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UPPER TRIANGULAR OPERATORS WITH SVEP:
SPECTRAL PROPERTIES

B. P. Duggal

Abstract

Spectral properties of upper triangular operators T = (Tij)1≤i,j≤n ∈
B(Xn), where Xn = ⊕n

i=1Xi and Xi is an infinite dimensional complex
Banach space, such that Tii − λ has the single-valued extension prop-
erty, SVEP, for all complex λ are studied.

1. Introduction

Let B(X n) denote the algebra of operators (equivalently, bounded linear
transformations) on the Banach space X n = ⊕n

i=1Xi, where Xi, for all 1 ≤
i ≤ n, is an infinite dimensional complex Banach space. A block matrix
operator T = (Tij)1≤i,j≤n ∈ B(X n) is upper triangular if Tij is the 0 operator
for all j > i. The spectral properties of upper triangular operators have been
studied by a number of authors in the recent past (see [3, 4], [6], [8] and
[13] for further references). If we define the diagonal operator N ∈ B(X n)
by N = ⊕n

i=1Tii, then it is apparent that the upper triangular operator
T = (Tij)1≤i,j≤n is the sum of N with an n-nilpotent operator Q (which,
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one would expect in general, does not commute with N). Consequently, the
relationship between the spectra, and their various distinguished parts, of
T and N is unlikely to be a straightforward one. What is of interest here
is the determination of classes of operators Tii such that T and N have as
close a spectral picture as reasonably possible. A (separable) Hilbert space
operator A, A ∈ B(H), is a Jordan operator of order n, denoted A ∈ Jn(H),
if A = N +Q, where Q is an n-nilpotent operator which commutes with the
normal operator N ; A ∈ B(H) is an n-normal operator, denoted A ∈ Nn(H),
if there exist a Hilbert space K and a unitary isomorphism Φ(: H −→ Kn =
K⊕...⊕K, n copies) such that ΦAΦ−1 = (Nij)1≤i,j≤n ∈ B(Kn), where Nij are
mutually commuting normal operators; and A ∈ B(H) is a Cn(H) operator if
there exists a decomposition H = ⊕n

i=1Hi such that A = (Aij)1≤i,j≤n, Aij ∈
B(Hj ,Hi), Aij = 0 for i > j and Aii is a normal operator for all 1 ≤ i ≤ n.
It is not difficult to verify that Jn(H) ∪ Nn(H) ⊂ Cn(H) [13, Proposition
1.4]. Upper triangular operators Cn(H) have been considered by Jung, Ko
and Pearcy [13], who have shown that these operators share a number of
properties with normal operators (see [13, Theorem 2.3 and Lemma 2.4]).
For a normal operator A, both A and its adjoint A∗ have the single-valued
extension property, SVEP for short. Upper triangular operators T ∈ B(X n)
such that both Tii and its conjugate T ∗ii have SVEP for all 1 ≤ i ≤ n have
been considered by Benhida, Zerouali and Zguitti [3], who have shown that
results similar to those for operators in Cn(H) hold for such operators. This
paper extends, and adds to, the results of [3] by separately considering the
cases Tii has SVEP and T ∗ii has SVEP. With notation as explained below,
we prove the following. “If T ∈ B(X n) is an upper triangular operator such
that Ti (= Tii) and T ∗i have SVEP for all 1 ≤ i ≤ n, then (i) σ(Ti) =
σs(Ti) = σa(Ti), 1 ≤ i ≤ n, and σ(T ) = σs(T ) = σa(T ) = ∪n

i=1σ(Ti); (ii)
σe(T ) = σsF (T ) = accσa(T )∪{λ ∈ isoσa(T ) : dim H0(T −λ) = ∞}; and (iii)
σb(Ti) = σba(Ti) = σbs(Ti) = σw(Ti) = σws(Ti) = σwa(Ti) = σ(Ti) \ π0(Ti),
1 ≤ i ≤ n, and σb(T ) = σba(T ) = σbs(T ) = σw(T ) = σws(T ) = σwa(T ) =
∪n

i=1σb(Ti) = σ(T ) \ π0(T ). Furthermore, if Q ∈ B(X n) is a quasinilpotent
operator which commutes with T , then (iv) σ(T + Q) = σa(T + Q), σb(T +
Q) = σba(T + Q) = σbs(T + Q) = σw(T + Q) = σwa(T + Q) = σws(T + Q) =
σb(T ) and σsF (T +Q) = σe(T ).” For upper triangular operators T such that
Ti has SVEP and the quasinilpotent part H0(Ti − λI) = (Ti − λI)−pi(0) for
some integer pi ≥ 1 at points λ ∈ isoσ(Ti) ( all 1 ≤ i ≤ n), we prove that
σa(T ∗)\σwa(T ∗) = πa

