Faculty of Sciences and Mathematics
University of Niš

Available at:
www.pmf.ni.ac.yu/sajt/publikacije/publikacije_pocetna.html
Filomat 20:2 (2006), 39-49

## THE STRENGTHENED HARDY INEQUALITIES AND THEIR NEW GENERALIZATIONS

SEVER SILVESTRU DRAGOMIR AND YOUNG-HO KIM


#### Abstract

In this article, using the properties of power mean, new generalizations of the strengthened Hardy Inequalities are proved.


## 1. Introduction

It is well known that the following Hardy's Inequality (see [4, Theorem 326]):
if $p>1$ and $a_{n} \geq 0$, then

$$
\begin{equation*}
\sum\left(\frac{a_{1}+a_{2}+\ldots+a_{n}}{n}\right)^{p}<\left(\frac{p}{p-1}\right)^{p} \sum a_{n}^{p}, \tag{1.1}
\end{equation*}
$$

unless all the a are zero. The constant is the best possible.
This theorem was discovered in the course of attempts to simplify the proofs then known of Hilbert's double series theorems (see [4, Theorem 315]). Hilbert's double series theorem was completed by the above inequality. This

[^0]inequality was first proved by Hardy [3], except that Hardy was unable to fit the constant in inequality (1.1). If in inequality (1.1) we write $a_{n}$ for $a_{n}^{p}$, we obtain
\[

$$
\begin{equation*}
\sum\left(\frac{a_{1}^{1 / p}+a_{2}^{1 / p}+\cdots+a_{n}^{1 / p}}{n}\right)^{p}<\left(\frac{p}{p-1}\right)^{p} \sum a_{n} \tag{1.2}
\end{equation*}
$$

\]

If we make $p \rightarrow \infty$, and use the elementary mean values

$$
\lim _{p \rightarrow 0}\left(\sum_{i=1}^{n} \frac{1}{n} a_{i}^{p}\right)^{1 / p}=\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}
$$

we obtain

$$
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n}
$$

and this suggests the more complete theorem which follow;

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n}<e \sum_{n=1}^{\infty} a_{n} \tag{1.3}
\end{equation*}
$$

unless $\left(a_{n}\right)$ is null. The constant is the best possible.
The inequality given in (1.3) which later went by the name of Carleman's inequality, led to a great many papers dealing with alternative proofs, various generalizations, and numerous variants and applications in analysis. It is natural to attempt to prove the complete inequality by means of following

$$
\begin{equation*}
\left(\prod_{i=1}^{n} a_{i}\right)^{1 / n}<\sum_{i=1}^{n} \frac{1}{n} a_{i} \tag{1.4}
\end{equation*}
$$

unless all the $a_{i}$ are equal. But a direct application of inequality (1.4) to the left-hand side of the inequality (1.2) is insufficient. To remedy this, we apply inequality (1.4) not to $a_{1}, a_{2}, \ldots, a_{n}$ but to $c_{1} a_{1}, c_{2} a_{2}, \ldots, c_{n} a_{n}$, and choose the $c$ so that when $\sum a_{n}$ is near the boundary of convergence, these numbers shall be 'roughly equal'. This requires that $c_{n}$ shall be roughly of the order of $n$.

By Hardy (see, [4, Theorem 349]), the Carleman's inequality was generalized as follows:

If $a_{n} \geq 0, \lambda_{n}>0, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}(n \in N)$ and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}<e \sum_{n=1}^{\infty} \lambda_{n} a_{n} \tag{1.5}
\end{equation*}
$$

Recently, Z. Xie and Y. Zhong [7] gave an improvement of the inequality (1.5) as follows: If $a_{n} \geq 0,0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}(n \in N)$ and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}<e \sum_{n=1}^{\infty}\left(1-\frac{6 \lambda_{n}}{12 \Lambda_{n}+11 \lambda_{n}}\right) \lambda_{n} a_{n} . \tag{1.6}
\end{equation*}
$$

Most recently, Z. Yang [11] obtained the strengthened Carleman's inequality as follows: If $a_{n} \geq 0, n=1,2, \ldots$, and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \\
& <e \sum_{n=1}^{\infty}\left(1-\frac{1}{2(1+n)}-\frac{1}{24(1+n)^{2}}-\frac{1}{48(1+n)^{3}}\right) a_{n} \tag{1.7}
\end{align*}
$$

It is immediate from the proof of inequality (1.6) and the inequality (1.7) that we can deduce the following new strengthened Hardy's inequality:

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& <e \sum_{n=1}^{\infty}\left(1-\frac{\lambda_{n}}{2\left(\Lambda_{n}+\lambda_{n}\right)}-\frac{\lambda_{n}^{2}}{24\left(\Lambda_{n}+\lambda_{n}\right)^{2}}-\frac{\lambda_{n}^{3}}{48\left(\Lambda_{n}+\lambda_{n}\right)^{3}}\right) \lambda_{n} a_{n} \tag{1.8}
\end{align*}
$$

But we know that the inequality (1.8) is a better improvement of the inequality (1.6), as a result of following

$$
\left(1-\frac{\lambda_{n}}{2\left(\Lambda_{n}+\lambda_{n}\right)}-\frac{\lambda_{n}^{2}}{24\left(\Lambda_{n}+\lambda_{n}\right)^{2}}-\frac{\lambda_{n}^{3}}{48\left(\Lambda_{n}+\lambda_{n}\right)^{3}}\right)<\left(1-\frac{6 \lambda_{n}}{12 \Lambda_{n}+11 \lambda_{n}}\right)
$$

for $\Lambda_{n} / \lambda_{n} \geq 1$.
The purpose of this paper is to prove new extension of the strengthened Hardy's inequality in the spirit of the strict monotonicity of the power mean of $n$ distinct positive numbers.

For any positive values $a_{1}, a_{2}, \ldots, a_{n}$ and positive weights $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}$, $\sum_{i=1}^{n} \alpha_{i}=1$, and any real $p \neq 0$, we defined the power mean, or the mean of order $p$ of the value $a$ with weights $\alpha$ by

$$
M_{p}(a ; \alpha)=M_{p}\left(a_{1}, a_{2}, \ldots, a_{n} ; \alpha_{1}, \alpha_{2} \ldots, \alpha_{n}\right)=\left(\sum_{i=1}^{n} \alpha_{i} a_{i}^{p}\right)^{1 / p} .
$$

An easy application of L'Hospital's rule shows that

$$
\lim _{p \rightarrow 0} M_{p}(a ; \alpha)=\prod_{i=1}^{n} a_{i}^{\alpha_{i}}
$$

the geometric mean. Accordingly, we define $M_{0}(a ; \alpha)=\prod_{i=1}^{n} a_{i}^{\alpha_{i}}$. It is well known that $M_{p}(a ; \alpha)$ is a nondecreasing function of $p$ for $-\infty \leq p \leq \infty$, and is strictly increasing unless all the $a_{i}$ are equal (cf. [1]).

## 2. Strengthened Hardy's Inequalities

The main results of this paper are presented as follows:
Lemma 2.1 [7]. Let $x \geq 1$, then we have the following inequality:

$$
\begin{equation*}
\frac{12 x+11}{12 x+5}\left(1+\frac{1}{x}\right)^{x}<e<\frac{14 x+12}{14 x+5}\left(1+\frac{1}{x}\right)^{x} . \tag{2.1}
\end{equation*}
$$

We can deduce the following improvement results of the inequality (1.6):
Theorem 2.2. Let $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geq 1\right), a_{n} \geq 0(n \in$ $N), 0<p \leq 1$ and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$. Then

$$
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}
$$

$$
\begin{equation*}
<\frac{e^{p}}{p} \sum_{n=1}^{\infty}\left(1-\frac{6 \lambda_{n}}{12 \Lambda_{n}+11 \lambda_{n}}\right)^{p} \lambda_{n}\left(a_{n}\right)^{p} \Lambda_{n}^{p-1}\left(\sum_{k=1}^{n} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} . \tag{2.2}
\end{equation*}
$$

where $c_{k}^{\lambda_{n}}=\left(\Lambda_{n+1}\right)^{\Lambda_{n}} /\left(\Lambda_{n}\right)^{\Lambda_{n-1}}$.
Proof. By the power mean inequality, we have

$$
\alpha_{1}^{q_{1}} \alpha_{2}^{q_{2}} \cdots \alpha_{n}^{q_{n}} \leq\left(\sum_{m=1}^{n} q_{m}\left(\alpha_{m}\right)^{p}\right)^{1 / p}
$$

for $\alpha_{m} \geq 0, p \geq 0$ and $q_{m}>0(m=1,2, \ldots, n)$ with $\sum_{m=1}^{n} q_{m}=1$. Setting $c_{m}>0, \alpha_{m}=c_{m} a_{m}$ and $q_{m}=\lambda_{m} / \Lambda_{n}$, we obtain

$$
\left(c_{1} a_{1}\right)^{\lambda_{1} / \Lambda_{n}}\left(c_{2} a_{2}\right)^{\lambda_{2} / \Lambda_{n}} \cdots\left(c_{n} a_{n}\right)^{\lambda_{n} / \Lambda_{n}} \leq\left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{1 / p}
$$

