

k=0

(−1)k−1

k
(eζ1∂1+...+ζn∂n − 1)k−1

is invertible in the algebra since σζ(0) 6= 0. Consequently,

ΛCn(P ) =
{

ζ ∈ Cn : (eζ1∂1+...+ζn∂n − 1)P (ξ) ≡ 0, for all ξ ∈ Rn
}

=

= {ζ ∈ Cn : ζ1(∂1P )(ξ) + . . . + ζn(∂nP )(ξ) = 0, for all ξ ∈ Rn}
by virtue of invertibility of the operator σζ(∂) for each ζ ∈ Cn. Hence directly
implies the conclusion of the lemma ¥.

Let Λ′Rn(P ) be some subspace in Rn complementary to ΛRn(P ), so that
the direct sum holds

Rn = ΛRn(P )⊕ Λ′Rn(P ).

We choose a basis a1, . . . , an in Rn so that the vectors a1, . . . , ap form the
basis of Λ′Rn(P ) and the vectors ap+1, . . . , an form the basis of ΛRn(P ). By
l1, . . . , ln we denote the natural basis of the space Rn, by x1, . . . , xn we
denote the coordinates of vector x in an expansion in the basis l1, . . . , ln,
and the coordinates of the same vector x, in the basis a1, . . . , an we denote
by (x)1, . . . , (x)n.
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Hence

x =
n∑

i=1

xili, x =
n∑

i=1

(x)ia
i

from where we have

(x, aj)Rn =
n∑

i=1

xi(li, aj)Rn = (x)j

(x, lj)Rn =
n∑

i=1

(x)i(ai, lj)Rn = xj .

Let A be the linear operator corresponding to the square matrix
{
(aj , li)Rn

} 1 ≤ i ≤ n
1 ≤ j ≤ n

,

AT is the transposed operator. By definition we assume
[
ai, ∂

]
= (l1, ai)Rn∂1 + . . . + (ln, ai)Rn∂n

With each linear operator A : Rn → Rn we connect the linear operator
An : PolC(n,m) → PolC(n,m) assuming that

PolC(n,m) 3 P (ξ) → P (Aξ) ∈ PolC(n,m).

Lemma 2.3 The polynomial Q is weaker than the polynomial P if and only
if the polynomial AnQ is weaker than the polynomial AnP , if the matrix A
is invertible.

Proof. If Q is weaker than P, then
∥∥τ

ξ
Q

∥∥
0
≤ C

∥∥τ
ξ
P

∥∥
0
, ξ ∈ Rn

hence ∥∥τ
Aξ

Q
∥∥

0
≤ C

∥∥τ
Aξ

P
∥∥

0
, ξ ∈ Rn.

Since An is an automorphism of PolC(n,m), then

(2.2)
∥∥Anτ

Aξ
Q

∥∥
0
≤ C ′ ∥∥τ

Aξ
Q

∥∥
0
≤ C ′′ ∥∥τ

Aξ
P

∥∥
0
≤ C ′′′ ∥∥Anτ

Aξ
Q

∥∥
0
.

Now note that

τ
ξ
AnQ = Anτ

Aξ
Q

τ
ξ
AnP = Anτ

Aξ
P

from (2.3) implies that∥∥τ
ξ
AnQ

∥∥
0
≤ C

∥∥τ
ξ
AnP

∥∥
0

, for all ξ ∈ Rn¥.

Now we choose the operator A which defines the square matrix
{
(aj , li)Rn

} 1 ≤ i ≤ n
1 ≤ j ≤ n

,
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and we put AnP (ξ) = P∆((ξ)1, . . . , (ξ)n), where (ξ)1, . . . , (ξ)n are the coor-
dinates of the vector ξ in the basis a1, . . . , an.

Corollary 2.1 The polynomial Q(ξ) is weaker than the polynomial P (ξ) if
and only if the polynomial Q∆((ξ)) is weaker than the polynomial P∆((ξ)).

Lemma 2.4 If the polynomial Q is weaker than the polynomial P, then

ΛRn(P ) ⊆ ΛRn(Q).