00(T
∗), and σ(f(B))\σw(f(B)) = π00(f(B)), B = T or

T ∗, for every non-constant function f which is analytic on a neighbourhood
of σ(T ).
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2. Notation and terminology

We shall henceforth shorten A − λI to A − λ. X and Xi (1 ≤ i ≤ n) shall
denote (infinite dimensional complex) Banach spaces, and H and Hi (1 ≤
i ≤ n) shall denote separable (infinite dimensional complex) Hilbert spaces.
As above, we shall define X n by X n = ⊕n

i=1Xi and Hn by Hn = ⊕n
i=1Hi. A

Banach space operator A, A ∈ B(X ), is said to be left semi-Fredholm (resp.
right semi-Fredholm), A ∈ ρlF (X ) (resp., A ∈ ρrF (X )), if AX is closed
and the deficiency index α(A) = dim(A−1(0)) is finite (resp., the deficiency
index β(A) = dim(X \ AX ) is finite); A is semi-Fredholm, A ∈ ρsF (X ), if
A ∈ ρlF (X )∪ρrF (X ), and A is Fredholm, A ∈ ρF (X ), if A ∈ ρlF (X )∩ρrF (X ).
The semi-Fredholm index of A, ind(A), is the (finite or infinite) number
ind(A) = α(A) − β(A). The left semi-Fredholm spectrum, the right semi-
Fredholm spectrum and the Fredholm spectrum of A are, respectively, the
sets σle(A) = {λ : A − λ /∈ ρlF (X )}, σre(A) = {λ : A − λ /∈ ρrF (X )} and
σe(A) = {λ : A−λ /∈ ρF (X )}. The spectral picture SP(A) of A consists of the
(Fredholm) essential spectrum σe(A), the holes and pseudoholes of σe(A),
and the indices associated with these holes and pseudoholes [14]. Recall that
similar operators have the same spectral picture. We say that the operator A
is Weyl if it is Fredholm of index 0. The Weyl spectrum σw(A) of A is the set
{λ : A−λ is not Weyl}. Let σ(A), σa(A), σs(A), accσ(A), isoσ(A), π0(A) and
π00(A) denote, respectively, the spectrum, the approximate point spectrum,
the approximate defect (or, surjectivity) spectrum, the accumulation points
of the spectrum, the isolated points of the spectrum, the Riesz points, and
the isolated eigenvalues of finite multiplicity of A. Let πa

0(A) = π0(A) ∩
σa(A) and πa

00(A) = π00(A) ∩ σa(A). In keeping with current terminology,
we say that A satisfies Weyl’s theorem if it satisfies the Weyl condition
σ(A) \ σw(A) = π00(A). (We refer the interested reader to [1, Chapter 3.8]
for an excellent account of Browder and Weyl theorems.)

The ascent of A− λ, asc(A− λ), is the least non-negative integer n such
that (A−λ)−n(0) = (A−λ)−(n+1)(0); the descent of (A−λ), dsc(A−λ), is
the least non-negative integer n such that (A − λ)nX = (A − λ)n+1X . We
say that A has finite ascent (finite descent) if A−λ has finite ascent (resp.,
descent) for all λ. Recall from [1, Theorem 3.4] that if asc(A) < ∞, then
α(A) ≤ β(A). The Browder spectrum σb(A) of an operator A is the set of λ
such that A− λ is not Fredholm of finite ascent and descent. The essential
approximate point spectrum, the Browder essential approximate point spec-
trum, the essential defect spectrum and the Browder essential defect spec-
trum of A are, respectively, the sets σwa(A) = {λ : A − λ /∈ ρlF (X ) or
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ind(A−λ) 6≤ 0}, σba(A) = {λ : A−λ /∈ ρlF (X ) or asc(A−λ) = ∞}, σws(A) =
{λ : A− λ /∈ ρrF (X ) or ind(A− λ 6≥ 0} and σbs(A)) = {λ : A− λ /∈ ρrF (X )
or dsc(A− λ) = ∞}. Apparently, σwa(A) ⊆ σba(A), σwa(A) = σws(A∗) and
σba(A) = σbs(A∗).

A ∈ B(X ) has the single-valued extension property at λ0, SVEP at λ0 for
short, if for every open disc Dλ0 centered at λ0 the only analytic function
f : Dλ0 → X which satisfies

(A− λ)f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. Trivially, every operator A has SVEP at points of the
resolvent ρ(A) = C \ σ(A) and at points λ ∈ isoσ(A). We say that A has
SVEP if it has SVEP at every complex number λ. The quasinilpotent part
H0(A− λ) and the analytic core K(A− λ) of (A− λ) are defined by

H0(A− λ) = {x ∈ X : lim
n−→∞ ||(A− λ)nx|| 1n = 0}

and

K(A− λ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0
for which x = x0, (A− λ)xn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all
n = 1, 2, ...}.

