Faculty of Sciences and Mathematics University of Niš

Available at: www.pmf.ni.ac.yu/sajt/publikacije/publikacije_pocetna.html

Filomat **20:2** (2006), 107–113

COMMON FIXED POINT THEOREM FOR FOUR MAPPINGS IN NON-ARCHIMEDEAN PM-SPACES

K.P.R. RAO AND E.T.RAMUDU

ABSTRACT. We define the concept of weakly f-compatible pair (f,S) in non-Archimedean Menger probabilistic metric spaces and obtain a common fixed point theorem for four maps which improves a theorem of Y.J.Cho.et.al.

Introduction

Recently Y.J.Cho et.al [4] introduced the concepts of compatible mappings and compatible mappings of type (A) in non-Archimedean Menger probabilistic metric spaces and obtained some common fixed point theorems in the space. In this paper we prove a common fixed point theorem which generalizes a theorem of Y.J.Cho et.al [4] by introducing the notion of weakly compatible pair of mappings in non -Archimedean PM-Space. For terminologies, notations and properties of probabilistic metric spaces, refer to [1], [2], [3] and [4].

DEFINITION 1: A distribution function is a mapping $F: IR^+ \to IR^+$ which is non decreasing and left continuous with $\inf F = 0$ and $\sup F = 1$. We will denote D by the set of all distribution functions.

DEFINITION 2: Let X be any non empty set. An ordered pair (X, \mathbb{F}) is called a non-Archimedean probabilistic metric space (briefly a N.A. PM-space) if \mathbb{F} is a mapping from $X \times X$ into D satisfying the following conditions (We shall denote the distribution function $\mathbb{F}(x, y)$ by F(x, y) for all $x, y \in X$):

(2.1) F(x, y, t) = 1 for all t > 0 if and only if x = y,

¹Received: September 12, 2005

²2000 Mathematics Subject Classification. 47H10, 54H25.

(2.2) F(x, y) = F(y, x),

(2.3) F(x, y, 0) = 0,

(2.4) If $F(x, y, t_1) = 1$ and $F(y, z, t_2) = 1$ then $F(x, y, max\{t_1, t_2\}) = 1$. DEFINITION 3: A t-norm is a function Δ : $[0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

- (3.1) $\Delta(a,b) \geq \Delta(c,d)$ for a $\geq c, b \geq d$,
- (3.2) $\Delta(a,b) = \Delta(b,a)$
- (3.3) $\Delta(a, 1) = a$,

(3.4) $\Delta(\Delta(a,b),c) = \Delta(a,\Delta(b,c))$

DEFINITION 4: A non-Archimedean Menger PM-space is an ordered triplet (X, \mathbb{F}, Δ) where Δ is t-norm and (X, \mathbb{F}) is a non-Archimedean PM-space satisfying the following condition:

 $(4.1)F(x, z, max\{t_1, t_2\}) \ge \Delta(F(x, y, t_1), F(y, z, t_2))$ for all $x, y, z \in X$ and $t_1, t_2 \ge 0.$

DEFINITION 5: A PM-space (X, \mathbb{F}) is said to be type $(C)_g$ if there exists a $g \in \Omega$ such that

 $(5.1) g(F(x, y, t)) \le g(F(x, z, t)) + g(F(z, y, t))$ for all $x, y, z \in X$ and $t \ge 0$ where $\Omega = \{g/g : [0,1] \to [0,\infty) \text{ is continuous, strictly decreasing, g}(1)=0$ }.

DEFINITION 6: A non-Archimedean Menger PM-space (X, \mathbb{F}, Δ) is said to be type $(D)_g$ if there exists a $g \in \Omega$ such that

(6.1) $g(\Delta(s,t)) \le g(s) + g(t)$ for all $s, t \in [0,1]$.

Note : If a N.A. PM-space (X, \mathbb{F}, Δ) is of type $(D)_a$ then it is of type $(C)_q$. Throughout this paper, let (X, \mathbb{F}, Δ) be a N.A. PM-space of type $(D)_q$ with a continuous strictly increasing t-norm Δ . Here afterwards we denote g(F(x, y, t)) by $\theta(x, y, t)$.

