Available at:

```
www.pmf.ni.ac.yu/sajt/publikacije/publikacije_pocetna.html
```

Filomat 20:2 (2006), 107-113

COMMON FIXED POINT THEOREM FOR FOUR MAPPINGS IN NON-ARCHIMEDEAN PM-SPACES

K.P.R. RAO AND E.T.RAMUDU

Abstract

We define the concept of weakly f-compatible pair (f, S) in non-Archimedean Menger probabilistic metric spaces and obtain a common fixed point theorem for four maps which improves a theorem of Y.J.Cho.et.al

Introduction

Recently Y.J.Cho et.al [4] introduced the concepts of compatible mappings and compatible mappings of type (A) in non-Archimedean Menger probabilistic metric spaces and obtained some common fixed point theorems in the space. In this paper we prove a common fixed point theorem which generalizes a theorem of Y.J.Cho et.al [4] by introducing the notion of weakly compatible pair of mappings in non -Archimedean PM-Space. For terminologies, notations and properties of probabilistic metric spaces, refer to [1], [2], [3] and [4].
DEFINITION 1: A distribution function is a mapping F: $I R^{+} \rightarrow I R^{+}$which is non decreasing and left continuous with $\inf \mathrm{F}=0$ and $\sup \mathrm{F}=1$. We will denote D by the set of all distribution functions.
DEFINITION 2: Let X be any non empty set. An ordered pair (X, \mathbb{F}) is called a non-Archimedean probabilistic metric space (briefly a N.A. PMspace) if \mathbb{F} is a mapping from $X \times X$ into D satisfying the following conditions (We shall denote the distribution function $\mathbb{F}(x, y)$ by $F(x, y)$ for all $x, y \in$ $X)$:
(2.1) $F(x, y, t)=1$ for all $t>0$ if and only if $x=y$,

[^0](2.2) $F(x, y)=F(y, x)$,
(2.3) $F(x, y, 0)=0$,
(2.4) If $F\left(x, y, t_{1}\right)=1$ and $F\left(y, z, t_{2}\right)=1$ then $F\left(x, y, \max \left\{t_{1}, t_{2}\right\}\right)=1$.

DEFINITION 3: A t-norm is a function $\Delta:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following conditions:
(3.1) $\Delta(a, b) \geq \Delta(c, d)$ for $\mathrm{a} \geq \mathrm{c}, \mathrm{b} \geq \mathrm{d}$,
(3.2) $\Delta(a, b)=\Delta(b, a)$
(3.3) $\Delta(a, 1)=a$,
(3.4) $\Delta(\Delta(a, b), c)=\Delta(a, \Delta(b, c)$

DEFINITION 4: A non-Archimedean Menger PM-space is an ordered triplet (X, \mathbb{F}, Δ) where Δ is t -norm and (X, \mathbb{F}) is a non-Archimedean PM-space satisfying the following condition:
(4.1) $F\left(x, z, \max \left\{t_{1}, t_{2}\right\}\right) \geq \Delta\left(F\left(x, y, t_{1}\right), F\left(y, z, t_{2}\right)\right)$ for all $x, y, z \in X$ and $t_{1}, t_{2} \geq 0$.
DEFINITION 5: A PM-space (X, \mathbb{F}) is said to be type $(C)_{g}$ if there exists a $g \in \Omega$ such that
(5.1) $g(F(x, y, t)) \leq g(F(x, z, t))+g(F(z, y, t))$ for all $x, y, z \in X$ and $t \geq 0$ where $\Omega=\{g / g:[0,1] \rightarrow[0, \infty)$ is continuous, strictly decreasing, $\mathrm{g}(1)=0$ \}.
DEFINITION 6: A non-Archimedean Menger PM-space (X, \mathbb{F}, Δ) is said to be type $(D)_{g}$ if there exists a $g \in \Omega$ such that
(6.1) $g(\Delta(s, t)) \leq g(s)+g(t)$ for all $s, t \in[0,1]$.