We note that H0(A − λ) and K(A − λ) are (generally) non-closed hy-
perinvariant subspaces of (A − λ) such that (A − λ)−m(0) ⊆ H0(A − λ)
for all m = 0, 1, 2, ... and (A − λ)K(A − λ) = K(A − λ). We say that
an operator A ∈ B(X ) satisfies property H(p) for some integer p ≥ 1 if
H0(A − λ) = (A − λ)−p(0) for all complex λ. (The interested reader is
referred to [1] for these, and other, results on “local spectral theory”.)

3. Spectral properties

Henceforth, T (X n) shall denote the class of upper triangular operators in
B(X n), and T = (Tij)1≤i,j≤n shall denote an element of T (X n) such that
the elements Ti = Tii ∈ B(Xi), 1 ≤ i ≤ n, along the main diagonal of T have
SVEP. Given an operator A, H(A) shall denote the set of (non-constant)
functions f which are analytic on a neighbourhood of σ(A).

Recall from [1, Theorem 2.9] that a sufficient condition for an operator

A =

(
A1 ∗
0 A2

)
∈ B(X 2) to have SVEP is that both A1 and A2 have

SVEP. Applying a finitely repeated argument, it follows that:
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Lemma 3.1 T has SVEP.

If an operator A has SVEP, then σ(A) = σs(A) [1, Corollary 2.45]. The
following lemma, which follows from a finitely repeated application of [6,
Theorem 2.3], relates σ(T ) and σe(T ) to σ(Ti) and σe(Ti) (respectively).

Lemma 3.2 σ(T ) = ∪n
i=1σ(Ti) and σe(T ) = ∪n

i=1σe(Ti).

Remark here that either of the hypotheses “Ti has SVEP for 2 ≤ i ≤ n” and
“T ∗i has SVEP for 1 ≤ i ≤ n − 1” is sufficient for the equalities of Lemma
3.2 [6, Theorem 2.3]. The following lemma is probably known: we include it
here for completeness.

Lemma 3.3 σb(T ) = ∪n
i=1σb(Ti).

Proof. We prove the lemma for A =

(
A1 ∗
0 A2

)
, where A1 and A2 have

SVEP; the proof for the general case follows from a finite induction argument.
Evidently, σb(A) ⊆ σb(A1)∪ σb(A2). Let λ /∈ σb(A). Then A1 − λ ∈ ρlF (X1)
and A2 − λ ∈ ρrF (X2). Since Ai, i = 1, 2, has SVEP, ind(Ai − λ) ≤ 0;

again, since A =

(
I 0
0 A2

) (
I ∗
0 I

) (
A1 0
0 I

)
, the product index for-

mula implies that ind(A − λ) = ind(A1 − λ) + ind(A2 − λ) = 0. Hence
ind(Ai−λ) = 0 and Ai−λ ∈ ρF (X ) for i = 1, 2. But then, since Ai has SVEP
and α(Ai−λ) = β(Ai−λ) < ∞, asc(Ai−λ) = dsc(Ai−λ) < ∞ [1, Theorems
3.16, 3.4 and 3.74] =⇒ λ /∈ σb(Ai); i = 1, 2. Hence ∪2

i=1σb(Ai) ⊆ σb(A).

Recall from [11, p.140] that an operator A ∈ B(Hn) is quasitriangular if there
exists an increasing sequence {Pn} of finite rank projections such that Pn −→
I strongly as n −→∞ and ||(I−Pn)APn|| −→ 0 (as n −→∞). Equivalently,
A is quasitriangular if and only if SP(A) contains neither negative integers
nor −∞ (i.e., if and only if ρ−sF (A) = ∅, where ρ−sF (A) = {λ ∈ ρsF (A) :
ind(A− λ) < 0}) [11, Theorem 6.4]). We say that A is co-quasitriangular if
A∗ is quasitriangular.

Lemma 3.4 Operators T ∈ B(Hn) are co-quasitriangular.

Proof. Since T has SVEP, λ ∈ ρsF (T ) =⇒ asc(T − λ) < ∞ [1, Theorem
3.16] =⇒ ind(T − λ) ≤ 0 =⇒ ρ−sF (T ∗) = ∅.

The following proposition lists some of the more important spectral proper-
ties of operators in T (X n).



