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A LITTLEWOOD-PALEY TYPE INEQUALITY FOR
HARMONIC FUNCTIONS IN THE UNIT BALL OF RV

OLIVERA DJORDJEVIC

ABSTRACT. It is proved the following: If w is a function harmonic in
the uni% ball BCRY, and 0 < p < 1, t}ien there holds the inequality

sup u(ry) P do < [u(0)" + Cpv (1= |z)" 7!V u(z)]” dV(2).
o<r<1l 8B B
In the case p > (N —2)/(N — 1), this was proved by Stevié¢ [17].

Let RY (N > 2) denote the N-dimensional Euclidean space. In [17],
Stevi¢ proved that if u is a function harmonic in the unit ball B ¢ RY, and
% < p < 1, then there holds the inequality

(1) sup MZ(r,u) < Cilu(0) + C / (1= el [Vu(@)? dV (x)
o<r<1 B

Here dV denotes the Lebesgue measure in RY normalized so that V(B) =1,

and as usual

M2 (r,u) = / fu(ry)P? do,
0B

where do is the normalized surface measure on the sphere 0B. It is the
aim of this note to remove the strange condition (N —2)/(N —1) <p < 1.
This condition appears in [17] because the proof in the paper is based on
the fact, due Stein and Weiss [16, 15], that |Vu|P is subharmonic for p >
(N —2)/(N —1). Our result is slightly stronger than (1):
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Theorem 1. If u is a function harmonic in B, and 0 < p < 1, then there
holds the inequality

(2) sup Mp(r, u) < |u(0)[ + C/ (1= |z~ Vu(@) dV (z)
0<r<1 B

where C' is a constant depending only on p and N.

In the case N = 2, this theorem was proved by Flett [2]. Inequality (2)
holds for 1 < p < 2 as well, while if p > 2, then there holds the reverse
inequality; these inequalities are due to Littlewood and Paley [6]. Elemen-
tary proofs of the Littewood-Paley inequalities are given in [12] and [7, 14]
(p>2).

Observe that if w > 0 in B, and 0 < p < 1, then (2) is completely trivial
because then function u? is superharmonic and therefore

sup MP(r,u) < [u(0)[P.
0<r<1

Thus (2) shows in particular how much |u? is far from being superharmonic.

Our proof of Theorem 1 is based on a fundamental result of Hardy and
Littlewood [3] and Fefferman and Stein [1] on subharmonic behavior of |u/P.
We state this result in the following way.

Lemma 1. IfU > 0 is a function subharmonic in B(a,2¢) (a € RY ¢ > 0),
then there holds the inequality

(3) sup U(x)P < Ce_N/ UPdv, 0<e<l,
z€B(a,e) B(a,2¢)

where C' depends only on p, N.

Here B(a,r) denotes the ball of radius r centered at a. For simple proofs
of Lemma 1 we refer to [9, 13], and for generalizations to various classes of
functions, we refer to [4, 5, 8, 10, 11]. From Lemma 1 we shall deduce the
following crucial fact:

Lemma 2. Letrj =1—277 for j >0, andr_; =0. If0<p <1 and u is
harmonic in B, then there holds inequality

MZ‘?(T‘j+1,U)—Mp(Tj,U) <C (1—\:1:|)p_1|Vu(x)|p av(z), j7=>0,

p
rj—1<|z|<rj42
where C' depends only on p and N.

Proof. We start from the inequality

@) M) = My < [ Julrsinn) = ur)P doto).
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By Lagrange’s theorem,

(5) ,

lu(rjry) —u(rjy)l < (rjpi—r;)  sup  [Vu(ry)| <277 sup  [Vu(ry)].
T‘j<7“<7"j+1 T‘j<7”<7"j+1

Hence, by Lemma 1 with U = |Vu|,a = a; = (r; + rj+1)y/2 and ¢ =

(rjr1—15)/2=27772,

6)  |ulrjsry) — ulr;y)|P < C2-972IN / Vu(z) P dV ().
B(aj,27971)

On the other hand, simple calculation shows that |z —a;y| < 277~ implies
27972 <1 — |z, lz —y| < 279FL.

Hence
277N < oNF2p(g y), forz € B(aj,27771),

where P denotes the Poisson kernel,

1 — |zf?
7 P(z,y) = ———.
@ (@)= s
From this and (6) we get
(8) lulrjp1y) —ulrjy)’ < C2_j(p_1)/ P(z,y)|Vu(z) dV (z),
rj—1<]|<rjqe2

where we have used the inclusion

{z:|z—aj| < 2_j_1} Clz:rjo1 <|z| <rjpo.}

Now we integrate (8) over OB and use the formula

[ Py daty) =1
to get
/ u(riny) —ulryy)Pdo(y) < €279~ / IVu(z)|P dV (z)
S rj—1<|z|<rji2
< C (1 = |=[)P~ [ Vu(e) P dV(z).
rj—1<z]|<rjq2

Combining this with (4) we get the desired result. O

Proof of Theorem 1. Let n > 1. By Lemma 2, we have
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MP(rp,u) — [w(0)[P = ME(rn,u) — ME(ro, u)

n—1
= Z M]z))(rj+17 u) — Mg(rjv u)
=0

n—1

ey [ a-lyverae
j=0 7/ Ti—1<[2|<rj2

<o Q- Vu@Pave

|| <rn41
< 30/(1— )P V()P dV (z).
B

This proves the inequality

9) Mg (r,u) < Ju(0)P + C/B(l = |z)PHVu(@) dV (2)

for r = r,. If r € (0,1) is arbitrary, we choose n so that r, < r < rp4q.
Then we have

lu(ry) —u(ray)] <27 sup  |[Vu(ry)l.

T <T<rpy1
Hence, by the proof of Lemma 2,
-1
My (r,u) = Mp(rn,u) < C (1= [P~ Vu(z) P dV (z)

rn—1§|1‘|§7'n+2

—NzDP Y Vulz) P ).
C/Ba )P V() P dV ()

IN

This completes the proof.
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