Proof. By virtue of the lemma proposition∥∥τ
ξ
Q

∥∥
0
≤ C

∥∥τ
ξ
P

∥∥
0
, ξ ∈ Rn

let ξ ∈ ΛRn(P ), then
∥∥τ

ξ
Q

∥∥
0
≤ C ‖P‖0 , ξ ∈ Rn, from which

∥∥τ
ξ
Q−Q

∥∥2

0
≤ (2C)2 ‖P‖2

0

for any ξ ∈ ΛRn(P ). If ΛRn(P ) = {θ} , then there is nothing to prove.
Otherwise the mapping

ΛRn(P ) 3 ξ → ∥∥τ
ξ
Q−Q

∥∥2

0

is a polynomial on the vector space ΛRn(P ) which is bounded above. By
the Liouville theorem it must be reduced to a constant. It is clear that this
constant equals zero, since at the point ξ = θ this polynomial equals zero.
So τ

ξ
Q = Q if ξ ∈ ΛRn(P )¥.

Thus, if Q < P, we can always choose the basis a1, . . . , an so that the part
a1, . . . , as of the basis a1, . . . , ap, s ≤ p form the basis of Λ′Rn(Q).

According to this we have dimΛ′Rn(Q) = s,dim Λ′Rn(P ) = p.
Now note that

P∆((ξ)1, . . . , (ξ)p, (ξ)p+1 + (ζ)p+1, . . . , (ξ)n + (ζ)n) = P∆((ξ)1, . . . , (ξ)n)

for all (ξ)1, . . . , (ξ)n and ((ζ)p+1, . . . , (ζ)n).
Consequently

P∆((ξ)1, . . . , (ξ)n) = P∆((ξ)1, . . . , (ξ)p, 0, . . . , 0)

Similarly,

Q∆((ξ)1, . . . , (ξ)n) = Q∆((ξ)1, . . . , (ξ)s, 0, . . . , 0).

Definition 2.3 The polynomial P (ξ) is called complete if

ΛRn(P ) = {θ} .

Definition 2.4 For each polynomial P (ξ) ∈ PolC(n,m) we denote by
spanC(τRn (P )) the linear span of translations {P (ξ + x) : x ∈ Rn} .

Definition 2.4 The polynomial P (ξ) is called regular if
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dim[spanC(τRn(P∆))] =
(m + p)!

m!p!

where p = dim Λ′Rn(P ).

3. The Mainfold Linearity of a Polynomial

By the Definition of [ai, ∂] we have

n∑

i=1

Ci(e[ai,∂]p)(ξ) =
n∑

i=1

Cip(ξ + ai)

for any C1, . . . . . . , Cn ∈ C.

Lemma 3.1 If

(3.1)
n∑

i=1

Ci(e[ai,∂] − 1)p(ξ) = 0, ∀ ξ ∈ Rn,

then

(3.2)
n∑

i=1

Ci(e[ai,∂] − 1)qp(ξ) = 0, ∀ ξ ∈ Rn

and any natural number q ∈ N.

Proof. Newton’s binomial formula

(e[ai,∂] − 1)q =
q∑

j=0

(
q

j

)
(−1)je(q−j)·[ai,∂]

allows us to prove this lemma by mathematical induction.
We assume that the conclusion of the lemma holds for all s ≤ q, that is

(3.3)
n∑

i=1

Ci(e[ai,∂] − 1)sp(ξ) ≡
n∑

i=1

Ci[
s∑

j=0

(
s

j

)
(−1)jp(ξ + (s− j)aj)] ≡ 0

for all ξ ∈ Rnand s ≤ q. We will prove (3.3) for s = q + 1.