30 B. P. Duggal

Proposition 3.5 (i) σ(Ti) = σs(Ti), 1 ≤ i ≤ n, and σ(T ) = σs(T ) =
∪n

i=1σ(Ti).
(ii) σe(Ti) = σre(Ti), 1 ≤ i ≤ n, and σe(T ) = σre(T ) = ∪n

i=1σe(Ti).
(iii) σb(Ti) = σw(Ti) = σws(Ti) = σ(Ti) \ π0(Ti), 1 ≤ i ≤ n, and σb(T ) =

σw(T ) = σws(T ) = ∪n
i=1σb(Ti) = σ(T ) \ π0(T ).

(iv) σwa(T ) = σba(T ) = σa(T ) \ πa
0(T ).

(v) σsF (T ) = accσa(T )∪{λ ∈ isoσa(T ) : dimH0(T−λ) = ∞ or (T−λ)X n

is not closed}.
(vi) f(σx(T )) = σx(f(T )) for every f ∈ H(T ), where σx = σw or σwa.
(vii) T ∈ B(Hn) is bi-quasitriangular if and only if T ∗ has SVEP at

points λ /∈ σsF (T ).

Proof. (i) has been proved above.
(ii). In view of Lemma 3.3, it will suffice to prove that if an operator

A ∈ B(X ) has SVEP, then σe(A) ⊆ σre(A). (Recall that the reverse inclusion
holds for every operator A.) Consider a λ /∈ σre(A). Then A− λ ∈ ρrF (X )
with β(A− λ) < ∞. Since A has SVEP, asc(A− λ) < ∞ [1, Theorem 3.16]
=⇒ ind(A− λ) ≤ 0 =⇒ α(A− λ) ≤ β(A− λ) < ∞ =⇒ λ /∈ σe(A).

(iii) + (iv). Let A ∈ B(X ). Recall from [7, Lemma 2.18] that a necessary
and sufficient condition for σwa(A) = σba(A) = σa(A) \ πa

0(A) (similarly,
σw(A) = σb(A) = σ(A) \ π0(A)) is that A has SVEP at points λ /∈ σwa(A)
(resp., λ /∈ σw(A)). (In keeping with current terminology, we say that A
satisfies a-Browder’s theorem, respectively Browder’s theorem, if σwa(A) =
σba(A), respectively σw(A) = σb(A): [7, Lemma 2.18] implies that operators
A with SVEP satisfy a-Browder’s, hence Browder’s, theorem.) This proves
(iv) and, in view of Lemmas 3.1 and 3.3, most of (iii). To complete the proof
of (iii), we prove that σw(A) = σws(A) (= σwa(A∗)) for operators A with
SVEP. Evidently, σws(A) ⊆ σw(A). Let λ /∈ σws(A). Then A− λ ∈ ρrF (X )
and ind(A−λ) ≥ 0. Since A has SVEP implies ind(A−λ) ≤ 0, we conclude
that ind(A− λ) = 0 and A− λ is Fredholm, i.e., λ /∈ σw(T ).

(v). See [1, Theorem 3.79(i)].
(vi). Follows from an application of [16, Theorem 2] and [17, Theorem

1], since (SVEP =⇒) ind(T − λ) ≤ 0 for points λ ∈ ρsF (T ).
(vii). Let ρ+

sF (T ) = {λ ∈ ρsF (T ) : ind(T − λ) > 0}. Then T is bi-
quasitriangular if and only if ρ+

sF (T ) ∪ ρ−sF (T ) = ∅. Evidently, T has SVEP
implies ρ+

sF (T ) = ∅. Suppose that ρ−sF (T ) 6= ∅. Then there exists a λ such
that T − λ is semi-Fredholm and ind(T − λ) ≤ 0. Since T ∗ has SVEP
at λ (= the complex conjugate of λ), dsc(T − λ) < ∞ [1, Theorem 3.17]
=⇒ ind(T − λ) ≥ 0 . Hence ind(T − λ) = 0 =⇒ λ /∈ ρ−sF (T ); contradiction.
Conversely, assume that ρ−sF ∪ ρ+

sF (T ) = ∅. Let λ /∈ σsF (T ). Then T − λ ∈
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ρsF (T ) and ind(T − λ) = 0 =⇒ T − λ is Fredholm. Since T has SVEP at
λ, asc(T − λ) < ∞. Hence asc(T − λ) = dsc(T − λ) < ∞ [1, Theorem 3.4]
=⇒ λ ∈ isoσ(T ) [1, Theorem 3.81] =⇒ T ∗ has SVEP at λ. (It is evident from
the argument above that if A ∈ B(Hn) has SVEP at points λ ∈ ρsF (A), then
a necessary and sufficient condition for A to be bi-quasitriangular is that A∗

has SVEP at points λ ∈ ρsF (A).)