DEFINITION 7: Let $f, S: X \to X$ be mappings. The pair (f, S) is said to be partially commuting (or coincidentally commuting or weak-compatible) at z if fz = Sz provided there exists $w \in X$ such that fw = Sw = z.

DEFINITION 8 ([4]) : Let $f, S : X \to X$ be mappings. f and S are said to be compatible if $\lim \theta(fSx_n, Sfx_n, t) = 0$ for all t > 0, whenever $\{x_n\}$ is a sequence in X such that $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} Sx_n$ for some $z \in X$. DEFINITION 9 ([4]) : Let $f, S : X \to X$ be mappings. f and S are said to

be compatible of type(A)if $\lim_{n\to\infty}\theta(fSx_n,SS_n,t)=0$ and

 $\lim_{n \to \infty} \theta(Sfx_n, ffx_n, t) = 0 \text{ for all } t > 0, \text{ whenever } \{x_n\} \text{ is asequence in } X \text{ such}$ that $\lim_{n \to \infty} \operatorname{fx}_n = \lim_{n \to \infty} \operatorname{Sx}_n$ for some $z \in X$. Now we give the following definition.

DEFINITION 10: Let $f, S : X \to X$ be mappings. The ordered pair (f, S)is said to be weakly *f*-compatible at *z* if either $\lim_{n \to \infty} \theta(Sfx_n, fz, t) = 0$ $\lim_{n \to \infty} fx_n = \lim_{n \to \infty} Sx_n = z \text{ and } \lim_{n \to \infty} fSx_n = \lim_{n \to \infty} ffx_n = fz \text{ for some } z \in X.$ or $\lim_{t \to \infty} \theta(SSx_n, fz, t) = 0$ whenever $\{x_n\}$ is a sequence in X such that

108

REMARK 11: (i) If (f, S) is weakly *f*-compatible at *z* then it is partially commuting at *z*.

(ii) If f and S are compatible or compatible of type (A) then the ordered pair (f, S) is weakly f-compatible. The converse need not be true in view of the following example in metric space.

EXAMPLE 12: Let X = [0,1] with usual metric d. Define $f, S : X \to X$ by fx = 1 - x and

$$Sx = \begin{cases} x & \text{if} & 0 \le x \le \frac{1}{2}, \\ 1 & \text{if} & \frac{1}{2} < x \le 1. \end{cases}$$

Let $\{x_n\}$ be a sequence in X such that $x_n < 1/2 \ \forall n$ and $x_n \to 1/2$. Then $fx_n = 1 - x_n \to 1/2$ and $Sx_n = x_n \to 1/2$. Also $fSx_n = 1 - x_n \to 1/2 = f(1/2), ffx_n = x_n \to 1/2 = f(1/2), Sfx_n = 1, SSx_n = x_n \to 1/2$.

Clearly (f, S) is weakly *f*-compatible at 1/2.

Since $d(fSx_n, Sfx_n) = x_n \to 1/2$, it follows that f and S are not compatible.

Since $d(Sfx_n, ffx_n) = 1 - x_n \rightarrow 1/2$, it follows that f and S are not compatible of type (A).

We need the following Lemma.

LEMMA 13(Lemma 1.2.of Cho.et.al.[4]): Let $\{y_n\}$ be a sequence in X such that $F(y_n, y_{n+1}, t) = 1$ for all t > 0. If the sequence $\{y_n\}$ is not a Cauchy sequence in X, then there exist $\varepsilon_0 > 0$, $t_0 > 0$, two sequences $\{m_k\}$, $\{n_k\}$ of positive integers such that

(13.1) $m_k > n_k + 1$ and $n_k \to \infty$ as $k \to \infty$,

(13.2) $F(y_{m_k},y_{n_k},t_0)<1-\varepsilon_0$ and $F(y_{m_k-1},y_{n_k},t_0)\geq 1-\varepsilon_0$, k = 1,2, ... Main Theorem:

THEOREM 14: Let A, B, S and T be self maps on X satisfying

 $(14.1)\theta(Ax,By,t) \leq \Psi(\theta(Sx,Ty,t))$ for all t>0 and for all $x,y\in X$ with Ax=Ty or By=Sx and

(14.2) $\theta(Ax, By, t) \leq$

 $\leq \Psi(max\{\theta(Sx,Ty,t) + \theta(Ax,Sx,t) + \theta(By,Ty,t), \theta(Ax,Sx,t) + \theta(Sx,By,t), \theta(By,Ty,t) + \theta(Ax,Ty,t)\})$

for all t > 0 and for all $x, y \in X$, where $\Psi : IR^+ \to IR^+$ is monotonically increasing and $\Psi(t+) < t$ for all t > 0.

