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Minimal structures, generalized topologies,
and ascending systems should not be studied

without generalized uniformities

Árpád Száz

Abstract. By using the Pervin relations, we show that all minimal struc-
tures, generalized topologies, and ascending systems can be naturally de-
rived from generalized uniformities. Therefore, they need not be studied
separately.

0. Introduction

Let X be a set and P (X ) be the family of all subsets of X . A subfamily
A of P (X ) is called a minimal structure on X if ∅ ∈ A and X ∈ A .
Minimal structures have been mainly studied by Popa and Noiri [ 32 ] .

In particular, a minimal structure A on X is called a generalized topol-
ogy on X if it is closed under unions in the sense that B ⊂ A implies
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⋃ B ∈ A . Generalized topologies have mainly been studied by Császár
[ 2 ] .

Moreover, a subfamily A of P (X ) is called a stack on X if it is ascending
in the sense that A ∈ A and A ⊂ B ⊂ X imply B ∈ A . Stacks, as
a common generalization of filters and grills, have been mainly studied by
Thron [ 44 ] .

By using the Pervin [ 30 ] relations RA = A2 ∪ Ac×X , with A ⊂
X , we shall show that all minimal structures, generalized topologies, and
proper stacks on X can be naturally derived from generalized uniformities.
Therefore, they need not be studied separately.

1. A few basic facts on relations

Let X be a set and X 2 = X×X . A subset R of X 2 is called a relation
on X . In particular, ∆

X
= {(x, x) : x ∈ X } is called the identity

relation on X .
For any x ∈ X and A ⊂ X , the sets R (x) = { y ∈ X : ( x, y ) ∈ R }

and R [ A ] =
⋃

a∈A R (a) are called the images of x and A under R ,
respectively.

If R is a relation on X , then the values R (x) , where x ∈ X , uniquely
determine R since R =

⋃
x∈X {x }×R (x) . Therefore, the inverse relation

R−1 can be defined such that R−1(x) = { y ∈ X : x ∈ R (y) } for all
x ∈ X .

Moreover, if R and S are relations on X , then the composition relation
S ◦ R can be defined such that (S ◦ R )(x) = S [R(x) ] for all x ∈ X .
Now, in particular, we may briefly write R2 instead of R ◦R .

If R is a relation on X , then the set DR = R−1 [X ] = {x ∈ X :
R (x) 6= ∅ } is called the domain of R . If in particular DR = X , then we
say that R is a total relation on X .

A relation R on X is called reflexive, symmetric and transitive if ∆X ⊂
R , R−1 ⊂ R and R2 ⊂ R , respectively. Now, a reflexive and symmetric
(transitive) relation may be called a tolerance (preorder) relation.

To feel the importance of tolerance relations, note that if d is a metric
on X , then for each r > 0 the r-sized d-surrounding Bd

r = { (x, y) ∈
X 2 : d (x, y) < r } is, in general, only a tolerance relation on X .

Definition 1.1. If A ⊂ X , then the relation

R
A

= A2 ∪ Ac×X ,



MINIMAL STRUCTURES 89

where Ac = X \ A , will be called the Pervin relation on X generated by
A .

Remark 1.2. These relations are actually particular cases of the relations
R (A, B) = A×B ∪ Ac×X , with A ⊂ B ⊂ X , considered first by Császár
[ 1 , p. 42 ] in somewhat different forms.

However, their importance could become apparent only with the quasi-
uniformization theorem of topological spaces by Pervin [ 30 ] . For some
closely related results, see also Davis [ 6 ] , who also used the same relations.

Concerning the relations R
A
, we can easily prove the following theorems.

Theorem 1.3. If A ⊂ X , then

RA [ B ] = A if ∅ 6= B ⊂ A and RA [ B ] = X if A 6⊃ B ⊂ X .

Proof. Note that R
A

[B ] =
⋃

x∈B R
A

(x) , and moreover

RA (x) = A if x ∈ A and RA (x) = X if x ∈ Ac .

Hence, the required assertions are quite obvious.

Theorem 1.4. If A ⊂ X , then R
A

is a preorder relation on X such that
R−1

A
= R

Ac .

