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1. INTRODUCTION

We shall consider the following 
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  problem of unconstrained optimization
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We shall present an iterative algorithm which is based on the results from [1], [2] and [4] for finding an optimal solution to problem (1) generating the sequence of points 
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 of the following form: 
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where the step-size 
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 and the direction vectors 
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2. PRELIMINARIES
We shall give some preliminaries that will be used for the remainder of the paper.

Definition (see [4]). The second order Dini upper directional derivative of the  function 
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If 
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 is directionally differentiable at 
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Lemma 1 (See [4]).  Let 
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Lemma 2 (see [4]). Let 
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2. THE OPTIMIZATION ALGORITHM

At the k-th iteration the direction vector 
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 in (2) is any vector satisfying the descent property, i.e. 
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 presents a solution of the problem
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where 
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We make the following assumptions.

A1. We suppose that there exist constants 
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A3. There exists a value 
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It follows from Lemma 3.1 in [4] that under the assumption A1 the optimal solution of the problem (3) exists.

Lemma 3 (see [4]).  The following statements are equivalent:

1. 
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 is a globally optimal solution of the problem (3);

2. 0 is the optimum of the objective function of the problem (3);

3. the corresponding 
[image: image67.wmf]k

x

 is a stationary point of the function 
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Proposition 1 If the function 
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Proof. 1) From the assumption (5) and the mean value theorem it follows that for all 
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that is,
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 is uniformly and consequently strictly convex on 
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2) From [5] it follows that the level set 
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3) The existence of 
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In order to have a finite value 
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i.e. 
[image: image99.wmf]k

d

 is a descent direction at 
[image: image100.wmf]k

x

.

Now suppose that for some 
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 the inequality (4A) holds, but  the inequality  (4B) does not hold. In other words we have the following:
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The right side of the above inequality tends to 
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 and that is a contradiction since  f is, because of the assumptions, bounded below on the compact set 
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The inequality (4B) guarantees a suitable reduction in  f, that is  that  f(x) is decreased by at least a multiple of the modulus of the directional derivative
[image: image114.wmf](

)

k

T

k

k

s

x

f

Ñ

a

 and
[image: image115.wmf](

)

.

;

2

1

"

4

k

k

D

k

d

x

f

a

-

 As
[image: image116.wmf]0

=

k

a

 satisfies this inequality it is necessary to introduce another condition that prevents too small an  
[image: image117.wmf]k

a

 from being chosen.  This is the purpose  of the inequality (4A).

Convergence theorem . Suppose that 
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Proof.  From (4A), (6) and (7) it follows that
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By the definition of the Dini derivative and by (5) we have
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Accumulating all terms of order higher than 
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Multiplying this inequality by (–1) we get
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Convergence rate theorem Under the assumptions of the previous theorem we have that the following estimate holds for the sequence 
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Proof. The proof directly follows from the Theorem 9.2, page 167 in [3].

3. CONCLUSION

As we already have said, the algorithm presented in this paper is based on the results from [1], [2] and [4]. The idea was to define a second-order variant of the original Cea-Goldstein algorithm for 
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 function, but not a 
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 function. Note that such an algorithm generates at every iteration a point closer to an optimal point than the algorithms given in [4]. It happens because in [4] we have minimization along one direction, and here we have minimization along a plane defined by the vectors 
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 and 
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d

. Relating to the algorithm in [2], the presented algorithm is defined and converges under weaker assumptions than the algorithm given in [2].
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