Suppose that for some $x_0 \in X$, there exists a sequence $\{x_n\}$ in X such that $Ax_{2n} = Tx_{2n+1}(=y_{2n}, say)$ and $Bx_{2n+1} = Sx_{2n+2}(=y_{2n+1}, say)$ for n = 0, 1, ... Then $\{y_n\}$ is a Cauchy sequence in X.

Further assume that $\{y_n\}$ converges to some $z\in X$. Then z is the unique common fixed point of A,B,S and T if one of the following statements is true.

(i) (A, S) is A-continuous at z and (A, S) is weakly A-compatible at z, (B, T) is partially commuting at $z, Az \in T(X)$ and $Bz \in S(X)$.

(ii) (B,T) is B-continuous at z and (B,T) is weakly B-compatible at z, (A,S)

is partially commuting at $z, Az \in T(X)$ and $Bz \in S(X)$. (iii) (A, S) is S-continuous at z and (A, S) is weakly S-compatible at z, (B,T)is partially commuting at z and $Az \in T(X)$. (iv) (B,T) is T-continuous at z and (B,T) is weakly T-compatible at z, (A, S)is partially commuting at z and $Bz \in S(X)$. PROOF: Since $Ax_{2n} = Tx_{2n+1}$ from (14.1) we have $\theta(y_{2n}, y_{2n+1}, t) = \theta(Ax_{2n}, Bx_{2n+1}, t) \le \Psi(\theta(y_{2n-1}, y_{2n}, t)).$ Since $Sx_{2n} = Bx_{2n-1}$ from (14.1) we have $\theta(y_{2n}, y_{2n-1}, t) = \theta(Ax_{2n}, Bx_{2n-1}, t) \le \Psi(\theta(y_{2n-1}, y_{2n-2}, t)).$ Thus $\theta(y_n, y_{n+1}, t) \leq \Psi(\theta(y_{n-1}, y_n, t))$ for n = 1, 2, ...Hence $\theta(y_n, y_{n+1}, t) \leq \Psi^n(\theta(y_0, y_1, t))$ for n = 1, 2, ...Since Ψ is monotonically increasing and $\Psi(t+) < t$ for all t > 0 it follows that $\Psi^n(t) \to 0$ as $n \to \infty$ for any t > 0. Hence (I) $\theta(y_n, y_{n+1}, t) \to 0$ as $n \to \infty$. Suppose $\{y_n\}$ is not a Cauchy sequence. Since g is strictly decreasing, by Lemma (13), there exist $\varepsilon_0 > 0$, $t_0 > 0$ and two sequences $\{m_k\}, \{n_k\}$ of positive integers such that (a) $m_k > n_k + 1$ and $n_k \to \infty$ as $k \to \infty$, (b) $\theta(y_{m_k}, y_{n_k}, t_0) > g(1-\varepsilon_0)$ and $\theta(y_{m_k-1}, y_{n_k}, t_0) \le g(1-\varepsilon_0)$ for k = 1, 2, ...Now $g(1-\varepsilon_0) < \theta(y_{m_k}, y_{n_k}, t_0 0) \leq$ $\leq \theta(y_{m_k}, y_{m_k-1}, t_0) + \theta(y_{m_k-1}, y_{n_k}, t_0) \leq \theta(y_{m_k}, y_{m_k-1}, t_0) + g(1 - \varepsilon_0).$ Letting $k \to \infty$ we get (II) $\lim \theta(y_{m_k}, y_{n_k}, t_0) = g(1 - \varepsilon_0)$ On the other hand, we have (III) $g(1-\varepsilon_0) < \theta(y_{m_k}, y_{n_k}, t_0) \le \theta(y_{m_k}, y_{n_k+1}, t_0) + \theta(y_{n_k+1}, y_{n_k}, t_0)$ Without loss of generality assume that both m_k and n_k are even. $\theta(y_{m_k}, y_{n_k+1}, t_0) = \theta(Ax_{m_k}, Bx_{n_k+1}, t_0)$ $\leq \Psi(\max\{\theta(y_{m_k-1}, y_{n_k}, t_0) + \theta(y_{m_k}, y_{m_k-1}, t_0) + \theta(y_{n_k+1}, y_{n_k}, t_0),$ $\theta(y_{m_k}, y_{m_k-1}, t_0) + \theta(y_{m_k-1}, y_{n_k+1}, t_0),$ $\theta(y_{n_k+1}, y_{n_k}, t_0) + \theta(y_{m_k}, y_{n_k}, t_0)\})$ $\leq \Psi(\max\{g(1-\varepsilon_0)+\theta(y_{m_k},y_{m_k-1},t_0)+\theta(y_{n_k+1},y_{n_k},t_0),$ $\theta(y_{m_k}, y_{m_k-1}, t_0) + g(1 - \varepsilon_0) + \theta(y_{n_k}, y_{n_k+1}, t_0),$ $\theta(y_{n_k+1}, y_{n_k}, t_0) + \theta(y_{m_k}, y_{n_k}, t_0)\})$ Substituting this in (III), letting $k \to \infty$ and using (I),(II) we get $g(1 - \varepsilon_0) \leq \Psi(g(1 - \varepsilon_0)) < g(1 - \varepsilon_0)$ which is a contradiction. Hence $\{y_n\}$ is a Cauchy sequence in X. Further assume that $\{y_n\}$ converges to some $z \in X$. (i) Suppose that the statement (i) is true.

