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A STUDY OF SOME ASPECTS
OF TOPOLOGICAL GROUPS

M. R. Adhikari and M. Rahaman

Abstract

The aim of this paper is to find a generalization of topological
groups. The concept arises out of the investigation to obtain a group
structure on the set [X, Y ], of homotopy classes of maps from a space
X to a given space Y for all X which is natural with respect to X.
We also study the generalized topological groups. Finally, associated
with each generalized topological group we construct a contravariant
functor from the homotopy category of pointed topological spaces and
base point preserving continuous maps to the category of groups and
homomorphisms.

1 Introduction

We recall that a topological group is a group G whose underlying set is
equipped with a topology such that

(i) the multiplication µ : G×G → G, (x, y) → xy, is continuous if G×G
has the product topology,
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(ii) the inversion map φ : G → G, x → x−1 is continuous.
It is known that if X is a topological group and x0 ∈ X, then the

fundamental group π1(X,x0) is abelian. Consequently, if X is a space such
that π1(X, x0) is not belian, there is no way to make X a topological group.

Now the question is:
Does there exist a multiplication on [X,Y] making it a group for all Y ?

The answer is affirmative if Y is a topological group. If f , g :X → Y are
continuous maps, define a product f.g by the rule (f.g)(x) = f(x)g(x), where
the right hand side multiplication is the multiplication in the topological
group. This law of composition is carried over to give an operation on the
homotopy classes by the rule [f ] ◦ [g] = [f.g] which admits [X,Y ] a group
structure. On the other hand, if X = S1, then the usual group structure on
[X, Y ] = [S1, Y ] = π1(Y ) is a natural group operation.

We show that there exist some spaces Y which are not topological groups
but [X,Y ] admits group structure for all X. This introduces the concept
of generalized topological groups generalizing the concept of topological
groups.

2 Preliminaries and Definitions

The concept of an H-space arose as a generalization of that of a topological
group. The essential feature which is retained is a continuous multiplication
with a unit. There is a significant class of spaces which are H-spaces but
not topological groups. Some of the techniques which apply to topological
groups can be applied to H-spaces, but not all. From the point of view of
homotopy theory, it is not the existence of a continuous inverse which is the
important distinguishing feature, but rather the associativity of multiplica-
tion. If we consider S0, S1, S3 and S7 as the real, complex, quaternionic and
Cayley numbers of unit norm, these spaces have continuous multiplication.
The multiplication in the first three cases are associative but not associative
in the last case.
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Definition 2.1 An H-space is a pointed topological space (Y, y0) with a
continuous multiplication µ : Y × Y → Y such that the constant map
c : Y → y0 ∈ Y is a homotopy identity i.e. the diagram

- �
HHHHHHHHHj ?

�����������

Y Y × Y Y

Y

(c, IY ) (IY , c)

µ IYIY

is homotopic commutative.
i.e. µ ◦ (c, IY ) ' IY ' µ ◦ (IY , c)
i.e. [µ ◦ (c, IY )] = IY = [µ ◦ (IY , c)].Thus (Y, y0) is an H-space if there is a
continuous multiplication µ : Y ×Y → Y such that µ◦j1 ' IY ' µ◦j2 where
j1,j2 :Y → Y ×Y are injections defined by j1(y) = (y, y0) and j2(y) = (y0, y).

Definition 2.2 An H-space with multiplication µ is said to be homotopic
associative if the following diagram

-

? ?-

Y × Y × Y Y × Y

Y × Y Y

µ× IY

µIY × µ

µ

is homotopic commutative
i.e. µ ◦ (µ× IY ) ' µ ◦ (IY × µ)
i.e. [µ ◦ (µ× IY )] = [µ ◦ (IY × µ)].

Definition 2.3 An H-space Y with multiplication µ is said to have an in-
verse φ : (Y, y0) → (Y, y0) if the following diagram

- �
HHHHHHHHHj ?

�����������

Y Y × Y Y

Y

(φ, IY ) (IY , φ)

µ cc
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is homotopic commutative, where c : Y → y0 ∈ Y is the constant map.
i.e. µ ◦ (φ, IY ) ' c ' µ ◦ (IY , φ)
i.e. [µ ◦ (φ, IY )] = [c] = [µ ◦ (IY , φ)].

Definition 2.4 An H-space Y with multiplication µ is said to be homotopy
commutative if the following diagram

-

@
@
@
@R �

�
�
��

Y × Y Y

Y × Y

µ

T µ

is homotopic commutative.
i.e. µ ◦ T ' µ, where T is defined by T (x, y) = (y, x)
i.e.[µ◦T ] = [µ]. All the maps and homotopies are relative to the base points.

