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THE STRENGTHENED HARDY INEQUALITIES
AND THEIR NEW GENERALIZATIONS

sever silvestru dragomir and young-ho kim

Abstract. In this article, using the properties of power mean, new general-
izations of the strengthened Hardy Inequalities are proved.

1. Introduction

It is well known that the following Hardy’s Inequality (see [4, Theorem
326]):

if p > 1 and an ≥ 0, then

(1.1)
∑(a1 + a2 + ... + an

n

)p

<
( p

p− 1

)p ∑
ap

n,

unless all the a are zero. The constant is the best possible.

This theorem was discovered in the course of attempts to simplify the
proofs then known of Hilbert’s double series theorems (see [4, Theorem 315]).
Hilbert’s double series theorem was completed by the above inequality. This
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inequality was first proved by Hardy [3], except that Hardy was unable to
fit the constant in inequality (1.1). If in inequality (1.1) we write an for ap

n,
we obtain

(1.2)
∑(a

1/p
1 + a

1/p
2 + · · ·+ a

1/p
n

n

)p

<
( p

p− 1

)p ∑
an.

If we make p →∞, and use the elementary mean values

lim
p→0

( n∑

i=1

1
n

ap
i

)1/p

=
( n∏

i=1

ai

)1/n

,

we obtain ∞∑
n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an,

and this suggests the more complete theorem which follow;

(1.3)
∞∑

n=1

(a1a2 · · · an)1/n < e

∞∑
n=1

an,

unless (an) is null. The constant is the best possible.
The inequality given in (1.3) which later went by the name of Carleman’s

inequality, led to a great many papers dealing with alternative proofs, various
generalizations, and numerous variants and applications in analysis. It is
natural to attempt to prove the complete inequality by means of following

(1.4)
( n∏

i=1

ai

)1/n

<

n∑

i=1

1
n

ai,

unless all the ai are equal. But a direct application of inequality (1.4) to the
left-hand side of the inequality (1.2) is insufficient. To remedy this, we apply
inequality (1.4) not to a1, a2, ..., an but to c1a1, c2a2, ..., cnan, and choose the
c so that when

∑
an is near the boundary of convergence, these numbers

shall be ‘roughly equal’. This requires that cn shall be roughly of the order
of n.

By Hardy (see, [4, Theorem 349]), the Carleman’s inequality was gener-
alized as follows:

If an ≥ 0, λn > 0, Λn =
∑n

m=1 λm(n ∈ N) and 0 <
∑∞

n=1 λnan < ∞, then

(1.5)
∞∑

n=1

λn(aλ1
1 aλ2

2 · · · aλn
n )1/Λn < e

∞∑
n=1

λnan.
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Recently, Z. Xie and Y. Zhong [7] gave an improvement of the inequality
(1.5) as follows: If an ≥ 0, 0 < λn+1 ≤ λn, Λn =

∑n
m=1 λm(n ∈ N) and

0 <
∑∞

n=1 λnan < ∞, then

(1.6)
∞∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn < e

∞∑
n=1

(
1− 6λn

12Λn + 11λn

)
λnan.

Most recently, Z. Yang [11] obtained the strengthened Carleman’s inequal-
ity as follows: If an ≥ 0, n = 1, 2, ..., and 0 <

∑∞
n=1 an < ∞. Then

∞∑
n=1

(a1a2 · · · an)1/n

< e

∞∑
n=1

(
1− 1

2(1 + n)
− 1

24(1 + n)2
− 1

48(1 + n)3
)
an.(1.7)

It is immediate from the proof of inequality (1.6) and the inequality (1.7)
that we can deduce the following new strengthened Hardy’s inequality:

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

< e

∞∑
n=1

(
1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3
)
λnan.

(1.8)

But we know that the inequality (1.8) is a better improvement of the in-
equality (1.6), as a result of following

(
1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3
)

<
(
1− 6λn

12Λn + 11λn

)

for Λn/λn ≥ 1.