Since $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ converge to z and (A, S) is A-continuous at z we have $\{AAx_{2n}\}$ and $\{ASx_{2n}\}$ converge to Az.

Since (A, S) is weakly A-compatible at z we have either $\{SAx_{2n}\}$ or $\{SSx_{2n}\}$ converge to Az. Case :- Suppose $\{SAx_{2n}\}$ converges to Az. $\theta(AAx_{2n}, Bx_{2n+1}, t) \le \Psi(max\{\theta(SAx_{2n}, Tx_{2n+1}, t) + \theta(AAx_{2n}, SAx_{2n}, t) + \theta(AAx_{2n}, t) + \theta(AAx$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t), \theta(AAx_{2n}, SAx_{2n}, t) + \theta(SAx_{2n}, Bx_{2n+1}, t),$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(AAx_{2n}, Tx_{2n+1}, t)\}).$ Letting $n \to \infty$ we get $\theta(Az, z, t) \le \Psi(max\{\theta(Az, z, t) + \theta(Az, Az, t) + \theta(z, z, t), \theta(Az, Az, t), \theta(Az, Az, t) + \theta(z, z, t), \theta(Az, Az, t), \theta(Az, Az, t) + \theta(z, z, t), \theta(Az, Az, t), \theta(Az, Az, t), \theta(Az, Az, t) + \theta(Az, Az, t), \theta(Az, Az,$ $+\theta(Az, z, t), \theta(z, z, t) + \theta(Az, z, t)\})$ Case:- Suppose $\{SSx_{2n}\}$ converges to Az. $\theta(ASx_{2n}, Bx_{2n+1}, t) \le \Psi(max\{\theta(SSx_{2n}, Tx_{2n+1}, t) + \theta(ASx_{2n}, SSx_{2n}, t) + \theta(ASx_{2n}, t) + \theta(ASx$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t), \theta(ASx_{2n}, SSx_{2n}, t) + \theta(SSx_{2n}, Bx_{2n+1}, t),$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(ASx_{2n}, Tx_{2n+1}, t)\}).$ Letting $n \to \infty$ we get $\theta(Az, z, t) \le \Psi(\max\{\theta(Az, z, t) + \theta(Az, Az, t) + \theta(z, z, t), \theta(z, z, t)\}$ $\theta(Az, Az, t) + \theta(Az, z, t), \theta(z, z, t) + \theta(Az, z, t))$ $= \Psi(\theta(Az, z, t))$ which implies that Az = z. Since $z = Az = \in T(X)$, there exists $w \in X$ such that z = Tw. $\theta(Ax_{2n}, Bw, t) \leq \Psi(max\{\theta(Sx_{2n}, Tw, t) + \theta(Ax_{2n}, Sx_{2n}, t) + \theta(Bw, Tw, t),$ $\theta(Ax_{2n}, Sx_{2n}, t) + \theta(Sx_{2n}, Bw, t),$ $\theta(Bw, Tw, t) + \theta(Ax_{2n}, Tw, t)\})$ Letting $n \to \infty$ we get $\theta(z, Bw, t) \le \Psi(\max\{\theta(z, z, t) + \theta(z, z, t) + \theta(Bw, z, t), \theta(z, z, t) + \theta(z, Bw, t), \theta(z, z, t) + \theta(z, z, t), \theta(z, z, t) + \theta(z, z, t), \theta$ $\theta(Bw, z, t) + \theta(z, z, t)\})$ $= \Psi(\theta(z, Bw, t))$ which implies that Bw = z. Since (B,T) is partially commuting at z and Bw = Tw = z. We have Bz = Tz. $\theta(Ax_{2n}, Bz, t) \leq \Psi(max\{\theta(Sx_{2n}, Tz, t) + \theta(Ax_{2n}, Sx_{2n}, t) + \theta(Bz, Tz, t),$ $\theta(Ax_{2n}, Sx_{2n}, t) + \theta(Sx_{2n}, Bz, t),$ $\theta(Bz,Tz,t) + \theta(Ax_{2n},Tz,t)\}).$ Letting $n \to \infty$ we get $\theta(z, Bz, t) \le \Psi(\max\{\theta(z, Bz, t) + \theta(z, z, t) + \theta(Bz, Bz, t), \theta(z, z, t) + \theta(z, z, t) + \theta(z, z, t), \theta(z$ $\theta(Bz, Bz, t) + \theta(z, Bz, t)\})$ $= \Psi(\theta(z, Bz, t))$ which implies that Bz = z. Thus Bz = z = Tz. Now $z = Bz \in S(X)$, there exists $v \in X$ such that Sv = z. $\theta(Av, Bx_{2n+1}, t) \le \Psi(max\{\theta(Sv, Tx_{2n+1}, t) +$ $+\theta(Av,Sv,t)+\theta(Bx_{2n+1},Tx_{2n+1},t),\theta(Av,Sv,t)+$ $+\theta(Sv, Bx_{2n+1}, t), \theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(Av, Tx_{2n+1}, t)\}).$ Letting $n \to \infty$ we get $\theta(Av, z, t) \le \Psi(max\{\theta(z, z, t) + \theta(Av, z, t) + \theta(z, z, t), \theta(Av, z, t), \theta(Av, z, t) + \theta(z, z, t), \theta(Av, z,$ $\theta(z, z, t) + \theta(Av, z, t)\})$ $= \Psi(\theta(Av, z, t))$ which implies that Av = z. Thus Av = Sv = z.

Since (A, S) is weakly A-compatible at z it is partially commuting at z.

