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A LITTLEWOOD-PALEY TYPE INEQUALITY FOR
HARMONIC FUNCTIONS IN THE UNIT BALL OF RN

OLIVERA DJORDJEVIĆ

Abstract. It is proved the following: If u is a function harmonic in
the unit ball B ⊂ RN , and 0 < p < 1, then there holds the inequality

sup
0<r<1

Z

∂B

|u(ry)|p dσ ≤ |u(0)|p + Cp,N

Z

B

(1− |x|)p−1|∇u(x)|p dV (x) .

In the case p > (N − 2)/(N − 1), this was proved by Stević [17].

Let RN (N ≥ 2) denote the N-dimensional Euclidean space. In [17],
Stević proved that if u is a function harmonic in the unit ball B ⊂ RN , and
N−2
N−1 ≤ p < 1, then there holds the inequality

(1) sup
0<r<1

Mp
p (r, u) ≤ C1|u(0)|p + C2

∫

B
(1− |x|)p−1|∇u(x)|p dV (x) .

Here dV denotes the Lebesgue measure in RN normalized so that V (B) = 1,
and as usual

Mp
p (r, u) =

∫

∂B
|u(ry)|p dσ ,

where dσ is the normalized surface measure on the sphere ∂B. It is the
aim of this note to remove the strange condition (N − 2)/(N − 1) ≤ p < 1.
This condition appears in [17] because the proof in the paper is based on
the fact, due Stein and Weiss [16, 15], that |∇u|p is subharmonic for p ≥
(N − 2)/(N − 1). Our result is slightly stronger than (1):
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Theorem 1. If u is a function harmonic in B, and 0 < p < 1, then there
holds the inequality

(2) sup
0<r<1

Mp
p (r, u) ≤ |u(0)|p + C

∫

B
(1− |x|)p−1|∇u(x)|p dV (x) ,

where C is a constant depending only on p and N .

In the case N = 2, this theorem was proved by Flett [2]. Inequality (2)
holds for 1 < p < 2 as well, while if p > 2, then there holds the reverse
inequality; these inequalities are due to Littlewood and Paley [6]. Elemen-
tary proofs of the Littewood-Paley inequalities are given in [12] and [7, 14]
(p > 2).

Observe that if u > 0 in B, and 0 < p < 1, then (2) is completely trivial
because then function up is superharmonic and therefore

sup
0<r<1

Mp
p (r, u) ≤ |u(0)|p .

Thus (2) shows in particular how much |u|p is far from being superharmonic.
Our proof of Theorem 1 is based on a fundamental result of Hardy and

Littlewood [3] and Fefferman and Stein [1] on subharmonic behavior of |u|p.
We state this result in the following way.

Lemma 1. If U ≥ 0 is a function subharmonic in B(a, 2ε) (a ∈ RN , ε > 0),
then there holds the inequality

(3) sup
x∈B(a,ε)

U(x)p ≤ Cε−N

∫

B(a,2ε)
UpdV, 0 < ε < 1 ,

where C depends only on p,N .

Here B(a, r) denotes the ball of radius r centered at a. For simple proofs
of Lemma 1 we refer to [9, 13], and for generalizations to various classes of
functions, we refer to [4, 5, 8, 10, 11]. From Lemma 1 we shall deduce the
following crucial fact:

Lemma 2. Let rj = 1− 2−j for j ≥ 0, and r−1 = 0. If 0 < p < 1 and u is
harmonic in B, then there holds inequality

Mp
p (rj+1, u)−Mp

p (rj , u) ≤ C

∫

rj−1≤|x|≤rj+2

(1−|x|)p−1|∇u(x)|p dV (x) , j ≥ 0 ,

where C depends only on p and N .

Proof. We start from the inequality

(4) Mp
p (rj+1, u)−Mp

p (rj , u) ≤
∫

S
|u(rj+1y)− u(rjy)|p dσ(y) .
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By Lagrange’s theorem,
(5)
|u(rj+1y)−u(rjy)| ≤ (rj+1−rj) sup

rj<r<rj+1

|∇u(ry)| ≤ 2−j sup
rj<r<rj+1

|∇u(ry)| .

Hence, by Lemma 1 with U = |∇u|, a = aj = (rj + rj+1)y/2 and ε =
(rj+1 − rj)/2 = 2−j−2,

(6) |u(rj+1y)− u(rjy)|p ≤ C2−jp2jN

∫

B(aj ,2−j−1)
|∇u(x)|p dV (x) .

On the other hand, simple calculation shows that |x−ajy| ≤ 2−j−1 implies

2−j−2 ≤ 1− |x| , |x− y| ≤ 2−j+1 .

Hence

2−j2jN ≤ 2N+2P (x, y), forx ∈ B(aj , 2−j−1) ,

where P denotes the Poisson kernel,

(7) P (x, y) =
1− |x|2
|x− y|N .

From this and (6) we get

(8) |u(rj+1y)− u(rjy)|p ≤ C2−j(p−1)

∫

rj−1≤|x|≤rj+2

P (x, y)|∇u(x)|p dV (x) ,

where we have used the inclusion

{x : |x− aj | ≤ 2−j−1} ⊂ {x : rj−1 ≤ |x| ≤ rj+2 .}
Now we integrate (8) over ∂B and use the formula

∫

S
P (x, y) dσ(y) = 1

to get
∫

S
|u(rj+1y)− u(rjy)|p dσ(y) ≤ C2−j(p−1)

∫

rj−1≤|x|≤rj+2

|∇u(x)|p dV (x)

≤ C

∫

rj−1≤|x|≤rj+2

(1− |x|)p−1|∇u(x)|p dV (x) .

Combining this with (4) we get the desired result. ¤

Proof of Theorem 1. Let n ≥ 1. By Lemma 2, we have
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Mp
p (rn, u)− |u(0)|p = Mp

p (rn, u)−Mp
p (r0, u)

=
n−1∑

j=0

Mp
p (rj+1, u)−Mp

p (rj , u)

≤ C
n−1∑

j=0

∫

rj−1≤|x|≤rj+2

(1− |x|)p−1|∇u(x)|p dV (x)

≤ 3C

∫

|x|≤rn+1

(1− |x|)p−1|∇u(x)|p dV (x)

≤ 3C

∫

B
(1− |x|)p−1|∇u(x)|p dV (x) .

This proves the inequality

(9) Mp
p (r, u) ≤ |u(0)|p + C

∫

B
(1− |x|)p−1|∇u(x)|p dV (x) ,

for r = rn. If r ∈ (0, 1) is arbitrary, we choose n so that rn ≤ r ≤ rn+1.
Then we have

|u(ry)− u(rny)| ≤ 2−n sup
rn<r<rn+1

|∇u(ry)| .

Hence, by the proof of Lemma 2,

Mp
p (r, u)−Mp

p (rn, u) ≤ C

∫

rn−1≤|x|≤rn+2

(1− |x|)p−1|∇u(x)|p dV (x)

≤ C

∫

B
(1− |x|)p−1|∇u(x)|p dV (x) .

This completes the proof.
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