Proof. It is clear that R
A

is reflexive. Moreover, we can easily see that

R2
A
(x) = R

A
[ R

A
(x) ] =

{
RA [A ] if x ∈ A

R
A

[X ] if x ∈ Ac

=
{

A if x ∈ A

X if x ∈ Ac
= R

A
(x)

for all x ∈ X . Therefore, R2
A

= R
A
, and thus R

A
is transitive.

Furthermore, we can also easily see that

R−1
A

(x) =
{

y ∈ X : x ∈ R
A
(y)

}
=

{
X if x ∈ A

Ac if x ∈ Ac
= R

Ac (x)

for all x ∈ X . Therefore, R−1
A

= R
Ac is also true.
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Theorem 1.5. If A ⊂ X , then for any U , V ⊂ X , with U 6= ∅ and
V 6= X , the following assertions are equivalent :

(1) R
A

[ U ] ⊂ V ; (2) U ⊂ A ⊂ V .

Proof. If U 6⊂ A , then by Theorem 1.3 we have R
A

[ U ] = X . Thus, since
V 6= X , (1) does not hold. Therefore, (1) implies U ⊂ A .

Moreover, if U ⊂ A , then by Theorem 1.3 and the assumption U 6= ∅
we have RA [ U ] = A . Therefore, (1) implies A ⊂ V too.

On the other hand, if (2) holds, then we evidently have R
A

[ U ] ⊂
R

A
[A ] = A ⊂ V . Therefore, (1) also holds.

Now, as an immediate consequence of the latter theorem, we can also
state

Corollary 1.6. If A ⊂ X , then for any V ⊂ X , with ∅ 6= V 6= X , we
have

R
A

[ V ] = V ⇐⇒ R
A

[ V ] ⊂ V ⇐⇒ V = A .

2. A few basic facts on relators

A family R of relations on X is called a relator on X . Moreover, the
ordered pair X (R ) = ( X , R ) is called a relator space. For the origins,
see [ 35 ] and the references therein.

Relator spaces are natural generalizations of ordered sets and uniform
spaces [ 8 ] . Moreover, all reasonable generalizations of the usual topologal
structures can be easily derived from relators according to [ 36 ] .

For instance, if R is a relator on X , then for any A , B ⊂ X and
x ∈ X we may naturally write :

(1) B ∈ IntR (A ) if R [ B ] ⊂ A for some R ∈ R ;

and moreover

(2) A ∈ τR if A ∈ IntR (A ) ; (3) x ∈ intR ( A ) if {x} ∈ IntR (A ) ;

(4) A ∈ TR if A ⊂ intR (A ) ; (5) A ∈ ER if intR (A ) 6= ∅ .

The relations IntR and intR are called the proximal and the topological
interiors on X induced by the relator R , respectively. While, the members



MINIMAL STRUCTURES 91

of the families τR , TR and ER are called the proximally open, the topo-
logically open and the fat subsets of the relator space X (R ) , respectively.

By using the above definitions, we can easily see that, for any A ⊂ X ,
we have

(a) A ∈ τR ⇐⇒ ∃ R ∈ R : ∀ x ∈ A : R (x) ⊂ A ;

(b) A ∈ TR ⇐⇒ ∀ x ∈ A : ∃ R ∈ R : R (x) ⊂ A ;

(c) A ∈ ER ⇐⇒ ∃ x ∈ X : ∃ R ∈ R : R (x) ⊂ A .

Hence, it is also clear that τR ⊂ TR ⊂ ER ∪ { ∅ } .

The families τR and ER are usually more important tools than TR .
For instance, if ≤ is an order relation on X , then T≤ and E≤ are just
the families of all ascending and residual subsets of the ordered set X (≤ ) ,
respectively. Moreover, it may occur that T

R
= { ∅ , X } , but E

R
6= {X }

for some relation R on X .

A relator R on X may be naturally called total, reflexive, symmetric
and transitive if each of its members has the corresponding property. Thus,
we may also naturally speak of tolerance and preorder relators. Note that if
d is a metric on X , then the family Rd = {Bd

r : r > 0 } only a tolerance
relator on X .

Definition 2.1. If A ⊂ P (X ) , then the relator

RA =
{

R
A

: A ∈ A}

will be called the Pervin relator on X generated by A .

Remark 2.2. In 1961 , Pervin [ 30 ] proved that if A is topology on X ,
then RA is a subbase for a quasi-uniformity UA on X such that A = TUA .