Note : If a N.A. PM-space (X, \mathbb{F}, Δ) is of type $(D)_{g}$ then it is of type $(C)_{g}$. Throughout this paper, let (X, \mathbb{F}, Δ) be a N.A. PM-space of type $(D)_{g}$ with a continuous strictly increasing t-norm Δ. Here afterwards we denote $g(F(x, y, t))$ by $\theta(x, y, t)$.
DEFINITION 7: Let $f, S: X \rightarrow X$ be mappings. The pair (f, S) is said to be partially commuting (or coincidentally commuting or weak-compatible) at z if $f z=S z$ provided there exists $w \in X$ such that $f w=S w=z$.
DEFINITION 8 ([4]): Let $f, S: X \rightarrow X$ be mappings. f and S are said to be compatible if $\lim _{n \rightarrow \infty} \theta\left(\mathrm{fSx}_{\mathrm{n}}, \mathrm{Sfx}_{\mathrm{n}}, \mathrm{t}\right)=0$ for all $t>0$, whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} \mathrm{fx}_{\mathrm{n}}=\lim _{n \rightarrow \infty} \mathrm{Sx}_{\mathrm{n}}$ for some $z \in X$.
DEFINITION 9 ([4]) : Let $f, S: X \rightarrow X$ be mappings. f and S are said to be compatible of type(A)if $\lim _{n \rightarrow \infty} \theta\left(\mathrm{fS}_{\mathrm{n}}, \mathrm{SS}_{\mathrm{n}}, \mathrm{t}\right)=0$ and
$\lim _{n \rightarrow \infty} \theta\left(\operatorname{Sfx}_{\mathrm{n}}, \mathrm{ffx}_{\mathrm{n}}, \mathrm{t}\right)=0$ for all $t>0$, whenever $\left\{x_{n}\right\}$ is asequence in X such that $\lim _{n \rightarrow \infty} \mathrm{fx}_{\mathrm{n}}=\lim _{n \rightarrow \infty} S \mathrm{x}_{\mathrm{n}}$ for some $z \in X$.
Now we give the following definition.
DEFINITION 10: Let $f, S: X \rightarrow X$ be mappings. The ordered pair (f, S) is said to be weakly f-compatible at z if either $\lim _{n \rightarrow \infty} \theta\left(S f x_{n}, f z, t\right)=0$ or $\lim _{n \rightarrow \infty} \theta\left(S S x_{n}, f z, t\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty}^{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} S x_{n}=z$ and $\lim _{n \rightarrow \infty} f S x_{n}=\lim _{n \rightarrow \infty} f f x_{n}=f z$ for some $z \in X$.

REMARK 11: (i) If (f, S) is weakly f-compatible at z then it is partially commuting at z.
(ii) If f and S are compatible or compatible of type (A) then the ordered pair (f, S) is weakly f-compatible. The converse need not be true in view of the following example in metric space.
EXAMPLE 12: Let $\mathrm{X}=[0,1]$ with usual metric d. Define $f, S: X \rightarrow X$ by $f x=1-x$ and

$$
S x=\left\{\begin{array}{lll}
x & \text { if } & 0 \leq x \leq 1 / 2 \\
1 & \text { if } & 1 / 2<x \leq 1
\end{array}\right.
$$

Let $\left\{x_{n}\right\}$ be a sequence in X such that $x_{n}<1 / 2 \forall n$ and $x_{n} \rightarrow 1 / 2$.
Then $f x_{n}=1-x_{n} \rightarrow 1 / 2$ and $S x_{n}=x_{n} \rightarrow 1 / 2$.
Also $f S x_{n}=1-x_{n} \rightarrow 1 / 2=f(1 / 2), f f x_{n}=x_{n} \rightarrow 1 / 2=f(1 / 2)$, $S f x_{n}=1, S S x_{n}=x_{n} \rightarrow 1 / 2$.
Clearly (f, S) is weakly f-compatible at $1 / 2$.
Since $d\left(f S x_{n}, S f x_{n}\right)=x_{n} \rightarrow 1 / 2$, it follows that f and S are not compatible.
Since $d\left(S f x_{n}, f f x_{n}\right)=1-x_{n} \rightarrow 1 / 2$, it follows that f and S are not compatible of type (A).
We need the following Lemma.
LEMMA 13(Lemma 1.2.of Cho.et.al.[4]): Let $\left\{y_{n}\right\}$ be a sequence in X such that $F\left(y_{n}, y_{n+1}, t\right)=1$ for all $t>0$. If the sequence $\left\{y_{n}\right\}$ is not a Cauchy sequence in X, then there exist $\varepsilon_{0}>0, t_{0}>0$, two sequences $\left\{m_{k}\right\},\left\{n_{k}\right\}$ of positive integers such that
(13.1) $m_{k}>n_{k}+1$ and $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$,
(13.2) $F\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right)<1-\varepsilon_{0}$ and $F\left(y_{m_{k}-1}, y_{n_{k}}, t_{0}\right) \geq 1-\varepsilon_{0}, \mathrm{k}=1,2, \ldots$