Hence Az = Sz so that z = Az = Sz. Thus z is a common fixed point of A, B, S and T. Uniqueness of common fixed point follows easily from (14.2). (ii) Proof follows as in (i). (iii) Suppose the statement (iii) is true. Since $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ converge to z and (A, S) is S-continuous at z we have $\{SAx_{2n}\}$ and $\{SSx_{2n}\}$ converge to Sz. Since (A, S) is weakly S-compatible at z it follows that $\{ASx_{2n}\}$ or $\{AAx_{2n}\}$ converges to Sz. Case:- Suppose $\{ASx_{2n}\}$ converges to Sz. $\theta(ASx_{2n}, Bx_{2n+1}, t) \le \Psi(max\{\theta(SSx_{2n}, Tx_{2n+1}, t) + \theta(ASx_{2n}, SSx_{2n}, t) + \theta(ASx_{2n}, t) + \theta(ASx$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t),$ $\theta(ASx_{2n}, SSx_{2n}, t) + \theta(SSx_{2n}, Bx_{2n+1}, t),$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(ASx_{2n}, Tx_{2n+1}, t))$ Letting $n \to \infty$ we get $\theta(Sz, z, t) \le \Psi(\max\{\theta(Sz, z, t) + \theta(Sz, Sz, t) + \theta(z, z, t), \theta(Sz, Sz, t) + \theta(Sz, \theta(Sz, Sz, t$ $\theta(z, z, t) + \theta(Sz, z, t)\})$ $= \Psi(\theta(Sz, z, t))$ which implies that Sz = z. Case:- Suppose $\{AAx_{2n}\}$ converges to Sz. $\theta(AAx_{2n}, Bx_{2n+1}, t) \le \Psi(max\{\theta(SAx_{2n}, Tx_{2n+1}, t) + \theta(AAx_{2n}, SAx_{2n}, t) + \theta(AAx_{2n}, t)$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t),$ $\theta(AAx_{2n}, SAx_{2n}, t) + \theta(SAx_{2n}, Bx_{2n+1}, t),$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(AAx_{2n}, Tx_{2n+1}, t)\}).$ Letting $n \to \infty$ we get $\theta(Sz, z, t) \leq \Psi(\max\{\theta(Sz, z, t) + \theta(Sz, Sz, t) + \theta(z, z, t), \theta(Sz, Sz, t) + \theta(Sz, \theta(Sz, Sz, t$ $\theta(z, z, t) + \theta(Sz, z, t)\})$ $= \Psi(\theta(Sz, z, t))$ which implies that Sz = z. Now $\theta(Az, Bx_{2n+1}, t) \le \Psi(max\{\theta(Sz, Tx_{2n+1}, t) + \theta(Az, Sz, t) +$ $+\theta(Bx_{2n+1}, Tx_{2n+1}, t), \theta(Az, Sz, t) + \theta(Sz, Bx_{2n+1}, t),$ $\theta(Bx_{2n+1}, Tx_{2n+1}, t) + \theta(Az, Tx_{2n+1}, t)\}).