Later, the relationships between A and UA were more fully explored
by Levine [ 13 ] . The term ”Pervin quasi-uniformity” was already used by
Murdeshwar and Naimpally [ 21 ] .

By Theorem 1.4, we evidently have the following

Theorem 2.3. If A ⊂ P (X ) , then RA is a preorder relator on X such
that R−1

A = RAc , where now Ac =
{

Ac : A ∈ A}
.

Moreover, by using Theorems 1.3 and 1.5, we can easily prove the follow-
ing theorems.
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Theorem 2.4. If A ⊂ P (X ) , then

(1) A ⊂ τRA
; (2) A ⊂ TRA ; (3) A\{ ∅ } ⊂ ERA .

Proof. By Theorem 1.3, for any A ∈ A , we have R
A

[ A ] = A , and thus
A ∈ IntRA ( A ) . Therefore, A ∈ τRA

, and thus (1) is true.

Now, by the inclusions τRA
⊂ TRA ⊂ ERA ∪ { ∅ } , it is clear that (2)

and (3) are also true.

Theorem 2.5. If A ⊂ P (X ) , then

(1) τRA
\ { ∅ , X } ⊂ A ;

(2) if V ∈ TRA \{X } , then there exists B ⊂ A such that V =
⋃ B ;

(3) if V ∈ ERA , then there exists A ∈ A such that A ⊂ V .

Proof. If V ∈ τRA
, then there exists A ∈ A such that RA [ V ] ⊂ V .

Hence, if ∅ 6= V 6= X , then by Corollary 1.6 it follows that V = A .
Therefore, (1) is true.

If V ∈ TRA , then for each x ∈ V there exists A x ∈ A such that
R

Ax
(x) ⊂ V . Hence, if V 6= X , then by Theorem 1.5 it follows that

x ∈ A x ⊂ V . Therefore, V =
⋃

x∈V A x , and thus (2) is true.
If V ∈ ERA , then there exist x ∈ X and A ∈ A such that RA (x) ⊂ V .

Hence, if V 6= X , then by Theorem 1.5 it follows that x ∈ A ⊂ V .
Therefore, (3) is true.

3. Applications to generalized topologies and stacks

Definition 3.1. If A ⊂ P (X ) such that ∅ ∈ A and X ∈ A , then A is
called a minimal structure on X .

Remark 3.2. Minimal structures have been mainly studied by Noiri and
Popa [ 24 –26, 31–32 ] with reference to Maki [ 16 ]. See also Mocanu [ 20 ] ,
and Doignon and Falmagne [ 7 , p. 18 ] .

By the corresponding definitions, we evidently have the following

Theorem 3.3. If R is a nonvoid relator on X , then τR is a minimal
structure on X .

Moreover, by using our former results, we can easily prove the following
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Theorem 3.4. If A ⊂ P ( X ) , then the following assertions are equiva-
lent :

(1) A is a minimal structure on X ;

(2) A 6= ∅ and A = τRA
;

(3) A = τR for some nonvoid preorder relator R on X ;

(4) A = τR for some nonvoid relator R on X .

Proof. By Theorems 2.4 and 2.5, A ⊂ τRA
and τRA

\ { ∅ , X } ⊂ A .
Moreover, if (1) holds, then { ∅ , X } ⊂ A . Therefore, τRA

⊂ A , and
thus, (2) also holds.

Now, since the implications (2) =⇒ (3) and (4) =⇒ (1) are immediate
from Theorems 2.3 and 3.3, and the implication (3) =⇒ (4) trivially holds,
the proof is complete.

Now, as an immediate consequence of the latter theorems, we can also
state

Corollary 3.5. If ∅ 6= A ⊂ P (X ) , then τRA
is the smallest minimal

structure on X such that A ⊂ τRA
.

Proof. By Theorem 3.4, τRA
is a minimal structure on X . Moreover,

if B is a minimal structure on X such that A ⊂ B , then by using the
corresponding definitions and Theorem 3.4, we can easily see that RA ⊂
RA , and thus τRA

⊂ τRB
= B .

Definition 3.6. If A is a minimal structure on X such that A is closed
under arbitrary unions, then A is called a generalized topology on X .