Main Theorem:
THEOREM 14: Let A, B, S and T be self maps on X satisfying
(14.1) $\theta(A x, B y, t) \leq \Psi(\theta(S x, T y, t))$ for all $t>0$ and for all $x, y \in X$ with $A x=T y$ or $B y=S x$ and
(14.2) $\theta(A x, B y, t) \leq$

$$
\begin{array}{r}
\leq \Psi(\max \{\theta(S x, \bar{T} y, t)+\theta(A x, S x, t)+\theta(B y, T y, t), \theta(A x, S x, t)+ \\
\theta(S x, B y, t), \theta(B y, T y, t)+\theta(A x, T y, t)\})
\end{array}
$$

for all $t>0$ and for all $x, y \in X$, where $\Psi: I R^{+} \rightarrow I R^{+}$is monotonically increasing and $\Psi(t+)<t$ for all $t>0$.
Suppose that for some $x_{0} \in X$, there exists a sequence $\left\{x_{n}\right\}$ in X such that $A x_{2 n}=T x_{2 n+1}\left(=y_{2 n}\right.$, say $)$ and $B x_{2 n+1}=S x_{2 n+2}\left(=y_{2 n+1}\right.$, say $)$ for n $=0,1, .$. Then $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Further assume that $\left\{y_{n}\right\}$ converges to some $z \in X$. Then z is the unique common fixed point of A, B, S and T if one of the following statements is true.
(i) (A, S) is A-continuous at z and (A, S) is weakly A-compatible at $z,(B, T)$
is partially commuting at $z, A z \in T(X)$ and $B z \in S(X)$.
(ii) (B, T) is B-continuous at z and (B, T) is weakly B-compatible at z, (A, S)
is partially commuting at $z, A z \in T(X)$ and $B z \in S(X)$.
(iii) (A, S) is S-continuous at z and (A, S) is weakly S-compatible at z, (B, T)
is partially commuting at z and $A z \in T(X)$.
(iv) (B, T) is T-continuous at z and (B, T) is weakly T-compatible at z, (A, S)
is partially commuting at z and $B z \in S(X)$.
PROOF: Since $A x_{2 n}=T x_{2 n+1}$ from (14.1) we have
$\theta\left(y_{2 n}, y_{2 n+1}, t\right)=\theta\left(A x_{2 n}, B x_{2 n+1}, t\right) \leq \Psi\left(\theta\left(y_{2 n-1}, y_{2 n}, t\right)\right)$.
Since $S x_{2 n}=B x_{2 n-1}$ from (14.1) we have
$\theta\left(y_{2 n}, y_{2 n-1}, t\right)=\theta\left(A x_{2 n}, B x_{2 n-1}, t\right) \leq \Psi\left(\theta\left(y_{2 n-1}, y_{2 n-2}, t\right)\right)$.
Thus $\theta\left(y_{n}, y_{n+1}, t\right) \leq \Psi\left(\theta\left(y_{n-1}, y_{n}, t\right)\right)$ for $n=1,2, .$.
Hence $\theta\left(y_{n}, y_{n+1}, t\right) \leq \Psi^{n}\left(\theta\left(y_{0}, y_{1}, t\right)\right)$ for $n=1,2, .$.
Since Ψ is monotonically increasing and $\Psi(t+)<t$ for all $t>0$ it follows that $\Psi^{n}(t) \rightarrow 0$ as $n \rightarrow \infty$ for any $t>0$. Hence
(I) $\theta\left(y_{n}, y_{n+1}, t\right) \rightarrow 0$ as $n \rightarrow \infty$.