The purpose of this paper is to prove new extension of the strengthened
Hardy’s inequality in the spirit of the strict monotonicity of the power mean
of n distinct positive numbers.
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For any positive values a1, a2, . . . , an and positive weights α1, α2 . . . , αn,∑n
i=1 αi = 1, and any real p 6= 0, we defined the power mean, or the mean

of order p of the value a with weights α by

Mp(a; α) = Mp(a1, a2, . . . , an;α1, α2 . . . , αn) =
( n∑

i=1

αia
p
i

)1/p

.

An easy application of L’Hospital’s rule shows that

lim
p→0

Mp(a; α) =
n∏

i=1

aαi
i ,

the geometric mean. Accordingly, we define M0(a; α) =
∏n

i=1 aαi
i . It is well

known that Mp(a; α) is a nondecreasing function of p for −∞ ≤ p ≤ ∞, and
is strictly increasing unless all the ai are equal (cf. [1]).

2. Strengthened Hardy’s Inequalities

The main results of this paper are presented as follows:

Lemma 2.1 [7]. Let x ≥ 1, then we have the following inequality:

(2.1)
12x + 11
12x + 5

(
1 +

1
x

)x

< e <
14x + 12
14x + 5

(
1 +

1
x

)x

.

We can deduce the following improvement results of the inequality (1.6):

Theorem 2.2. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈
N), 0 < p ≤ 1 and 0 <

∑∞
n=1 λnan < ∞. Then

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
ep

p

∞∑
n=1

(
1− 6λn

12Λn + 11λn

)p

λn(an)pΛp−1
n

( n∑

k=1

λk(ckak)p
)(1−p)/p

.

(2.2)

where cλn

k = (Λn+1)Λn/(Λn)Λn−1 .

Proof. By the power mean inequality, we have

αq1
1 αq2

2 · · ·αqn
n ≤

( n∑
m=1

qm(αm)p
)1/p

,
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for αm ≥ 0, p ≥ 0 and qm > 0(m = 1, 2, . . . , n) with
∑n

m=1 qm = 1. Setting
cm > 0, αm = cmam and qm = λm/Λn, we obtain

(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn ≤
( 1

Λn

n∑
m=1

λm(cmam)p
)1/p

.

Using the above inequality, we have

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

=
∞∑

n=1

λn+1
(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn

(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

(2,3)

≤
∞∑

n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

]( 1
Λn

n∑
m=1

λm(cmam)p
)1/p

.

By using the following inequality (see [2], [6]),

( n∑
m=1

zm

)t

≤ t

n∑
m=1

zm

( m∑

k=1

zk

)t−1

,

where t ≥ 1 is constant and zm ≥ 0(m = 1, 2, · · · ), it is easy to observe that

( 1
Λn

n∑
m=1

λm(cmam)p
)1/p

≤ 1
Λn

( n∑
m=1

λm(cmam)p
)1/p

(2.4)

≤ 1
pΛn

n∑
m=1

λm(cmam)p
( m∑

k=1

λk(ckak)p
)(1−p)/p

for Λn ≥ 1 and 0 < p ≤ 1. Then, by (2.3) and (2.4), we obtain

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

≤ 1
p

n∑
m=1

λm(cmam)p
∞∑

n=m

( λn+1

Λn(cλ1
1 cλ2

2 · · · cλn
n )1/Λn

)( m∑

k=1

λk(ckak)p
)(1−p)/p
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Choosing cλ1
1 cλ2

2 · · · cλn
n = (Λn+1)Λn (n ∈ N) and setting Λ0 = 0, from

λn+1 ≤ λn, it follows that

cn =
[ (Λn+1)Λn

(Λn)Λn−1

]1/λn

=
(
1 +

λn+1

Λn

)Λn/λn · Λn

≤
(
1 +

λn

Λn

)Λn/λn · Λn.

This implies that
∞∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

≤ 1
p

n∑
m=1

λm(cmam)p
∞∑

n=m

λn+1

ΛnΛn+1

( m∑

k=1

λk(ckak)p
)(1−p)/p

=
1
p

n∑
m=1

λm(cmam)p
∞∑

n=m

( 1
Λn

− 1
Λn+1

)( m∑

k=1

λk(ckak)p
)(1−p)/p

=
1
p

n∑
m=1

λm(cmam)p 1
Λm

( m∑

k=1

λk(ckak)p
)(1−p)/p

≤ 1
p

∞∑
m=1

(
1 +

1
Λm/λm

)pΛm/λm

λm(am)pΛp−1
m

( m∑

k=1

λk(ckak)p
)(1−p)/p

.