Using the above inequality, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& =\sum_{n=1}^{\infty} \lambda_{n+1} \frac{\left(c_{1} a_{1}\right)^{\lambda_{1} / \Lambda_{n}}\left(c_{2} a_{2}\right)^{\lambda_{2} / \Lambda_{n}} \cdots\left(c_{n} a_{n}\right)^{\lambda_{n} / \Lambda_{n}}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}}  \tag{2,3}\\
& \leq \sum_{n=1}^{\infty}\left[\frac{\lambda_{n+1}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}}\right]\left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{1 / p}
\end{align*}
$$

By using the following inequality (see [2], [6]),

$$
\left(\sum_{m=1}^{n} z_{m}\right)^{t} \leq t \sum_{m=1}^{n} z_{m}\left(\sum_{k=1}^{m} z_{k}\right)^{t-1}
$$

where $t \geq 1$ is constant and $z_{m} \geq 0(m=1,2, \cdots)$, it is easy to observe that

$$
\begin{align*}
& \left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{1 / p} \\
& \leq \frac{1}{\Lambda_{n}}\left(\sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{1 / p}  \tag{2.4}\\
& \leq \frac{1}{p \Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p}
\end{align*}
$$

for $\Lambda_{n} \geq 1$ and $0<p \leq 1$. Then, by (2.3) and (2.4), we obtain

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& \leq \frac{1}{p} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p} \sum_{n=m}^{\infty}\left(\frac{\lambda_{n+1}}{\Lambda_{n}\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}}}\right)\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p}
\end{aligned}
$$

Choosing $c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}=\left(\Lambda_{n+1}\right)^{\Lambda_{n}} \quad(n \in N)$ and setting $\Lambda_{0}=0$, from $\lambda_{n+1} \leq \lambda_{n}$, it follows that

$$
\begin{aligned}
c_{n} & =\left[\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}\right]^{1 / \lambda_{n}}=\left(1+\frac{\lambda_{n+1}}{\Lambda_{n}}\right)^{\Lambda_{n} / \lambda_{n}} \cdot \Lambda_{n} \\
& \leq\left(1+\frac{\lambda_{n}}{\Lambda_{n}}\right)^{\Lambda_{n} / \lambda_{n}} \cdot \Lambda_{n}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& \leq \frac{1}{p} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p} \sum_{n=m}^{\infty} \frac{\lambda_{n+1}}{\Lambda_{n} \Lambda_{n+1}}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} \\
& =\frac{1}{p} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p} \sum_{n=m}^{\infty}\left(\frac{1}{\Lambda_{n}}-\frac{1}{\Lambda_{n+1}}\right)\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} \\
& =\frac{1}{p} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p} \frac{1}{\Lambda_{m}}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} \\
& \leq \frac{1}{p} \sum_{m=1}^{\infty}\left(1+\frac{1}{\Lambda_{m} / \lambda_{m}}\right)^{p \Lambda_{m} / \lambda_{m}} \lambda_{m}\left(a_{m}\right)^{p} \Lambda_{m}^{p-1}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p}
\end{aligned}
$$

Hence, by the above inequality and Lemma 2.1, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& <\frac{e^{p}}{p} \sum_{n=1}^{\infty}\left(1-\frac{6 \lambda_{n}}{12 \Lambda_{n}+11 \lambda_{n}}\right)^{p} \lambda_{n}\left(a_{n}\right)^{p} \Lambda_{n}^{p-1}\left(\sum_{k=1}^{n} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p}
\end{aligned}
$$

Thus Theorem 2.2 is proved.
Setting $p \equiv 1$ in Theorem 2.2, then, form inequality (2.2) we have the inequality (1.6). Also assuming that $\lambda_{n}=1$ in the Theorem, we have an extension of the strengthened Carleman's inequality as following:
Corollary 2.3. Let $a_{n} \geq 0(n \in N), 0<p \leq 1$ and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \\
& <\frac{e^{p}}{p} \sum_{n=1}^{\infty}\left(1-\frac{6}{12 n+11}\right)^{p}\left(a_{n}\right)^{p} n^{p-1}\left(\sum_{k=1}^{n}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p}
\end{aligned}
$$

where $c_{k}=(1+1 / k)^{k} \cdot k$.
Similarly to Theorem 2.2 , we can consider a generalization version of the inequality (1.8) as following theorem:

Theorem 2.4. Let $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}, a_{n} \geq 0(n \in N)$, $0<p \leq 1$ and $0<\sum_{n=1}^{\infty} \lambda_{n} a_{n}<\infty$. Then

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{1 / \Lambda_{n}} \\
& <\frac{e}{p} \sum_{n=1}^{\infty}\left(1-\frac{\lambda_{n}}{2\left(\Lambda_{n}+\lambda_{n}\right)}-\frac{\lambda_{n}^{2}}{24\left(\Lambda_{n}+\lambda_{n}\right)^{2}}-\frac{\lambda_{n}^{3}}{48\left(\Lambda_{n}+\lambda_{n}\right)^{3}}\right)^{p}  \tag{2.5}\\
& \quad \times \lambda_{n}\left(a_{n}\right)^{p} \Lambda_{n}^{p-1}\left(\sum_{k=1}^{n} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} .
\end{align*}
$$

The proof is almost the same as in proving Theorem 2.2. We here only need to note that

$$
\left(1+\frac{1}{x}\right)^{x}<e\left(1-\frac{1}{2(1+x)}-\frac{1}{2(1+x)^{2}}-\frac{1}{2(1+x)^{3}}\right)
$$

for $x>0$, which proved in [11, Lemma 1].
Corollary 2.5. Let $a_{n} \geq 0(n \in N), 0<p \leq 1$ and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{1 / n} \\
& <\frac{e^{p}}{p} \sum_{n=1}^{\infty}\left(1-\frac{1}{2(1+n)}-\frac{1}{24(1+n)^{2}}-\frac{1}{48(1+n)^{3}}\right)^{p} \\
& \quad \times\left(a_{n}\right)^{p} n^{p-1}\left(\sum_{k=1}^{n}\left(c_{k} a_{k}\right)^{p}\right)^{(1-p) / p} .
\end{aligned}
$$

where $c_{k}=(1+1 / k)^{k} \cdot k$.

Lemma 2.6. If $a_{1}, a_{2}, \ldots, a_{n}>0$ and $\alpha_{1}, \alpha_{2} \ldots, \alpha_{n}>0$ with $\sum_{i=1}^{n} \alpha_{i}=1$, then we have the following inequality:

$$
\left(\prod_{i=1}^{n} a_{i}^{\alpha_{i}}\right)^{k} \leq\left(\sum_{i=1}^{n} \alpha_{i}\left(a_{i}\right)^{p}\right)^{k / p}
$$

for $0<k, p$ with the equality holding if and only if all $a_{i}$ are same.
Note that Lemma 2.6 is easily deduced form the fact that $M_{p}(a ; \alpha)$ is a continuous strictly increasing function of $p$.

Now, we are ready to introduce the following new general strengthened Hardy's inequality.

Theorem 2.7. Let $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geq 1\right), a_{n} \geq 0(n \in$ $N)$ and $0<\sum_{n=1}^{\infty} \lambda_{n}\left(a_{n}\right)^{t}<\infty$ for $0<p \leq t<\infty$. Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}}< & \frac{t e^{p / t}}{p} \sum_{n=1}^{\infty}\left(1-\frac{6 \lambda_{n}}{12 \Lambda_{n}+11 \lambda_{n}}\right)^{p / t} \\
& \times \lambda_{n}\left(a_{n}\right)^{p} \Lambda_{n}^{(p-t) / t}\left(\sum_{k=1}^{n} \lambda_{k} c_{k} a_{k}\right)^{(t-p) / p} .
\end{aligned}
$$

Proof. The proof is almost the same as in Theorem 2.2. By Lemma 2.6, we have

$$
\left(\alpha_{1}^{q_{1}} \alpha_{2}^{q_{2}} \cdots \alpha_{n}^{q_{n}}\right)^{t} \leq\left(\sum_{m=1}^{n} q_{m}\left(\alpha_{m}\right)^{p}\right)^{t / p}, \quad p, t \geq 0,
$$

where $\alpha_{m} \geq 0$ and $q_{m}>0(m=1,2, \ldots, n)$ with $\sum_{m=1}^{n} q_{m}=1$. Setting $c_{m}>0, \alpha_{m}=c_{m} a_{m}$ and $q_{m}=\lambda_{m} / \Lambda_{n}$, we obtain

$$
\left(\left(c_{1} a_{1}\right)^{\lambda_{1} / \Lambda_{n}}\left(c_{2} a_{2}\right)^{\lambda_{2} / \Lambda_{n}} \cdots\left(c_{n} a_{n}\right)^{\lambda_{n} / \Lambda_{n}}\right)^{t} \leq\left(\frac{1}{\Lambda_{n}} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{t / p} .
$$