Suppose $\left\{y_{n}\right\}$ is not a Cauchy sequence. Since g is strictly decreasing, by Lemma (13), there exist $\varepsilon_{0}>0, t_{0}>0$ and two sequences $\left\{m_{k}\right\},\left\{n_{k}\right\}$ of positive integers such that
(a) $m_{k}>n_{k}+1$ and $n_{k} \rightarrow \infty$ as $k \rightarrow \infty$,
(b) $\theta\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right)>\mathrm{g}\left(1-\varepsilon_{0}\right)$ and $\theta\left(y_{m_{k}-1}, y_{n_{k}}, t_{0}\right) \leq \mathrm{g}\left(1-\varepsilon_{0}\right)$ for $\mathrm{k}=1,2, \ldots$

Now
$g\left(1-\varepsilon_{0}\right)<\theta\left(y_{m_{k}}, y_{n_{k}}, t_{0} 0\right) \leq$

$$
\leq \theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+\theta\left(y_{m_{k}-1}, y_{n_{k}}, t_{0}\right) \leq \theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+g\left(1-\varepsilon_{0}\right) .
$$

Letting $k \rightarrow \infty$ we get
(II) $\lim _{n \rightarrow \infty} \theta\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right)=g\left(1-\varepsilon_{0}\right)$

On the otherhand, we have
(III) $g\left(1-\varepsilon_{0}\right)<\theta\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right) \leq \theta\left(y_{m_{k}}, y_{n_{k}+1}, t_{0}\right)+\theta\left(y_{n_{k}+1}, y_{n_{k}}, t_{0}\right)$

Without loss of generality assume that both m_{k} and n_{k} are even.
$\theta\left(y_{m_{k}}, y_{n_{k}+1}, t_{0}\right)=\theta\left(A x_{m_{k}}, B x_{n_{k}+1}, t_{0}\right)$

$$
\begin{gathered}
\leq \Psi\left(\operatorname { m a x } \left\{\theta\left(y_{m_{k}-1}, y_{n_{k}}, t_{0}\right)+\theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+\theta\left(y_{n_{k}+1}, y_{n_{k}}, t_{0}\right),\right.\right. \\
\theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+\theta\left(y_{m_{k}-1}, y_{n_{k}+1}, t_{0}\right), \\
\left.\left.\theta\left(y_{n_{k}+1}, y_{n_{k}}, t_{0}\right)+\theta\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right)\right\}\right) \\
\leq \Psi\left(\operatorname { m a x } \left\{g\left(1-\varepsilon_{0}\right)+\theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+\theta\left(y_{n_{k}+1}, y_{n_{k}}, t_{0}\right),\right.\right. \\
\theta\left(y_{m_{k}}, y_{m_{k}-1}, t_{0}\right)+g\left(1-\varepsilon_{0}\right)+\theta\left(y_{n_{k}}, y_{n_{k}+1}, t_{0}\right), \\
\left.\left.\theta\left(y_{n_{k}+1}, y_{n_{k}}, t_{0}\right)+\theta\left(y_{m_{k}}, y_{n_{k}}, t_{0}\right)\right\}\right)
\end{gathered}
$$

Substituting this in (III), letting $k \rightarrow \infty$ and using (I),(II)
we get $g\left(1-\varepsilon_{0}\right) \leq \Psi\left(g\left(1-\varepsilon_{0}\right)\right)<g\left(1-\varepsilon_{0}\right)$ which is a contradiction.
Hence $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Further assume that $\left\{y_{n}\right\}$ converges to some $z \in X$.
(i) Suppose that the statement (i) is true.