Definition 2.5 A pointed space Y with a continuous multiplication µ : Y ×
Y → Y is called a generalized topological monoid if Y is an associative
H-space.It is sometimes written as an ordered pair (Y, µ).

Definition 2.6 A generalized topological monoid (Y, µ) is said to be a gen-
eralized topological group if there exists a homotopy inverse φ : Y → Y .

We know that if Y ≈ Y ′, then Y is a topological group iff Y ′is so. We
now extend this result to a larger class of spaces.

Theorem 2.7 Let Y and Y ′ be two pointed topological spaces such that
Y ' Y ′. Then Y is a generalized topological group iff Y ′ is also so. In other
words generalized topological groups are homotopy type invariant in the sense
that any space homotopy equivalent to a generalized topological group is also
a generalized topological group.

Proof : Let Y ' Y ′. Then there exists continuous maps f : Y → Y ′ and
g : Y ′ → Y such that g ◦ f ' IY and f ◦ g ' IY ′ . Suppose Y is a generalized
topological group with continuous multiplication µ and homotopy inverse φ.
Define µ′ : Y ′ × Y ′ → Y ′ as the composite
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-Y ′ × Y ′ Y × Y
g × g

-
µ

Y - Y ′f

i.e. µ′ = f ◦µ ◦ (g× g). This implies µ′ is a continuous multiplication in Y ′.
The composite

-Y ′ Y ′ × Y ′(IY ′ , c
′)

-
µ′

Y ′

where c′ : Y ′ → y0 ∈ Y ′ is the same as a the composite

-Y ′ Y
g

-
(IY , c)

Y × Y - Y
µ

- Y ′f

because µ′ ◦ (IY ′ , c
′) = f ◦ µ ◦ (g × g) ◦ (IY ′ , c

′).
Now (f ◦ µ) ◦ (g × g) ◦ (IY ′ , c

′)(y′) = (f ◦ µ) ◦ (g × g)(y′, y′0).
=(f ◦ µ) ◦ (g(y′), y0)) = (f ◦ µ) ◦ (IY , c) ◦ g(y′)
⇒ (f ◦ µ) ◦ (g × g) ◦ (IY ′ , c

′) = (f ◦ µ) ◦ (IY , c) ◦ g, ∀y′ ∈ Y ′

⇒ µ′ ◦ (IY ′ , c
′) = (f ◦ µ) ◦ (IY , c) ◦ g

⇒ µ′ ◦ (IY ′ , c
′) ' f ◦ g, since µ ◦ (IY , c) ' IY

⇒ µ′ ◦ (IY ′ , c
′) ' IY ′ .

Similarly, µ′ ◦ (c′, IY ′) ' IY ′ . We now show that,
(i)µ is a homotopy associative ⇒ µ′ is also so.
(ii) φ homotopy inverse for Y ⇒ φ′ is homotopy inverse for Y ′

(i) To prove µ′ = f ◦ µ ◦ (g × g) is homotopy equivalence, ie to prove
µ′ ◦ (µ′ × IY ′) ' µ′ ◦ (IY ′ × µ′) ie to prove [µ′ ◦ (µ′ × IY ′)] = [µ′ ◦ (IY ′ × µ′)]
Let y′ ∈ Y ′, then (µ′ × IY ′)((y′, y′), y′) = (y′y′, y′) and µ′ ◦ (µ′ × IY ′) =
µ′(y′y′, y′) = y′y′y′.
Similarly (IY ′ , µ

′)(y′, (y′, y′)) = (y′, y′y′) and µ′◦(IY ′ , µ
′)((y′, y′), y′) = µ′(y′, y′y′) =

y′y′y′.
Hence µ′ ◦ (µ′ × IY ′) ' µ′ ◦ (IY ′ , µ

′) ie µ′ is homotopy associative.
(ii) Again we show that φ : Y → Y is a homotopy inverse for Y
⇒ φ′ = f ◦ φ ◦ g : Y ′ → Y ′ is a homotopy inverse for Y ′.
i.e. µ′ ◦ (φ′, IY ′) ' c′ ' µ′ ◦ (IY ′ , φ