Hence, by the above inequality and Lemma 2.1, we have
∞∑

n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
ep

p

∞∑
n=1

(
1− 6λn

12Λn + 11λn

)p

λn(an)pΛp−1
n

( n∑

k=1

λk(ckak)p
)(1−p)/p

.

Thus Theorem 2.2 is proved. ¤
Setting p ≡ 1 in Theorem 2.2, then, form inequality (2.2) we have the

inequality (1.6). Also assuming that λn = 1 in the Theorem, we have an
extension of the strengthened Carleman’s inequality as following:

Corollary 2.3. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞.
Then

∞∑
n=1

(a1a2 · · · an)1/n

<
ep

p

∞∑
n=1

(
1− 6

12n + 11

)p

(an)pnp−1
( n∑

k=1

(ckak)p
)(1−p)/p

.
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where ck = (1 + 1/k)k · k.

Similarly to Theorem 2.2, we can consider a generalization version of the
inequality (1.8) as following theorem:

Theorem 2.4. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm, an ≥ 0(n ∈ N),
0 < p ≤ 1 and 0 <

∑∞
n=1 λnan < ∞. Then

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )1/Λn

<
e

p

∞∑
n=1

(
1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3
)p

(2.5)

× λn(an)pΛp−1
n

( n∑

k=1

λk(ckak)p
)(1−p)/p

.

The proof is almost the same as in proving Theorem 2.2. We here only
need to note that

(
1 +

1
x

)x

< e
(
1− 1

2(1 + x)
− 1

2(1 + x)2
− 1

2(1 + x)3
)

for x > 0, which proved in [11, Lemma 1].

Corollary 2.5. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞.
Then

∞∑
n=1

(a1a2 · · · an)1/n

<
ep

p

∞∑
n=1

(
1− 1

2(1 + n)
− 1

24(1 + n)2
− 1

48(1 + n)3
)p

× (an)pnp−1
( n∑

k=1

(ckak)p
)(1−p)/p

.

where ck = (1 + 1/k)k · k.
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Lemma 2.6. If a1, a2, . . . , an > 0 and α1, α2 . . . , αn > 0 with
∑n

i=1 αi = 1,
then we have the following inequality:

( n∏

i=1

aαi
i

)k

≤
( n∑

i=1

αi(ai)p
)k/p

for 0 < k, p with the equality holding if and only if all ai are same.

Note that Lemma 2.6 is easily deduced form the fact that Mp(a; α) is a
continuous strictly increasing function of p.

Now, we are ready to introduce the following new general strengthened
Hardy’s inequality.

Theorem 2.7. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈
N) and 0 <

∑∞
n=1 λn(an)t < ∞ for 0 < p ≤ t < ∞. Then

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn <

tep/t

p

∞∑
n=1

(
1− 6λn

12Λn + 11λn

)p/t

× λn(an)pΛ(p−t)/t
n

( n∑

k=1

λkckak

)(t−p)/p

.(2.6)

Proof. The proof is almost the same as in Theorem 2.2. By Lemma 2.6, we
have

(αq1
1 αq2

2 · · ·αqn
n )t ≤

( n∑
m=1

qm(αm)p
)t/p

, p, t ≥ 0,

where αm ≥ 0 and qm > 0(m = 1, 2, . . . , n) with
∑n

m=1 qm = 1. Setting
cm > 0, αm = cmam and qm = λm/Λn, we obtain

(
(c1a1)λ1/Λn(c2a2)λ2/Λn · · · (cnan)λn/Λn

)t ≤
( 1

Λn

n∑
m=1

λm(cmam)p
)t/p

.