Using the above inequality, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}} \\
& \leq \sum_{n=1}^{\infty}\left[\frac{\lambda_{n+1}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}}}\right] \frac{1}{\Lambda_{n}}\left(\sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{t / p} \tag{2.7}
\end{align*}
$$

for $\Lambda_{n} \geq 1$ and $t \geq p$. By using the following inequality (see [2], [6]),

$$
\left(\sum_{m=1}^{n} z_{m}\right)^{t} \leq t \sum_{m=1}^{n} z_{m}\left(\sum_{k=1}^{m} z_{k}\right)^{t-1}
$$

where $t \geq 1$ is constant and $z_{m} \geq 0(m=1,2, \cdots)$, it is easy to observe that

$$
\begin{equation*}
\left(\sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\right)^{t / p} \leq \frac{t}{p} \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p} \tag{2.8}
\end{equation*}
$$

for $\Lambda_{n} \geq 1$ and $t \geq p$. Then, by (2.7) and (2.8), we obtain

$$
\begin{align*}
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}} & \leq \sum_{n=1}^{\infty}\left[\frac{\lambda_{n+1}}{\left(c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}}}\right] \frac{1}{\Lambda_{n}} \frac{t}{p} \\
& \times \sum_{m=1}^{n} \lambda_{m}\left(c_{m} a_{m}\right)^{p}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p} \tag{2.9}
\end{align*}
$$

Choosing $c_{1}^{\lambda_{1}} c_{2}^{\lambda_{2}} \cdots c_{n}^{\lambda_{n}}=\left(\Lambda_{n+1}\right)^{\Lambda_{n} / t} \quad(n \in N)$ and setting $\Lambda_{0}=0$, from $\lambda_{n+1} \leq \lambda_{n}$, we have

$$
\begin{aligned}
c_{n} & =\left[\frac{\left(\Lambda_{n+1}\right)^{\Lambda_{n}}}{\left(\Lambda_{n}\right)^{\Lambda_{n-1}}}\right]^{1 / t \lambda_{n}}=\left(1+\frac{\lambda_{n+1}}{\Lambda_{n}}\right)^{\Lambda_{n} / t \lambda_{n}} \cdot \Lambda_{n}^{1 / t} \\
& \leq\left(1+\frac{\lambda_{n}}{\Lambda_{n}}\right)^{\Lambda_{n} / t \lambda_{n}} \cdot \Lambda_{n}^{1 / t}
\end{aligned}
$$

This implies that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}} \\
& \leq \frac{t}{p} \sum_{m=1}^{\infty}\left[\left(1+\frac{1}{\Lambda_{m} / \lambda_{m}}\right)^{\Lambda_{m} / \lambda_{m}}\right]^{p / t} \lambda_{m}\left(a_{m}\right)^{p} \Lambda^{(p-t) / t}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p}
\end{aligned}
$$

Hence, by the above inequality and Lemma 2.1, we have

$$
\begin{aligned}
\sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}}< & \frac{t e^{p / t}}{p} \sum_{m=1}^{\infty}\left(1-\frac{6 \lambda_{m}}{12 \Lambda_{m}+11 \lambda_{m}}\right)^{p / t} \\
& \times \lambda_{m}\left(a_{m}\right)^{p} \Lambda_{m}^{(p-t) / t}\left(\sum_{k=1}^{m} \lambda_{k}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p}
\end{aligned}
$$

Thus the inequality (2.6) is proved.
Remark. Setting $t \equiv 1$ in Theorem 2.7, then from (2.6), we obtain the inequality (2.2) in Theorem 2.2. Hence the inequality (2.6) is a new generalization of Hardy's inequality.