′)
Now, µ′ ◦ (φ′, IY ′)
= (f ◦ µ) ◦ (g × g) ◦ (φ′, IY ′)
= (f ◦ µ) ◦ (g × g) ◦ (f ◦ φ ◦ g, IY ′)
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= f ◦ µ ◦ (g ◦ f ◦ φ ◦ g, g ◦ IY ′)
= f ◦ µ ◦ (IY ◦ φ ◦ g, g)
= f ◦ µ ◦ (φ ◦ g, g)
= f ◦ µ ◦ (φ, IY )g
' f ◦ c ◦ g
' c′, because

-Y ′ Y
g

-
c

Y - Y ′f

where y′ ∈ Y ′ implies (f ◦ c ◦ g)(y′) = (f ◦ c)(g(y′)) = (f ◦ c)(y) = f(c(y)) =
f(y0) = y′0 = c′(y′), ∀y′ ∈ Y ′.
Similarly µ′ ◦ (IY ′ , φ

′) ' c′

⇒ φ′ is homotopy inverse for Y ′. Consequently (Y, µ) is a generalized topo-
logical group.
⇒ (Y ′, µ′) is also a generalized topological group.
Similarly (Y ′, µ′) is a generalized topological group ⇒ (Y, µ) is also so.

Definition 2.8 A continuous map f : Y → Y ′ between two generalized
topological groups (Y, µ) and (Y ′, µ′) is said to be a homotopy homomorphism
if the following diagram is homotopy commutative.

-

? ?-

Y × Y Y

Y ′ × Y ′ Y ′

µ

ff × f

µ′

i.e. f ◦ µ ' µ′ ◦ (f × f).

Corollary 2.9 The homotopy equivalence f and its homotopy inverse g (in
Theorem 2.7) are both homotopy homomorphisms.

Corollary 2.10 If Y ' Y ′, then Y ′ is a generalized topological monoid iff
Y is also so.
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3 Characterization of generalized topological groups

In certain situation a generalized topological monoid Y has an inverse. In
this section we identify some such situations.

Theorem 3.1 Let Y be a generalized topological monoid with the continu-
ous multiplication µ. If Y is a generalized topological group, then the map
ψ : Y ×Y → Y ×Y defined by ψ(x, y) = (x, xy) is a homotopy equivalence.
If µ is homotopic commutative, its converse is also true.

Proof : Let (Y, µ) be a generalized topological group with homotopy inverse
φ. Consider the map ρ : Y × Y → Y × Y defined by ρ(x, y) = (x, φ(x)y).
Now (ψ ◦ ρ)(x, y) = ψ(ρ(x, y)) = ψ(x, φ(x)y) = (x, xφ(x)y) ⇒ ψ ◦ ρ ' Id,
since φ : Y → Y is the homotopy inverse. Again (ρ ◦ ψ)(x, y) = ρ(x, xy) =
(x, φ(x)xy) ⇒ ρ ◦ ψ ' Id. Hence it follows that (Y, µ) is a generalized
topological group ⇒ ψ is a homotopy equivalence with homotopy inverse ρ.
Conversely, let ψ be a homotopy equivalence with homotopy inverse ρ. Then
ψ ◦ ρ ' Id ' ρ ◦ ψ.
Define φ : Y → Y by φ = p2 ◦ ρ ◦ j1 where j1 : Y → Y × Y is the inclusion
map defined by j1(y) = (y, y0) and pi : Y × Y → Y is the projection of
Y × Y onto the first and the second factor respectively.
Now p1 ◦ ψ(x, y) = p1(x, xy) = x = p1(x, y), ∀(x, y) ∈ Y × Y
⇒ p1 ◦ ψ = p1.
Again (p2 ◦ ψ)(x, y) = p2(x, xy) = xy = µ(x, y),∀(x, y) ∈ Y × Y
⇒ p2 ◦ ψ = µ.

Consequently p1 ' p1 ⇒ p1 ' p1 ◦ ψ ◦ ρ, since ψ ◦ ρ ' Id and
p2 ' p2 ◦ Id ' p2 ◦ψ ◦ ρ = µ ◦ ρ and p1 ◦ρ ◦ j1 = p1 ◦ψ ◦ ρ ◦ j1 ' p1 ◦ j1 = Id.
Hence µ ◦ (Id, φ) = µ ◦ (p1 ◦ ρ ◦ j1, p2 ◦ ρ ◦ j1) = µ ◦ (p1, p2) ◦ (ρ ◦ j1) =
µ ◦ ρ ◦ j1 ' p2 ◦ j1 = c
⇒ φ is the right homotopy inverse. Similarly, µ◦ (φ, Id) = µ◦ (p2 ◦ρ◦j1, p1 ◦
ρ ◦ j1) = µ ◦ (p2, p1) ◦ (ρ ◦ j1) = µ ◦ T ◦ (ρ ◦ j1) ' µ ◦ ρ ◦ j1 = c
⇒ φ is the left homotopy inverse.
Hence (Y, µ)is a generalized topological monoid such that φ : Y → Y is
both sided homotopy inverse. Consequently, (Y, µ) is a generalized topolog-
ical group.

