Available at:

```
www.pmf.ni.ac.yu/sajt/publikacije/publikacije_pocetna.html
```

Filomat 20:2 (2006), 101-105

A LITTLEWOOD-PALEY TYPE INEQUALITY FOR HARMONIC FUNCTIONS IN THE UNIT BALL OF \mathbb{R}^{N}

OLIVERA DJORDJEVIĆ

Abstract. It is proved the following: If u is a function harmonic in the unit ball $B \subset \mathbb{R}^{N}$, and $0<p<1$, then there holds the inequality

$$
\sup _{0<r<1} \int_{\partial B}|u(r y)|^{p} d \sigma \leq|u(0)|^{p}+C_{p, N} \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) .
$$

In the case $p>(N-2) /(N-1)$, this was proved by Stević [17].

Let $\mathbb{R}^{N}(N \geq 2)$ denote the N-dimensional Euclidean space. In [17], Stević proved that if u is a function harmonic in the unit ball $B \subset \mathbb{R}^{N}$, and $\frac{N-2}{N-1} \leq p<1$, then there holds the inequality

$$
\begin{equation*}
\sup _{0<r<1} M_{p}^{p}(r, u) \leq C_{1}|u(0)|^{p}+C_{2} \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) . \tag{1}
\end{equation*}
$$

Here $d V$ denotes the Lebesgue measure in \mathbb{R}^{N} normalized so that $V(B)=1$, and as usual

$$
M_{p}^{p}(r, u)=\int_{\partial B}|u(r y)|^{p} d \sigma
$$

where $d \sigma$ is the normalized surface measure on the sphere ∂B. It is the aim of this note to remove the strange condition $(N-2) /(N-1) \leq p<1$. This condition appears in [17] because the proof in the paper is based on the fact, due Stein and Weiss $[16,15]$, that $|\nabla u|^{p}$ is subharmonic for $p \geq$ $(N-2) /(N-1)$. Our result is slightly stronger than (1):

[^0]Theorem 1. If u is a function harmonic in B, and $0<p<1$, then there holds the inequality

$$
\begin{equation*}
\sup _{0<r<1} M_{p}^{p}(r, u) \leq|u(0)|^{p}+C \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) \tag{2}
\end{equation*}
$$

where C is a constant depending only on p and N.
In the case $N=2$, this theorem was proved by Flett [2]. Inequality (2) holds for $1<p<2$ as well, while if $p>2$, then there holds the reverse inequality; these inequalities are due to Littlewood and Paley [6]. Elementary proofs of the Littewood-Paley inequalities are given in [12] and [7, 14] ($p>2$).

Observe that if $u>0$ in B, and $0<p<1$, then (2) is completely trivial because then function u^{p} is superharmonic and therefore

$$
\sup _{0<r<1} M_{p}^{p}(r, u) \leq|u(0)|^{p}
$$

Thus (2) shows in particular how much $|u|^{p}$ is far from being superharmonic.
Our proof of Theorem 1 is based on a fundamental result of Hardy and Littlewood [3] and Fefferman and Stein [1] on subharmonic behavior of $|u|^{p}$. We state this result in the following way.

Lemma 1. If $U \geq 0$ is a function subharmonic in $B(a, 2 \varepsilon)\left(a \in \mathbb{R}^{N}, \varepsilon>0\right)$, then there holds the inequality

$$
\begin{equation*}
\sup _{x \in B(a, \varepsilon)} U(x)^{p} \leq C \varepsilon^{-N} \int_{B(a, 2 \varepsilon)} U^{p} d V, \quad 0<\varepsilon<1 \tag{3}
\end{equation*}
$$

where C depends only on p, N.
Here $B(a, r)$ denotes the ball of radius r centered at a. For simple proofs of Lemma 1 we refer to $[9,13]$, and for generalizations to various classes of functions, we refer to $[4,5,8,10,11]$. From Lemma 1 we shall deduce the following crucial fact:

Lemma 2. Let $r_{j}=1-2^{-j}$ for $j \geq 0$, and $r_{-1}=0$. If $0<p<1$ and u is harmonic in B, then there holds inequality
$M_{p}^{p}\left(r_{j+1}, u\right)-M_{p}^{p}\left(r_{j}, u\right) \leq C \int_{r_{j-1} \leq|x| \leq r_{j+2}}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x), \quad j \geq 0$,
where C depends only on p and N.
Proof. We start from the inequality

$$
\begin{equation*}
M_{p}^{p}\left(r_{j+1}, u\right)-M_{p}^{p}\left(r_{j}, u\right) \leq \int_{S}\left|u\left(r_{j+1} y\right)-u\left(r_{j} y\right)\right|^{p} d \sigma(y) \tag{4}
\end{equation*}
$$

By Lagrange's theorem,

$$
\begin{equation*}
\left|u\left(r_{j+1} y\right)-u\left(r_{j} y\right)\right| \leq\left(r_{j+1}-r_{j}\right) \sup _{r_{j}<r<r_{j+1}}|\nabla u(r y)| \leq 2^{-j} \sup _{r_{j}<r<r_{j+1}}|\nabla u(r y)| . \tag{5}
\end{equation*}
$$

Hence, by Lemma 1 with $U=|\nabla u|, a=a_{j}=\left(r_{j}+r_{j+1}\right) y / 2$ and $\varepsilon=$ $\left(r_{j+1}-r_{j}\right) / 2=2^{-j-2}$,

$$
\begin{equation*}
\left|u\left(r_{j+1} y\right)-u\left(r_{j} y\right)\right|^{p} \leq C 2^{-j p} 2^{j N} \int_{B\left(a_{j}, 2^{-j-1}\right)}|\nabla u(x)|^{p} d V(x) \tag{6}
\end{equation*}
$$

On the other hand, simple calculation shows that $\left|x-a_{j} y\right| \leq 2^{-j-1}$ implies

$$
2^{-j-2} \leq 1-|x|, \quad|x-y| \leq 2^{-j+1} .
$$

Hence

$$
2^{-j} 2^{j N} \leq 2^{N+2} P(x, y), \quad \text { for } x \in B\left(a_{j}, 2^{-j-1}\right),
$$

where P denotes the Poisson kernel,

$$
\begin{equation*}
P(x, y)=\frac{1-|x|^{2}}{|x-y|^{N}} . \tag{7}
\end{equation*}
$$

From this and (6) we get
(8) $\left|u\left(r_{j+1} y\right)-u\left(r_{j} y\right)\right|^{p} \leq C 2^{-j(p-1)} \int_{r_{j-1} \leq|x| \leq r_{j+2}} P(x, y)|\nabla u(x)|^{p} d V(x)$,
where we have used the inclusion

$$
\left\{x:\left|x-a_{j}\right| \leq 2^{-j-1}\right\} \subset\left\{x: r_{j-1} \leq|x| \leq r_{j+2} \cdot\right\}
$$

Now we integrate (8) over ∂B and use the formula

$$
\int_{S} P(x, y) d \sigma(y)=1
$$

to get

$$
\begin{aligned}
\int_{S}\left|u\left(r_{j+1} y\right)-u\left(r_{j} y\right)\right|^{p} d \sigma(y) & \leq C 2^{-j(p-1)} \int_{r_{j-1} \leq|x| \leq r_{j+2}}|\nabla u(x)|^{p} d V(x) \\
& \leq C \int_{r_{j-1} \leq|x| \leq r_{j+2}}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) .
\end{aligned}
$$

Combining this with (4) we get the desired result.