Since $\left\{A x_{2 n}\right\}$ and $\left\{S x_{2 n}\right\}$ converge to z and (A, S) is A-continuous at z we have $\left\{A A x_{2 n}\right\}$ and $\left\{A S x_{2 n}\right\}$ converge to $A z$.

Since (A, S) is weakly A-compatible at z we have either $\left\{S A x_{2 n}\right\}$ or $\left\{S S x_{2 n}\right\}$ converge to $A z$.
Case :- Suppose $\left\{S A x_{2 n}\right\}$ converges to $A z$.
$\theta\left(A A x_{2 n}, B x_{2 n+1}, t\right) \leq \Psi\left(\max \left\{\theta\left(S A x_{2 n}, T x_{2 n+1}, t\right)+\theta\left(A A x_{2 n}, S A x_{2 n}, t\right)+\right.\right.$ $\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right), \theta\left(A A x_{2 n}, S A x_{2 n}, t\right)+\theta\left(S A x_{2 n}, B x_{2 n+1}, t\right)$, $\left.\left.\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A A x_{2 n}, T x_{2 n+1}, t\right)\right\}\right)$.
Letting $n \rightarrow \infty$ we get
$\theta(A z, z, t) \leq \Psi(\max \{\theta(A z, z, t)+\theta(A z, A z, t)+\theta(z, z, t), \theta(A z, A z, t)+$ $+\theta(A z, z, t), \theta(z, z, t)+\theta(A z, z, t)\})$
Case:- Suppose $\left\{S S x_{2 n}\right\}$ converges to $A z$.
$\theta\left(A S x_{2 n}, B x_{2 n+1}, t\right) \leq \Psi\left(\max \left\{\theta\left(S S x_{2 n}, T x_{2 n+1}, t\right)+\theta\left(A S x_{2 n}, S S x_{2 n}, t\right)+\right.\right.$
$\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right), \theta\left(A S x_{2 n}, S S x_{2 n}, t\right)+\theta\left(S S x_{2 n}, B x_{2 n+1}, t\right)$,
$\left.\left.\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A S x_{2 n}, T x_{2 n+1}, t\right)\right\}\right)$.
Letting $n \rightarrow \infty$ we get
$\theta(A z, z, t) \leq \Psi(\max \{\theta(A z, z, t)+\theta(A z, A z, t)+\theta(z, z, t)$, $\theta(A z, A z, t)+\theta(A z, z, t), \theta(z, z, t)+\theta(A z, z, t)\})$
$=\Psi(\theta(A z, z, t))$ which implies that $A z=z$.
Since $z=A z=\in T(X)$, there exists $w \in X$ such that $z=T w$.
$\theta\left(A x_{2 n}, B w, t\right) \leq \Psi\left(\max \left\{\theta\left(S x_{2 n}, T w, t\right)+\theta\left(A x_{2 n}, S x_{2 n}, t\right)+\theta(B w, T w, t)\right.\right.$, $\theta\left(A x_{2 n}, S x_{2 n}, t\right)+\theta\left(S x_{2 n}, B w, t\right)$, $\left.\left.\theta(B w, T w, t)+\theta\left(A x_{2 n}, T w, t\right)\right\}\right)$
Letting $n \rightarrow \infty$ we get

$$
\begin{gathered}
\theta(z, B w, t) \leq \Psi(\max \{\theta(z, z, t)+\theta(z, z, t)+\theta(B w, z, t), \theta(z, z, t)+\theta(z, B w, t), \\
\theta(B w, z, t)+\theta(z, z, t)\})
\end{gathered}
$$

$=\Psi(\theta(z, B w, t))$ which implies that $B w=z$.
Since (B, T) is partially commuting at z and $B w=T w=z$. We have $B z=T z$.

$$
\begin{gathered}
\theta\left(A x_{2 n}, B z, t\right) \leq \Psi\left(\operatorname { m a x } \left\{\theta\left(S x_{2 n}, T z, t\right)+\theta\left(A x_{2 n}, S x_{2 n}, t\right)+\theta(B z, T z, t),\right.\right. \\
\theta\left(A x_{2 n}, S x_{2 n}, t\right)+\theta\left(S x_{2 n}, B z, t\right), \\
\left.\left.\theta(B z, T z, t)+\theta\left(A x_{2 n}, T z, t\right)\right\}\right) .
\end{gathered}
$$