Corollary 3.2 Let Y be a generalized topological monoid with homotopy
commutative continuous multiplication µ.Then Y is a generalized topological
group iff ψ : Y × Y → Y × Y , defined by ψ(x, y) = (x, xy) is a homotopy
equivalence.
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Corollary 3.3 Let Y be a generalized topological monoid. Then Y is a
generalized topological group iff both of the two maps ψ1, ψ2 : Y ×Y → Y ×Y ,
defined by ψ1(x, y) = (xy, x) and ψ2(x, y) = (xy, y), for all x, y ∈ Y are
homotopy equivalence of Y × Y into itself.

Theorem 3.4 Let Y be a CW-complex and the weak topology of the product
complex Y × Y be the ordinary product topology. Then Y is a generalized
topological group iff Y is generalized topological monoid.

Proof: If Y is a generalized topological group, then it is automatically a
generalized topological monoid. For its converse, let (Y, µ) be a generalized
topological monoid. Consider the map ψ1 : Y × Y → Y × Y defined by
ψ1(x, y) = (xy, x). Then ψ1 induces homomorphisms ψ∗1 : πn(Y × Y ) →
πn(Y × Y ) for all positive integer n. We claim that ψ∗1 is an isomorphism.
Let pi : Y × Y → Y is the projection of Y × Y onto the first and the second
factor respectively. Then pi induces p∗i : πn(Y × Y ) → πn(Y ). Let j1, j2

be the natural inclusions from Y → Y × Y defined by j1(y) = (y, y0) and
j2(y) = (y0, y). Then j1, j2 induces j∗1 , j∗2 : πn(Y ) → πn(Y × Y ). Then we
have the following two isomorphisms between the groups πn(Y × Y ) and
πn(Y )⊕ πn(Y )(the direct sum of two groups):
(p∗1, p∗2) : πn(Y × Y ) ∼= πn(Y )⊕ πn(Y ) and
(j∗1 , j∗2) : πn(Y )⊕ πn(Y ) ∼= πn(Y × Y )
Now from the definition of ψ1 it follows that
(p∗1, p∗2)◦ψ∗1 ◦ j∗1(γ) = (p∗1, p∗2)◦ψ∗1(γ, 0) = (p∗1, p∗2)(γ +0, γ) = (p∗1, p∗2)(γ, γ) =
(γ, γ) and
(p∗1, p∗2) ◦ ψ∗1 ◦ j∗2(δ) = (p∗1, p∗2) ◦ ψ∗1(δ, 0) = (p∗1, p∗2)(δ + 0, 0) = (p∗1, p∗2)(δ, 0) =
(δ, 0) for all γ, δ ∈ πn(Y )
Hence (p∗1, p∗2)◦ψ∗1◦(j∗1⊕j∗2)(γ, δ) = ((p∗1, p∗2)◦ψ∗1◦j∗1(γ), (p∗1, p∗2)◦ψ∗1◦j∗2(δ)) =
((γ, γ), (δ, 0)) = (γ + δ, γ)
Moreover (p∗1, p∗2) ◦ ψ∗1 ◦ (j∗1 ⊕ j∗2)(γ, δ) = (0, 0), the zero element of πn(Y )⊕
πn(Y ), then (γ + δ, γ) = (0, 0) implies γ = 0, δ = 0.
Hence it follows that ψ∗1 is an isomorphism of πn(Y ×Y ) onto itself and it fol-
lows from a theorem of J.H.C.Whitehead that ψ1 is a homotopy equivalence,
since Y ×Y is a CW-complex by hypothesis. Similarly, ψ2 : Y ×Y → Y ×Y ,
defined by (x, y) → (xy, y) is a homotopy equivalence. Hence by corollary
3.3 to the theorem 3.1, it follows that Y is a generalized topological group.