Proof of Theorem 1. Let $n \geq 1$. By Lemma 2, we have

$$
\begin{aligned}
M_{p}^{p}\left(r_{n}, u\right)-|u(0)|^{p} & =M_{p}^{p}\left(r_{n}, u\right)-M_{p}^{p}\left(r_{0}, u\right) \\
& =\sum_{j=0}^{n-1} M_{p}^{p}\left(r_{j+1}, u\right)-M_{p}^{p}\left(r_{j}, u\right) \\
& \leq C \sum_{j=0}^{n-1} \int_{r_{j-1} \leq|x| \leq r_{j+2}}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) \\
& \leq 3 C \int_{|x| \leq r_{n+1}}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) \\
& \leq 3 C \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) .
\end{aligned}
$$

This proves the inequality

$$
\begin{equation*}
M_{p}^{p}(r, u) \leq|u(0)|^{p}+C \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) \tag{9}
\end{equation*}
$$

for $r=r_{n}$. If $r \in(0,1)$ is arbitrary, we choose n so that $r_{n} \leq r \leq r_{n+1}$. Then we have

$$
\left|u(r y)-u\left(r_{n} y\right)\right| \leq 2^{-n} \sup _{r_{n}<r<r_{n+1}}|\nabla u(r y)| .
$$

Hence, by the proof of Lemma 2,

$$
\begin{aligned}
M_{p}^{p}(r, u)-M_{p}^{p}\left(r_{n}, u\right) & \leq C \int_{r_{n-1} \leq|x| \leq r_{n+2}}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) \\
& \leq C \int_{B}(1-|x|)^{p-1}|\nabla u(x)|^{p} d V(x) .
\end{aligned}
$$

This completes the proof.
Acknowledgement. The author wishes to thank Professor Pavlović for introducing into the subject and for valuable comments.

References

[1] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-193.
[2] T. M. Flett, Mean values of power series, Pacific J. Math. 25(1968), 463-494.
[3] G.H. Hardy and J.E. Littlewood, Some properties of conjugate functions, J. Reine Angew. Math. 167 (1932), 405-423.
[4] M. Jevtić, M. Pavlović, M-Besov p-classes and Hankel operators in the Bergman spaces on the unit ball, Arch. Math. 61(1993), 367-376.
[5] M. Jevtić, M. Pavlović, On subharmonic behaviour of functions and their tangential derivatives on the unit ball in \mathbf{C}^{n}, Indian J. Pure Appl. Math. 30(1999), no. 4, 407418.
[6] J.E. Littlewood and R.E.A.C. Paley, Theorems on Fourier series and power series. II, Proc. Lond. Math. Soc. 42(1936), 52-89.
[7] D.H. Luecking, A new proof of an inequality of Littlewood and Paley, Proc. Amer. Math. Soc. 103(1988), 887-893.
[8] M. Pavlović, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N.S.) 2(1991), no. 1, 89-98.
[9] M. Pavlović, On subharmonic behaviour and oscillation of functions on balls in \mathbf{R}^{n}, Publ. Inst. Math. (Beograd) (N.S.) 55(69) (1994), 18-22.
[10] M. Pavlović, Subharmonic behaviour of smooth functions, Mat. Vesnik 48 (1996), no. 1-2, 15-21.
[11] M. Pavlović, Decompositions of Lp and Hardy spaces of polyharmonic functions, J. Math. Anal. Appl. 216(1997), 499-509.
[12] M. Pavlović, A LittlewoodPaley theorem for subharmonic functions with subharmonic Laplacian, Publ. Inst. Math. (Belgrade) 68(82)(2000), 77-82.
[13] M. Pavlović, Introduction to function spaces on the disk, Posebna izdanja 20, Matematički Institut SANU, 2004.
[14] M. Pavlović, A short proof of an inequality of Littlewood and Paley, Proc. Am. Math. Soc. to appear.
[15] E. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, New Jersey, 1970.
[16] E. M. Stein, G. Weiss, On the theory of harmonic functions of several variables. I. The theory of H^{p} - spaces, Acta Math. 103 (1960) 25-62.
[17] S. Stević, A Littlewood-Paley type inequality, Bull. Braz. Math. Soc. (N.S.) 34(2003), no. 2, 211-217.

Fakultet organizacionih nauka, Jove Ilića 154, Belgrade, Serbia
E-mail address: oliveradj@fon.bg.ac.yu

[^0]: ${ }^{1}$ Received: October 2, 2006
 2000 Mathematics Subject Classification. 31B05.
 Key words and phrases. Littlewood-Paley inequalities, harmonic functions.
 Supported by MNZŽS, Project 144010.