Using the above inequality, we have

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

≤
∞∑

n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )t/Λn

] 1
Λn

( n∑
m=1

λm(cmam)p
)t/p

(2.7)
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for Λn ≥ 1 and t ≥ p. By using the following inequality (see [2], [6]),

( n∑
m=1

zm

)t

≤ t

n∑
m=1

zm

( m∑

k=1

zk

)t−1

,

where t ≥ 1 is constant and zm ≥ 0(m = 1, 2, · · · ), it is easy to observe that

(2.8)
( n∑

m=1

λm(cmam)p
)t/p

≤ t

p

n∑
m=1

λm(cmam)p

( m∑

k=1

λk(ckak)p

)(t−p)/p

.

for Λn ≥ 1 and t ≥ p. Then, by (2.7) and (2.8), we obtain

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn ≤

∞∑
n=1

[ λn+1

(cλ1
1 cλ2

2 · · · cλn
n )t/Λn

] 1
Λn

t

p

×
n∑

m=1

λm(cmam)p

( m∑

k=1

λk(ckak)p

)(t−p)/p

.(2.9)

Choosing cλ1
1 cλ2

2 · · · cλn
n = (Λn+1)Λn/t (n ∈ N) and setting Λ0 = 0, from

λn+1 ≤ λn, we have

cn =
[ (Λn+1)Λn

(Λn)Λn−1

]1/tλn

=
(
1 +

λn+1

Λn

)Λn/tλn · Λ1/t
n

≤
(
1 +

λn

Λn

)Λn/tλn · Λ1/t
n .

This implies that

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

≤ t

p

∞∑
m=1

[(
1 +

1
Λm/λm

)Λm/λm
]p/t

λm(am)pΛ(p−t)/t

( m∑

k=1

λk(ckak)p

)(t−p)/p

.

Hence, by the above inequality and Lemma 2.1, we have

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn <

tep/t

p

∞∑
m=1

(
1− 6λm

12Λm + 11λm

)p/t

× λm(am)pΛ(p−t)/t
m

( m∑

k=1

λk(ckak)p
)(t−p)/p

.
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Thus the inequality (2.6) is proved. ¤

Remark. Setting t ≡ 1 in Theorem 2.7, then from (2.6), we obtain
the inequality (2.2) in Theorem 2.2. Hence the inequality (2.6) is a new
generalization of Hardy’s inequality.

Moreover, we can consider a generalization version of the inequality (2.5)
as following theorem:

Theorem 2.8. Let 0 < λn+1 ≤ λn, Λn =
∑n

m=1 λm(Λn ≥ 1), an ≥ 0(n ∈
N) and 0 <

∑∞
n=1 λn(an)t < ∞ for 0 < p ≤ t < ∞. Then

∞∑
n=1

λn+1(aλ1
1 aλ2

2 · · · aλn
n )t/Λn

<
tep/t

p

∞∑
n=1

(
1− λn

2(Λn + λn)
− λ2

n

24(Λn + λn)2
− λ3

n

48(Λn + λn)3
)p/t

× λn(an)pΛ(p−t)/t
n

( n∑

k=1

λkckak

)(t−p)/p

.

Proof. The proof is similar to the proof of theorem 2.7. ¤
Also assuming that λn = 1 in the Theorem 2.7 and Theorem 2.8, we have

further extension of the strengthened Carleman’s inequality as following:

Corollary 2.9. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞.
Then

∞∑
n=1

(a1a2 · · · an)t/n

<
tep/t

p

∞∑
n=1

(
1− 6

12n + 11

)p/t

(an)pn(p−t)/t
( n∑

k=1

(ckak)p
)(t−p)/p

.

where ck = (1 + 1/k)k · k.

Corollary 2.10. Let an ≥ 0(n ∈ N), 0 < p ≤ 1 and 0 <
∑∞

n=1 an < ∞.
Then

∞∑
n=1

(a1a2 · · · an)t/n

<
tep/t

p

∞∑
n=1

(
1− 1

2(1 + n)
− 1

24(1 + n)2
− 1

48(1 + n)3
)p/t

× (an)pn(p−t)/t
( n∑

k=1

(ckak)p
)(t−p)/p

.
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where ck = (1 + 1/k)k · k.
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