Theorem 3.5 Let Y be a generalized topological monoid. Then the set
[X,Y] admits a monoid structure natural with respect to X and admits a
group structure with respect to X if Y is a generalized topological group.
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Proof: Let (Y, y0) be a generalized topological monoid with multiplication
µ. We show that for every (X, x0) the set [X,x0; Y, y0] admits the monoid
structure under the product [f ].[g] be the homotopy class of the composite

-X X ×X
4

-
f × g

Y × Y - Y
µ

i.e. [f ].[g] = [µ ◦ (f × g) ◦ 4] where 4(x) = (x, x),∀x ∈ X. We claim that
[f ].[g] is well defined.
Suppose H : X × I → Y is a homotopy between f and f ′

and G : X × I → Y is a homotopy between g and g′. Define a homotopy
K : X×I → Y by kt(x) = K(x, t) = µ(H(x, t), G(x, t)) then K0 = K(x, 0) =
µ(H(x, 0), G(x, 0)) = µ(f(x), g(x)) = µ◦ (f×g)(x, x) = µ◦ (f×g)◦4(x) ⇒
K0 = µ ◦ (f × g) ◦ 4. Similarly K1 = µ ◦ (f ′ × g′) ◦ 4. Consequently,
[f ].[g] = [µ ◦ (f × g) ◦ 4] is well defined. µ is clearly associative and the
homotopy class of the constant map c : X → y0 is the identity element .
Consequently, [X,Y ] is a monoid.
Let α : X → X ′ is a continuous map. Then α∗ : [X ′, Y ] → [X, Y ] defined
by α∗[f ′] = [f ′ ◦ α] is a homomorphism of monoids.
It is natural to ask when the monoid [X,Y] admits a group structure.
Let φ : Y → Y be the homotopy inverse for µ and Y with respect to the
identity [c]. Then the inverse of [f ] ∈ [X, Y ] is given by [f ]−1 = [φ ◦ f ].
Then [X,Y] is a group natural with respect to X.

4 Functors associated with generalized topological
groups

In this section we construct a functor
∏G associated with each general-

ized topological group G from the homotopy category of pointed topological
spaces and base point preserving continuous maps Htp to the category of
groups and homomorphisms Grp.

Theorem 4.1 Let G be a generalized topological group with base point e,
continuous multiplication µ : G×G → G and homotopy inverse φ : G → G.
Then their exist a contravariant functor

∏G : Htp → Grp.

Proof: Define the product [f ] ◦ [g] on [X, G] to be the homotopy class of the
composites

-X X ×X
4

-
f × g

G×G - G
µ
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where 4 is the diagonal map given by 4(x) = (x, x). Then [X, G]
admits a group structure with identity element is the homotopy class [c] of
the constant map c : X → e and the inverse of [f ] is given by [f ]−1 = [φ◦f ].
We define the object function by

∏G(X) = [X, G], which is a group.For
a base point preserving continuous map f : X → Y , we define

∏G(f) :∏G(Y ) → ∏G(X) by
∏G(f)([α]) = [α ◦ f ], ∀[α] ∈ ∏G(Y ) = [Y, G]. This

gives the morphism function.Hence
∏G : Htp → Grp is a contravariant

functor.

Corollary 4.2 For each homotopy associative topological monoid M,
∏M

is a contravariant functor from Htp to the category of monoids and there
homomorphisms.

Proof: In this case, [X,G] admits a monoid structure and hence the corollary
follows.

Corollary 4.3
∏G is a homotopy type invariant.

Proof: Let f : X → Y be a homotopy equivalence with homotopy inverse
g : Y → X. Then f ◦ g ' IY and g ◦ f ' IX imply that

∏G(f ◦ g) and∏G(g ◦ f) are both indentity automorphisms and hence
∏G(X) and

∏G(Y )
are isomorphic groups.

Corollary 4.4 Let G be a pointed topological space such that
∏G assumes

values in Grp. Then G is a generalized topological group. Moreover, for any
pointed space X, the group structures on

∏G(X) and [X,G] coincide.

Corollary 4.5 Let α : G → H be a homomorphism of generalized topologi-
cal groups. Then α induces a natural transformation N(α) :

∏G → ∏H ,
where N(α)(X) : [X,G] → [X, H] is defined by N(α)(X)([f ]) = [α ◦
f ], ∀[f ] ∈ [X, G].

Corollary 4.6 Let G be a CW-complex such that G × G is also a CW-
complex. If G is a homotopy associative generalized topological group, then∏G : Htp → Grp is a contravariant functor.

Proof: Under the given condition, G has an inverse and hence G is a gener-
alized topological group. Consequently the corollary follows.
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