The following proposition is a (sort of ) dual to Proposition 3.5.

Proposition 3.6 Let A = (Aij)1≤i,j≤n ∈ B(X n) be an upper triangular
operator such that A∗i = A∗ii has SVEP for all 1 ≤ i ≤ n. Then:

(i) σ(Ai) = σa(Ai), 1 ≤ i ≤ n, and σ(A) = σa(A) = ∪n
i=1σ(Ai).

(ii) σe(Ai) = σle(Ai), 1 ≤ i ≤ n, and σe(A) = σle(A) = ∪n
i=1σe(Ai).

(iii) σb(Ai) = σw(Ai) = σwa(Ai) = σ(Ai) \ π0(Ai), 1 ≤ i ≤ n, and
σb(A) = σw(A) = σwa(A) = ∪n

i=1σb(Ai) = σ(A) \ π0(A).
(iv) σws(A) = σbs(A) = σs(A) \ πs

0(A).
(v) σsF (A) = accσs(A) ∪ {λ ∈ isoσs(A) : dim(X n \K(A− λ)) = ∞}.
(vi) f(σx(A)) = σx(f(A)) for every f ∈ H(A), where σx = σw or σws.
(vii) A is quasitriangular, if Xi = Hi, 1 ≤ i ≤ n.

Proof. Evidently, A∗ has SVEP. Let B = Ai or A; then dsc(B − λ) < ∞ [1,
Theorem 3.17] =⇒ ind(B − λ) ≥ 0.

(i). If B∗ has SVEP, then σ(B) = σa(B) [1, Corollary 2.45].
(ii). Evidently, σe(A) = ∪n

i=1σe(Ai). Let λ /∈ σle(B); then α(B−λ) < ∞
and B − λ is semi-Fredholm =⇒ ind(B − λ) ≥ 0 and α(B − λ) < ∞ =⇒
β(B − λ) ≤ α(B − λ) < ∞ =⇒ λ /∈ σe(T ).

(iii)+ (iv). Argue as in the proof of Lemma 3.3 to prove that σb(A) =
∪n

i=1σb(Ai) (use the fact that ind(B − λ) ≥ 0). Observe that B∗ satis-
fies a-Browder’s theorem, so that σb(B∗) = σw(B∗) = σ(B∗) \ π0(B∗) and
σwa(B∗) = σba(B∗) = σa(B∗) \ πa

0(B∗). The proof follows, since σx(B∗) =
σx(B), where σx denotes σ or σb or σw, σwa(B∗) = σws(B), σba(B∗) =
σbs(B), σa(B∗) = σs(B) and πa

0(B∗) = πs
0(B).

(v). See [1, Theorem 3.79(ii)].
(vi). Since ind(A − λ) ≥ 0 for points λ ∈ ρsF (A), [16, Theorem 2] and

[17, Theorem 1] apply.
(vii). ρ−sF (A) = ∅.

Partial versions of the following theorem, which combines parts of Proposi-
tions 3.5 and 3.6, have been proved (for the more restrictive class of Cn(Hn)
of upper triangular operators with normal operator entries along the main
diagonal) by Jung, Ko and Pearcy [13] and Benhida, Zerouali and Zguitti
[3].
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Theorem 3.7 If T ∈ T (X n) is such that T ∗i (= T ∗ii) has SVEP for all
1 ≤ i ≤ n, then:

(i) σ(Ti) = σs(Ti) = σa(Ti), 1 ≤ i ≤ n, and σ(T ) = σs(T ) = σa(T ) =
∪n

i=1σ(Ti).
(ii) σe(T ) = σsF (T ) = accσa(T ) ∪ {λ ∈ isoσa(T ) : dimH0(T − λ) = ∞}.
(iii) σb(Ti) = σba(Ti) = σbs(Ti) = σw(Ti) = σws(Ti) = σwa(Ti) = σ(Ti) \

π0(Ti), 1 ≤ i ≤ n, and σb(T ) = σba(T ) = σbs(T ) = σw(T ) = σws(T ) =
σwa(T ) = ∪n

i=1σb(Ti) = σ(T ) \ π0(T ).
Furthermore, if Q ∈ B(X n) is a quasinilpotent operator which commutes

with T , then:
(iv) σ(T + Q) = σa(T + Q), σb(T + Q) = σba(T + Q) = σbs(T + Q) =

σw(T + Q) = σwa(T + Q) = σws(T + Q) = σb(T ) and σsF (T + Q) = σe(T ).