Letting $n \rightarrow \infty$ we get

$$
\begin{aligned}
& \theta(z, B z, t) \leq \Psi(\max \{\theta(z, B z, t)+\theta(z, z, t)+\theta(B z, B z, t), \theta(z, z, t)+\theta(z, B z, t), \\
&\theta(B z, B z, t)+\theta(z, B z, t)\}) \\
&=\Psi(\theta(z, B z, t)) \text { which implies that } B z=z .
\end{aligned}
$$

Thus $B z=z=T z$.
Now $z=B z \in S(X)$, there exists $v \in X$ such that $S v=z$.
$\theta\left(A v, B x_{2 n+1}, t\right) \leq \Psi\left(\max \left\{\theta\left(S v, T x_{2 n+1}, t\right)+\right.\right.$
$+\theta(A v, S v, t)+\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right), \theta(A v, S v, t)+$
$\left.\left.+\theta\left(S v, B x_{2 n+1}, t\right), \theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A v, T x_{2 n+1}, t\right)\right\}\right)$.
Letting $n \rightarrow \infty$ we get
$\theta(A v, z, t) \leq \Psi(\max \{\theta(z, z, t)+\theta(A v, z, t)+\theta(z, z, t), \theta(A v, z, t)+\theta(z, z, t)$,

$$
\theta(z, z, t)+\theta(A v, z, t)\})
$$

$=\Psi(\theta(A v, z, t))$ which implies that $A v=z$.
Thus $A v=S v=z$.
Since (A, S) is weakly A-compatible at z it is partially commuting at z.

Hence $A z=S z$ so that $z=A z=S z$.
Thus z is a common fixed point of A, B, S and T.
Uniqueness of common fixed point follows easily from (14.2).
(ii) Proof follows as in (i).
(iii) Suppose the statement (iii) is true.

Since $\left\{A x_{2 n}\right\}$ and $\left\{S x_{2 n}\right\}$ converge to z and (A, S) is S-continuous at z we have $\left\{S A x_{2 n}\right\}$ and $\left\{S S x_{2 n}\right\}$ converge to $S z$.
Since (A, S) is weakly S-compatible at z it follows that $\left\{A S x_{2 n}\right\}$ or $\left\{A A x_{2 n}\right\}$ converges to $S z$.
Case:- Suppose $\left\{A S x_{2 n}\right\}$ converges to $S z$.
$\theta\left(A S x_{2 n}, B x_{2 n+1}, t\right) \leq \Psi\left(\max \left\{\theta\left(S S x_{2 n}, T x_{2 n+1}, t\right)+\theta\left(A S x_{2 n}, S S x_{2 n}, t\right)+\right.\right.$ $\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)$,

$$
\begin{aligned}
& \theta\left(A S x_{2 n}, S S x_{2 n}, t\right)+\theta\left(S S x_{2 n}, B x_{2 n+1}, t\right), \\
& \left.\left.\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A S x_{2 n}, T x_{2 n+1}, t\right)\right\}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$ we get

$$
\begin{aligned}
\theta(S z, z, t) \leq & \Psi(\max \{\theta(S z, z, t)+\theta(S z, S z, t)+\theta(z, z, t), \theta(S z, S z, t)+\theta(S z, z, t), \\
& \theta(z, z, t)+\theta(S z, z, t)\}) \\
& =\Psi(\theta(S z, z, t)) \text { which implies that } S z=z .
\end{aligned}
$$