We will use that
(
q+1

j

)
=

(
q
j

)
+

(
q

j−1

)
, Then for any i, 1 ≤ i ≤ n we have
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q+1∑

j=0

(−1)j

(
q + 1

j

)
p(ξ + (q − j + 1)ai)

=
q∑

j=0

(−1)j

(
q + 1

j

)
p(ξ + (q − j + 1)ai) + (−1)q+1p(ξ)

=
q∑

j=1

(−1)j

(
q + 1

j

)
p(ξ + (q − j + 1)ai) + p(ξ + (q + 1)ai) + (−1)q+1p(ξ)

=
q∑

j=1

(−1)j

(
q

j

)
p(ξ + (q − j + 1)ai) +

q∑

j=1

(−1)j

(
q

j − 1

)
p(ξ + (q − j + 1)ai)

+p(ξ + (q + 1)ai) + (−1)q+1p(ξ).(3.4)

In the second sum we make the following exchange j − 1 = s and we
transform it to the following form

q∑

j=1

(−1)j

(
q

j − 1

)
p(ξ + (q − j + 1)ai)

= (−1)
q−1∑

j=0

(
q

j

)
(−1)jp(ξ + (q − j)ai)

which gives

q∑

j=1

(−1)j

(
q

j − 1

)
p(ξ + (q − j + 1)ai) + (−1)q+1p(ξ)

= (−1)
q∑

j=0

(
q

j

)
(−1)jp(ξ + (q − j)ai)(3.5)

Furthermore

q∑

j=1

(
q

j

)
(−1)jp(ξ + (q − j + 1)ai) + p(ξ + (q + 1)ai)

=
q∑

j=0

(
q

j

)
(−1)jp(ξ − j + 1)ai)

=
q∑

j=0

(
q

j

)
(−1)jp((ξ + ai) + (q − j)ai).(3.6)

Thus (3.4) is transformed into the sums of the right-side parts of (3.5) and
(3.6) .
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By the assumption of induction we have

(−1)
n∑

i=1

Ci[
q∑

j=0

(
q

j

)
(−1)jp(ξ + (q − j)ai)] ≡ 0

for all ξ ∈ Rn.
Multiplying both parts of (3.6) by Ci and taking the sum by i from 1 to

n we get

n∑

i=1

Ci[
q∑

j=0

(
q

j

)
(−1)jp(ξ + ai) + (q − j)ai)] ≡ 0

for all ξ ∈ Rn (also by the assumption of induction)¥.

We put

Li(∂) =
m∑

k=1

(−1)k

k + 1

(
e[ai,L1]∂1+.........+[ai,Ln]∂n − 1

)k+1
,

then

(3.7) [ai, ∂] = (e[ai,∂] − 1) + Li(∂)

for any i, i = 1, . . . . . . , n.

Lemma 3.2 For any complex ζ1, . . . . . . , ζn the following formula holds
n∑

i=1

ζi(∂ip)(ξ) =
n∑

i=1

(ζ)i(p(ξ + ai)− p(ξ)) +
n∑

i=1

(ζ)iLi(∂)p(ξ)

Proof. The proof is facilitated by elementary calculations taking into ac-
count (3.7)¥.

Theorem 3.1 The maps

γC :
n∑

i=1

ζi(∂ip)(ξ) →
n∑

i=1

(ζ)i(p(ξ + ai)− p(ξ))

γR :
n∑

i=1

xi(∂ip)(ξ) →
n∑

i=1

(x)i(p(ξ + ai)− p(ξ))

are correct, moreover

Ker γC = ΛCn(p), Ker γR = ΛRn(p).
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Proof. Consider the map γC.

Let
n∑

i=1
ζi(∂ip)(ξ) ≡ 0, for all ξ ∈ Rn.By virtue of Lemma 2.2 we have

ζ = (ζ1, . . . . . . , ζn) 3 ΛCn(p). Consequently,

(ζ)1 = (ζ)2 = . . . . . . = (ζ)p = 0.

Note that
n∑

i=1

(ζ)i(p(ξ + ai)− p(ξ)) ≡
p∑

i=1

(ζ)i(p(ξ + ai)− p(ξ))

for all ξ ∈ Rn, since
p(ξ + ai) = p(ξ),∀ξ ∈ Rn

for i = p + 1, . . . . . . , n . (ai ∈ ΛRn(p), i = p + 1, . . . . . . , n) So,

n∑

i=1

(ζ)i(p(ξ + ai)− p(ξ)) ≡ 0, ∀ ξ ∈ Rn.

This means that γC is correct ;
γC(θ) = θ. Ker γC = ΛCn(p) is implied by lemmas (3.1) and (3.2)¥.
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