Proof. (i), (ii) and (iii) are evident. Observe that both Q and Q∗ have SVEP,
and Q∗ commutes with T ∗. Applying [1, Corollary 2.12] we conclude that
both T +Q and T ∗+Q∗ have SVEP. The proof (now) of (iv) is an immediate
consequence of (the above and) [15, Theorems 5 and 6] which state that “for
an operator A ∈ B(X ), σb(A) (resp., σba(A)) is the largest subset of σ(A)
(resp., σa(A)) which remains invariant under perturbations by commuting
Riesz operators”.

Remark 3.8 It is easy to verify that σa(T +Q) = σa(T ) in the case in which
Q is nilpotent. If one assumes in Theorem 3.7(iv) that the quasinilpotent
operator Q is injective, then (again) σ(T + Q) = σa(T + Q) = σa(T ). To
see this we prove that if Q ∈ B(X ) is an injective quasinilpotent which
commutes with A ∈ B(X ), then σa(A + Q) = σa(A). Because of symmetry,
it would suffice to prove that σa(A + Q) ⊆ σa(A). If λ /∈ σa(A), then
λ /∈ σwa(A) = σwa(T + Q) [15]. In particular, T + Q − λ has closed range,
and if α(T + Q− λ) = 0, then λ /∈ σa(T + Q). Thus, we have to prove that
α(T + Q − λ) = 0. Evidently, α(T − λ) < ∞. Let x ∈ (T + Q − λ)−1(0).
Then Qmx ∈ (T + Q − λ)−1(0) for all m = 0, 1, 2, ... . It is straightforward
to see, using the injectivity of Q, that if p(Q)x = 0 for some polynomial
p(t) =

∑m
i=0 cit

m−i then p(.) is identically 0. Hence the sequence of vectors
{Qmx} is linearly independent. This is a contradiction.

Remark 3.9 A very large number of the important classes of operators
in B(X ) have SVEP (hence elements belonging to these classes are suit-
able candidates for the choice of operators Tii in Proposition 3.5). Recall
that an operator A ∈ B(H) is hyponormal if |A∗|2 ≤ |A|2, p-hyponormal if
|A∗|2p ≤ |A|2p for some 0 < p < 1, w-hyponormal if |Ã∗| ≤ |A| ≤ |Ã| (where,
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for U as in the polar decomposition A = U |A| for A, Ã = |A| 12 U |A| 12 de-
notes the first Aluthge transform of A), M -hyponormal if ||(A − λI)∗x|| ≤
M ||(A − λI)x|| for some scalar M , all x ∈ H and every complex num-
ber λ, (p, k)-quasihyponormal for 0 < p ≤ 1 and some integer k ≥ 1
if A∗k(|A|2p − |A∗|2p)Ak ≥ 0, totally ∗-paranormal if ||(A − λI)∗x||2 ≤
||(A − λI)2x|| for every unit vector x and complex number λ, and para-
normal if ||Ax||2 ≤ ||A2x|| for all unit vectors x ∈ H. (Evidently, a (1, 1)-
quasihyponormal operator is quasihyponormal and a (1, k)-quasihyponormal
operator is k-quasihyponormal.) All these classes of (Hilbert space) oper-
ators have SVEP ,indeed more. (We refer the reader to the monograph
[9] for information on these classes of operators; see also [1], [7] and [10].)
If X is separable (resp., reflexive), then paranormal operators A ∈ B(X )
(resp., operators A ∈ B(X ) satisfying a local growth condition of some order
m ≥ 1, A ∈ locally − (Gm)), have SVEP; see [5] and [12]. (See Section 3
for definition of (Gm) and locally − (Gm) operators.) Operators satisfying
property H(p), for some integer p ≥ 1, have SVEP. Class H(p) is large; it
contains, amongst other classes, the class of generalized scalar operators and
multipliers of commutative semi-simple Banach algebras [1, pp. 170 - 176
and 215].

Remark 3.10 Both A and the conjugate operator A∗ have SVEP for de-
composable, in particular normal, operators A [1]: Theorem 3.7 holds for
operators T such that Tii is decomposable for all 1 ≤ i ≤ n.

4. Operators T ∈ T (X n) satisfying σ(T ) \ σw(T ) =
π00(T ) and σa(T ) \ σwa(T ) = πa

00(T ).

SVEP alone is not enough for an operator A to satisfy Weyl’s theorem (i.e.,
σ(A) \ σw(A) = π00(A)): consider, for example, the operator A = Q ⊕ S,
where Q ∈ B(H) is quasinilpotent and S is a nilpotent on a finite dimensional
space, which satisfies σ(A) = σw(A) = {0} and π00(A) = {0}. For operators
A satisfying property H(p), f(A) and f(A∗) satisfy Weyl’s theorem for every
f ∈ H(A) [1, Theorem 3.104]. A similar result holds for operators T ∈
T (X n) satisfying H0(Ti − λ) = (Ti − λ)−pi(0) for some integer pi ≥ 1 (1 ≤
i ≤ n), as we shall momentarily see.