Case:- Suppose $\left\{A A x_{2 n}\right\}$ converges to $S z$. $\theta\left(A A x_{2 n}, B x_{2 n+1}, t\right) \leq \Psi\left(\max \left\{\theta\left(S A x_{2 n}, T x_{2 n+1}, t\right)+\theta\left(A A x_{2 n}, S A x_{2 n}, t\right)+\right.\right.$ $\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)$,

$$
\begin{aligned}
& \theta\left(A A x_{2 n}, S A x_{2 n}, t\right)+\theta\left(S A x_{2 n}, B x_{2 n+1}, t\right), \\
& \left.\left.\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A A x_{2 n}, T x_{2 n+1}, t\right)\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we get
$\theta(S z, z, t) \leq \Psi(\max \{\theta(S z, z, t)+\theta(S z, S z, t)+\theta(z, z, t), \theta(S z, S z, t)+\theta(S z, z, t)$, $\theta(z, z, t)+\theta(S z, z, t)\})$

$$
=\Psi(\theta(S z, z, t)) \text { which implies that } S z=z .
$$

Now

$$
\begin{aligned}
& \theta\left(A z, B x_{2 n+1}, t\right) \leq \Psi\left(\operatorname { m a x } \left\{\theta\left(S z, T x_{2 n+1}, t\right)+\theta(A z, S z, t)+\right.\right. \\
& \quad+\theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right), \theta(A z, S z, t)+\theta\left(S z, B x_{2 n+1}, t\right), \\
& \left.\left.\quad \theta\left(B x_{2 n+1}, T x_{2 n+1}, t\right)+\theta\left(A z, T x_{2 n+1}, t\right)\right\}\right) .
\end{aligned}
$$

Letting $n \rightarrow \infty$ we get
$\theta(A z, z, t) \leq \Psi(\max \{\theta(z, z, t)+\theta(A z, z, t)+\theta(z, z, t), \theta(A z, z, t)+\theta(z, z, t)$,

$$
\theta(z, z, t)+\theta(A z, z, t)\})
$$

$$
=\Psi(\theta(A z, z, t)) \text { which implies that } A z=z .
$$

Since $z=A z \in T(X)$ and (B, T) is partially commuting at z it follows as in (i) that $B z=T z=z$.
Thus z is a common fixed point of A, B, S and T.
(iv) Proof follows as in (iii).

Theorem 14 is an improvement of the following theorem.
THEOREM 15 (Theorem 3.2 of [4]) : Let $A, B, S, T: X \rightarrow X$ be mappings satisfying
(15.1) $A(X) \subset T(X)$ and $B(X) \subset S(X)$,
(15.2) $\theta(A x, B y, z) \leq \Psi(\max \{\theta(S x, T y, t), \theta(A x, S x, t), \theta(B y, T y, t)$,

$$
1 / 2[\theta(S x, B y, t)+\theta(T y, A x, t)]\})
$$

for all $t>0$ and for all $x, y \in X$ where $\Psi: I R^{+} \rightarrow I R^{+}$is upper semi continuous from the right and $\Psi(t)<t$ for all $t>0$.
(15.3) S or T is continuous,
(15.4) the pairs (A, S) and (B, T) are compatible of type (A).

Then A, B, S and T have a unique common fixed point in X.

References

[1] O.Hadzic : A note on I.Istratescu's fixed point theorem in non- Archimedean Menger spaces, Bull.Math.Soc.Sci.Math.Rep.soc.Roum., 24(72) (1980), 277-280.
[2] S.S.Chang : Fixed point theorem for single valued and multi-valued mappings in non-Archimedean Menger probabilistic metric spaces, Math.Japonica 35(5), (1990), 875-885.
[3] V.Sehgal and A.T.Bharucha - Reid : Fixed points of contraction mappings on probabilistic metric spaces, Math.Systems Theory 6 (1972), 97-102.
[4] Yeol Je Cho, Ki Sik Ha and Shih-Sen Chang: Common fixed point theorems for compatible mappings of type (A) in Non-Archimedean Menger PMspaces, Math.Japonica, 46, No. 1 (1997), 169-179.
K.P.R.Rao and E.T.Ramudu

Department of Applied Mathematics,
Acharya Nagarjuna University Post Graduate Centre, NUZVID-521201 (A.P),
India.
E-mail: kprrao2004@ yahoo.com

[^0]: ${ }^{1}$ Received: September 12, 2005
 ${ }^{2} 2000$ Mathematics Subject Classification. 47H10, 54 H 25.