$ Letting $n \to \infty$ we get $\theta(Az, z, t) \le \Psi(\max\{\theta(z, z, t) + \theta(Az, z, t) + \theta(z, z, t), \theta(Az, z, t), \theta(Az, z, t) + \theta(z, z, t), \theta(Az, z, t)$ $\theta(z, z, t) + \theta(Az, z, t)\})$ $= \Psi(\theta(Az, z, t))$ which implies that Az = z. Since $z = Az \in T(X)$ and (B,T) is partially commuting at z it follows as in (i) that Bz = Tz = z. Thus z is a common fixed point of A, B, S and T. (iv) Proof follows as in (iii). Theorem 14 is an improvement of the following theorem. THEOREM 15 (Theorem 3.2 of [4]) : Let $A, B, S, T : X \to X$ be mappings satisfying (15.1) $A(X) \subset T(X)$ and $B(X) \subset S(X)$, (15.2) $\theta(Ax, By, z) \leq \Psi(max\{\theta(Sx, Ty, t), \theta(Ax, Sx, t), \theta(By, Ty, t),$

 $1/2[\theta(Sx, By, t) + \theta(Ty, Ax, t)]\})$

112

for all t > 0 and for all $x, y \in X$ where $\Psi : IR^+ \to IR^+$ is upper semi continuous from the right and $\Psi(t) < t$ for all t > 0.

(15.3) S or T is continuous,

(15.4) the pairs (A, S) and (B, T) are compatible of type (A).

Then A, B, S and T have a unique common fixed point in X.

References

- O.Hadzic : A note on I.Istratescu's fixed point theorem in non- Archimedean Menger spaces, Bull.Math.Soc.Sci.Math.Rep.soc.Roum., 24(72) (1980), 277-280.
- [2] S.S.Chang : Fixed point theorem for single valued and multi-valued mappings in non-Archimedean Menger probabilistic metric spaces, Math.Japonica 35(5), (1990), 875-885.
- [3] V.Sehgal and A.T.Bharucha Reid : Fixed points of contraction mappings on probabilistic metric spaces, Math.Systems Theory 6 (1972), 97-102.
- [4] Yeol Je Cho, Ki Sik Ha and Shih-Sen Chang : Common fixed point theorems for compatible mappings of type (A) in Non-Archimedean Menger PMspaces, Math.Japonica, 46, No.1 (1997), 169-179.

K.P.R.Rao and E.T.Ramudu Department of Applied Mathematics, Acharya Nagarjuna University Post Graduate Centre, NUZVID-521201 (A.P), India. E-mail: kprrao2004@ yahoo.com