Let A =

(
A1 X
0 A2

)
∈ B(X 2), where A1, A2 have SVEP, and H0(Ai −

λ) = (Ai − λ)−pi(0), i = 1, 2, for some integer pi ≥ 1 and complex number
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λ. Let x = x1 ⊕ x2 ∈ X 2 be such that x ∈ H0(A − λ). Set t1m = (A1 −
λ)mx1+{

∑m−1
j=0 (A1 − λ)m−1−jX(A2 − λ)j}x2 and t2m = (A2−λ)mx2. Then

(A − λ)mx = t1m ⊕ t2m, and limm−→∞ ||tim|| 1
m = 0 (i = 1, 2). Evidently,

t2p2 = 0 and

t1m = (A1−λ)p1 [(A1−λ)m−p1x1+{
m−p2−1∑

j=0

(A1 − λ)m−p1−1−jX(A2 − λ)j}x2].

Since H0(A1 − λ) = (A1 − λ)−p1(0),

[(A1−λ)m−p1x1+{
m−p2−1∑

j=0

(A1 − λ)m−p1−1−jX(A2 − λ)j}x2] ∈ (A1−λ)−p1(0).

Hence

H0(A− λ) = ⊕2
i=1H0(Ai − λ) = ⊕2

i=1(Ai − λ)−pi(0) = (A− λ)−p(0),

where p = max{p1, p2}. Repeating this argument a finite number of times
it follows that if A = (Aij)1≤i,j≤n ∈ B(X n) is an upper triangular operator
such that H0(Aii − λ) = (Aii − λ)pi , 1 ≤ i ≤ n, for some integer pi ≥ 1 and
complex number λ, then

H0(A− λ) = ⊕n
i=1H0(Ai − λ) = ⊕n

i=1(Ai − λ)−pi(0) = (A− λ)−p(0),

where p = max{p1, ..., pn}.
Recall [1] that A satisfies a-Weyl’s theorem if σa(A) \ σwa(a) = πa

00(A).

Theorem 4.1 If T ∈ T (X n) is such that H0(Ti − λ) = (Ti − λ)−pi(0),
1 ≤ i ≤ n, at points λ ∈ isoσ(Ti), then (i) f(T ) and f(T ∗) satisfy Weyl’s
theorem (i.e., σ(f(B)) \ σw(f(B)) = π00(f(B))) for every f ∈ H(T ), where
B = T or T ∗) and (ii) T ∗ satisfies a-Weyl’s theorem .

Proof. We start by proving that T and T ∗ satisfy Weyl’s theorem. Recall
from Proposition 3.5 that σ(T ) \ σw(T ) = π0(T ). Hence σ(T ) \ σw(T ) ⊂
π00(T ). to prove the reverse inclusion, we start by observing that isoσ(T ) ⊆
∪n

i=1isoσ(Ti). (This is proved for 2×2 operators in T (X n) in [8, Lemma 2.1];
the general case follows from a finite induction argument.) Let λ ∈ π00(T ).
Then λ ∈ isoσ(Ti)∪ ρ(Ti) for all 1 ≤ i ≤ n. (Here ρ(Ti) denote the resolvent
set of Ti.) Following the convention that H0(Ti − λ) = (Ti − λ)−1(0) = {0}
for λ ∈ ρF (Ti), we have from the above that

H0(T − λ) = ⊕n
i=1(Ti − λ)−pi(0) = (T − λ)−p(0),
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where p = max{p1, ..., pn}. Hence, since λ ∈ isoσ(T ),

X n = H0(T − λ)⊕K(T − λ) = (T − λ)−p(0)⊕K(T − λ)
=⇒ (T − λ)pX n = 0⊕ (T − λ)pK(T − λ) = K(T − λ)
=⇒ X n = (T − λ)−p(0)⊕ (T − λ)pX n,

which implies that the isolated points of σ(T ) are poles of the resolvent
of T (=⇒ T is isoloid, i.e. isolated points of σ(T ) are eigenvalues of T ).
Hence λ ∈ π00(T ) =⇒ λ ∈ π0(T ) =⇒ π00(T ) ⊆ π0(T ), which implies that T
satisfies Weyl’s theorem. To prove that T ∗ satisfies Weyl’s theorem, we start
by observing that σ(T ) = σ(T ∗), σw(T ) = σw(T ∗) and π0(T ) = π0(T ∗) =⇒
σ(T ∗)\σw(T ∗) = π0(T ∗) ⊆ π00(T ∗). Since λ ∈ π00(T ∗) =⇒ λ ∈ isoσ(T ∗) =⇒
λ ∈ isoσ(T ) =⇒ λ ∈ π0(T ) = π0(T ∗), π0(T ∗) = π00(T ∗). Hence T ∗ satisfies
Weyl’s theorem.