Remark 3.7. Generalized topologies have mainly been studied by Császár
[ 2–5 ] . See also Lugojan [ 15 ] , Mashhour et al. [ 19 ] , and Doignon and
Falmagne [ 7 , p. 21 ] .

By the corresponding definitions, we evidently have the following

Theorem 3.8. If R is a nonvoid relator on X , then TR is a generalized
topology on X .

Proof. To see that TR is closed under unions, suppose that B ⊂ TR , and
let V =

⋃ B . Then, for each x ∈ V , there exists B ∈ B such that x ∈ B .
Moreover, since B ∈ TR , there exists R ∈ R such that R (x) ⊂ B . Hence,
since B ⊂ V , it follows that R (x) ⊂ V . This shows that V ∈ TR .

Moreover, by using our former results, we can easily prove the following
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Theorem 3.9. If A ⊂ P ( X ) , then the following assertions are equiva-
lent :

(1) A is a generalized topology on X ;

(2) A 6= ∅ and A = TRA ;

(3) A = TR for some nonvoid preorder relator R on X ;

(4) A = TR for some nonvoid relator R on X .

Proof. By Theorem 2.4, A ⊂ TRA . Furthermore, if V ∈ TRA such that
V 6= X , then by Theorem 2.5 there exists B ⊂ A such that V =

⋃ B .
Moreover, if (1) holds, then A is closed under arbitrary unions. Therefore,
V ∈ A . Hence, since by (1) we also have X ∈ A , it is clear that TRA ⊂ A .
Thus, (2) also holds.

Now, since the implications (2) =⇒ (3) and (4) =⇒ (1) are immediate
from Theorems 2.3 and 3.8, and the implication (3) =⇒ (4) trivially holds,
the proof is complete.

Now, analogously to Corollary 3.5, we can also prove

Corollary 3.10. If ∅ 6= A ⊂ P (X ) , then TRA is the smallest generalized
topology on X such that A ⊂ TRA .

Definition 3.11. If A ⊂ P ( X ) such that A is ascending in X , then A
is called a stack on X .

Remark 3.12. In particular, the stack A is called proper if ∅ /∈ A , or
equivalently A 6= P (X ) .

Stacks, as a common generalization of filters and grills, have been mainly
studied by Thron [ 44 ] with reference to Schmidt [ 33 ] and Grimeisen
[ 10 ] .

By the corresponding definitions, we evidently have the following

Theorem 3.13. If R is a relator on X , then ER is a stack on X .

Remark 3.14. In addition, we can also easily see that the stack ER is
proper if and only if the relator R is total.

Moreover, by using our former results, we can easily prove the following
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Theorem 3.15. If A ⊂ P (X ) , then the following assertions are equiva-
lent :

(1) A is a proper stack on X ;

(2) A = ERA ;

(3) A = ER for some preorder relator R on X ;

(4) A = ER for some total relator R on X .

Proof. If (1) holds, then ∅ /∈ A . Therefore, by Theorem 2.4, A ⊂ ERA .
Furthermore, if V ∈ ERA , then by Theorem 2.5 there exists A ∈ A such
that A ⊂ V . Moreover, if (1) holds, then A is ascending. Therefore,
V ∈ A . Hence, it is clear that ER ⊂ A . Thus, (2) also holds.

Now, since the implications (2) =⇒ (3) and (4) =⇒ (1) are immediate
from Theorems 2.3 and 3.13 and Remark 3.14, and the implication (3) =⇒
(4) trivially holds, the proof is complete.

Now, analogously to Corollary 3.5, we can also prove

Corollary 3.16. If A ⊂ P (X ) , then ERA is the smallest proper stack on
X such that A ⊂ ERA .

Remark 3.17. The above theorems show that minimal structures, gener-
alized topologies, and proper stacks need not be studied without relators,
which are evidently more convenient means than the former ones.

These facts, as some immediate consequences of some more general re-
sults, have also been established in our former paper [ 36 ] , which seems
to have been completely ignored by the mathematical community, including
the editorial boards of reviewing journals.

Acknowledgement. The author is indebted to the anonymous referee for
his valuable remarks which led to present corrected and enlarged form of the
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2. Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96
(2002), 351–357.
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3. Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar. 106
(2005), 53–66.
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