Moreover, we can consider a generalization version of the inequality (2.5) as following theorem:
Theorem 2.8. Let $0<\lambda_{n+1} \leq \lambda_{n}, \Lambda_{n}=\sum_{m=1}^{n} \lambda_{m}\left(\Lambda_{n} \geq 1\right), a_{n} \geq 0(n \in$ N) and $0<\sum_{n=1}^{\infty} \lambda_{n}\left(a_{n}\right)^{t}<\infty$ for $0<p \leq t<\infty$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \lambda_{n+1}\left(a_{1}^{\lambda_{1}} a_{2}^{\lambda_{2}} \cdots a_{n}^{\lambda_{n}}\right)^{t / \Lambda_{n}} \\
& <\frac{t e^{p / t}}{p} \sum_{n=1}^{\infty}\left(1-\frac{\lambda_{n}}{2\left(\Lambda_{n}+\lambda_{n}\right)}-\frac{\lambda_{n}^{2}}{24\left(\Lambda_{n}+\lambda_{n}\right)^{2}}-\frac{\lambda_{n}^{3}}{48\left(\Lambda_{n}+\lambda_{n}\right)^{3}}\right)^{p / t} \\
& \quad \times \lambda_{n}\left(a_{n}\right)^{p} \Lambda_{n}^{(p-t) / t}\left(\sum_{k=1}^{n} \lambda_{k} c_{k} a_{k}\right)^{(t-p) / p} .
\end{aligned}
$$

Proof. The proof is similar to the proof of theorem 2.7.
Also assuming that $\lambda_{n}=1$ in the Theorem 2.7 and Theorem 2.8, we have further extension of the strengthened Carleman's inequality as following:
Corollary 2.9. Let $a_{n} \geq 0(n \in N), 0<p \leq 1$ and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{t / n} \\
& <\frac{t e^{p / t}}{p} \sum_{n=1}^{\infty}\left(1-\frac{6}{12 n+11}\right)^{p / t}\left(a_{n}\right)^{p} n^{(p-t) / t}\left(\sum_{k=1}^{n}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p}
\end{aligned}
$$

where $c_{k}=(1+1 / k)^{k} \cdot k$.
Corollary 2.10. Let $a_{n} \geq 0(n \in N), 0<p \leq 1$ and $0<\sum_{n=1}^{\infty} a_{n}<\infty$. Then

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(a_{1} a_{2} \cdots a_{n}\right)^{t / n} \\
& <\frac{t e^{p / t}}{p} \sum_{n=1}^{\infty}\left(1-\frac{1}{2(1+n)}-\frac{1}{24(1+n)^{2}}-\frac{1}{48(1+n)^{3}}\right)^{p / t} \\
& \quad \times\left(a_{n}\right)^{p} n^{(p-t) / t}\left(\sum_{k=1}^{n}\left(c_{k} a_{k}\right)^{p}\right)^{(t-p) / p} .
\end{aligned}
$$

where $c_{k}=(1+1 / k)^{k} \cdot k$.

## References

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin/New York, 1961.
[2] G. S. Davis and G. M. Peterson, On an inequality of Hardy's (II), Quart. J. Math. (Oxford) 15 (1964), 35-40.
[3] G. H. Hardy, Note on a theorem of Hilbert, Math. Zeitschr 6 (1920), 314-317.
[4] G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, Cambridge Univ. Press, London, 1952.
[5] Y. -H. Kim, Refinements and Extensions of an inequality, J. Math. Anal. Appl. 245 (2000), 628-632.
[6] J. Németh, Generalizations of the Hardy-Littlewood inequality, Acta. Sci. Math. (Szeged) 32 (1971), 295-299.
[7] Z. Xie and Y. Zhong, A best approximation for constant e and an improvement to Hardy's inequality, J. Math. Anal. Appl. 234 (1999), 717-722.
[8] B. C. Yang, On Hardy's inequality, J. Math. Anal. Appl. 234 (1999), 717-722.
[9] B. C. Yang and L. Debnath, Some Inequalities Involving the Constant e, and an Application to Carleman's inequality, J. Math. Anal. Appl. 223 (1998), 347-353.
[10] P. Yang and G. Z. Sun, A Strengthened Carleman's inequality, J. Math. Anal. Appl. 240 (1999), 290-193.
[11] X. Yang, A Carleman's inequality, J. Math. Anal. Appl. 253 (2001), 691-694.
Sever S. Dragomir:
School of Communications and Informatics, Victoria University of Technology, PO Box 14428, MCMC, Melbourne, Victoria 8001, AUSTRALIA

E-mail: sever.dragomir@vu.edu.au

Young-Ho Kim:
Department of Applied Mathematics (or, Brain Korea 21 Project Corps), Changwon
National University,Changwon 641-773, KOREA
E-mail: yhkim@sarim.changwon.ac.kr


[^0]:    Key words and phrases. Power mean, Hardy's Inequality, Monotonicity. 2000 Mathematics Subject Classification. 26D15
    Received: June 26, 2006