Recall from Proposition 3.5 that f(σw(T ) = σw(f(T )); hence, also,
f(σw(T ∗) = σw(f(T ∗)). Since T is isoloid (=⇒ T ∗ is isoloid), [17, Theo-
rem 4] implies that f(T ) and f(T ∗) satisfy Weyl’s theorem. To complete the
proof, we now show that T ∗ satisfies a-Weyl’s theorem.

Recall from Proposition 3.5 that σ(T ∗) = σa(T ∗) (= σs(T )) and σw(T ∗) =
σwa(T ∗) (= σws(T )). Evidently, πa

00(T
∗) = π00(T ∗); hence, since T ∗ satisfies

Weyl’s theorem (see above), σa(T ∗) \ σwa(T ∗) = πa
00(T

∗).

Theorem 4.1 applies, in particular, to operators T ∈ T (X n) such that each
Tii satisfies property H(pi). (Observe that property H(p) implies finite as-
cent, hence SVEP.) It is known [7] that the isolated points of the spectrum
of a paranormal operator are simple poles of the operator. Hence paranor-
mal operators A satisfy property H(1) at points λ ∈ isoσ(A). (Paranormal
operators do not satisfy property H(p) [2].)

An operator A ∈ B(H) satisfies a growth condition of order m for some
integer m ≥ 1, A ∈ (Gm), if there exists a scalar K such that ||(A−λ)−1|| ≤

K
[dis(λ,σ(A))]m

for all λ /∈ σ(A). Apparently, A ∈ (Gm) −→ A∗ ∈ (Gm). Not
every operator in (Gm) has SVEP. (Recall that hyponormal operators are
(G1): if every (Gm) operator had SVEP, then it would follow that both
the forward unilateral shift and the backward unilateral shift have SVEP,
which is known to be false.) A subclass of the class of (Gm) operators,
the so called class of locally− (Gm) operators (defined as below) acting on
a reflexive Banach, has SVEP [12, Proposition 2]. For A ∈ B(H) and an
arbitrary closed subset F of the set C of complex numbers, let XA(F ) =
{x ∈ X : (A − λ)fx(λ) ≡ x for some analytic function fx : C \ F −→ X}.
(XA(F ) is an invariant linear manifold for A [1, p. 60].) Let m be a positive
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integer. We say that A ∈ locally − (Gm) (or, A satisfies a local growth
condition of order m) if for every closed set F ⊂ C and every x ∈ XA(F )
there exists an analytic function f : C \F −→ X such that (A−λ)f(λ) ≡ x
and ||f(λ)|| ≤ K[dist(λ, F )]−m||x|| for some K > 0 (independent of F and
x). All hyponormal operators belong to locally−(G1) and spectral operators
of type m− 1 belong to locally− (Gm). Evidently, locally− (Gm) =⇒ (Gm).
The following argument shows that H0(A−λ) = (A−λ)−m(0) for operators
A ∈ (Gm). Let λ0 ∈ isoσ(A), and let Γ = {λ : |λ− λ0| < ε} ⊂ ρ(A) for some
0 < ε ≤ dis(λ0, σ(A) \ {λ0}) . Then

(A− λ0)m =
1

2πi

∫

Γ
(λ0 − λ)m(λ−A)−1dλ,

and

||(A− λ0)m|| ≤ 1
2π

∫

Γ
|λ0 − λ|m||(λ−A)−1|||dλ| ≤ 1

2π
εm K

εm
2πε,

which tends to zero with ε.

Corollary 4.2 If the Banach spaces Xi, 1 ≤ i ≤ n, are separable (resp.,
reflexive) and the upper triangular operator A = (Aij)1≤i,j≤n ∈ B(X n) is
such that each Aii is paranormal (resp., ∈ locally − (Gm)), then (i) f(A)
and f(A∗) satisfy Weyl’s theorem for every f ∈ H(A) and (ii) A∗ satisfies
a-Weyl’s theorem .

Proof. A ∈ T (X n), Aii has SVEP for all 1 ≤ i ≤ n, H0(Aii−λ) = (Aii−λ)−1

if Aii is paranormal and H0(Aii − λ) = (Aii − λ)−m if Aii ∈ (Gm) for every
λ ∈ isoσ(Aii) .
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