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1.
INTRODUCTION

This paper sharpens and extends inequalities concerning generalized inverses previously obtained for the von Neumann-Schatten, and supremum, norms. It sharpens those inequalities to obtain corresponding inequalities for singular values and it extends them, at least for finite rank operators, to inequalities concerning an arbitrary unitarily invariant norm. For example, as is well-known [5, Theorems 2.1, 2.2], [6, Theorem 3.3], if A has a (i), (iii) inverse 
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(where 
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where the singular values 
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 are – as always – arranged in decreasing order and repeated according to multiplicity; and we prove that if 
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The finite rank condition is required – as far as unitarily invariant norms are concerned – so that we can appeal to the von Neumann-Schatten theory of unitarily invariant norms and their representation by symmetric gauge functions [8, Chapter 10], [12, Chapter V].

The singular values inequality (1.2) is deduced as a corollary to the main result of this paper, Theorem 3.1: this shows that a modulus inequality between operators implies one between singular values which, for finite rank operators, implies an inequality between unitarily invariant norms (just as in [6, Lemma 3.1] an inequality between moduli of operators implies one between von Neumann-Schatten norms). Another consequence of Theorem 3.1 is Theorem 3.2: this says that if 
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. Theorem 3.2 yields as corollaries (Corollaries 3.2, 3.3 and 3.4) a host of sharpenings/extensions of already known results to do with generalized inverses including the result, Corollary 3.4 [5, Theorems 3.1 and 3.2] that 
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Theorem 3.2 and Corollaries 3.2, 3.3 and 3.4 are, as pointed out below, essentially finite dimensional since their hypotheses imply that the operator A occurring in them (and its adjoint 
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For unitarily invariant norms (not necessarily on operators of finite rank) there is a property of strict convexity, analogous to the strict convexity of 
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2. PRELIMINARIES

Throughout, H is a complex, separable Hilbert space with inner product 
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Recall that an operator 
[image: image48.wmf]A

-

 is a generalized inverse of A if 
[image: image49.wmf]AAAA

-

=

. An operator A has a generalized inverse if and only if its range, 
[image: image50.wmf]Ran

A

, is closed (We define 
[image: image51.wmf]Ran{:}

AAffH

=Î

 [13, p.251, Theorem 12.9]). For an operator A, with closed range, its Moore-Penrose inverse 
[image: image52.wmf]A

+

 satisfies

	
	
[image: image53.wmf]A

A

AA

=

+


	(i)
	
	(2.1)

	
	
[image: image54.wmf]+

+

+

=

A

AA

A


	(ii)
	
	

	
	
[image: image55.wmf]+

+

=

AA

AA

*

)

(


	(iii)
	
	

	
	
[image: image56.wmf]A

A

A

A

+

+

=

*

)

(


	(iv) ;
	
	


and, further, 
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 is uniquely determined by these properties [9, Theorem 1]. For the construction of the Moore-Penrose inverse of an operator with closed range see [13, p.251, Theorem 12.9]. If an operator 
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where 
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 is the sequence of positive eigenvalues of X arranged in decreasing order and repeated according to multiplicity, and 
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The spectral theorem for compact operators says that every compact operator X can be expressed uniquely as
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We cite three further results we shall need about the von Neumann-Schatten norms.

LEMMA 2.1   [6, Lemma 3.1].   (a)   If 
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(c)   if, further, 
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Recall that the polar decomposition [3, Chapter 16] says that every operator A can be expressed uniquely as 
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Many properties of unitarily invariant norms can be deduced via Theorem 2.2 from those of symmetric gauge functions provided the operators concerned are of finite rank. References below are to Schatten’s own elegant exposition [12].

Let F be the set of all operators of finite rank and let L be the set of all sequences of real numbers having a finite number of non-zero terms. A symmetric gauge function 
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THEOREM 2.2 [12, p.69, Theorem 8].   Let A be in F and let 
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3. SINGULAR VALUES, AND NORM, INEQUALITIES

THEOREM 3.1.   Let A be in 
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General case.   We now extend this result to the von Neumann-Schatten classes. Let now A be in 
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COROLLARY 3.1  (cf. [5, Theorems 2.1, 2.2],  [6, Theorem 3.3]).   Let A have closed range and have a (i), (iii) inverse 
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with equality in (3.3) if, and for strictly convex 
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Proof.   As in [6, Theorem 3.3] the inequality 
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There is a similar “left-handed” result pertaining to 
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It might be thought that Corollary 3.2 and (3.3) are both part of some “2-sided” result pertaining to 
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cf [10, Corollary 1]. But it is not true that
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EXAMPLE 3.1 [7, Example 4.1].   Let 
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The next result contains and extends some already known inequalities [5, Theorems 3.1, 3.2], [6, Theorems 3.5, 3.6].

THEOREM 3.2.   Let A be fixed, let P and Q be fixed projections such that 
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COROLLARY 3.2 (cf. [6, Theorem 3.5]).   Let the operators A and B be fixed, let B have closed range and have a (i), (iv) inverse 
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COROLLARY 3.3 (cf. [6, Theorem 3.6]).   Let A have closed range and have the Moore-Penrose inverse 
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COROLLARY 3.4 (cf. [5, Theorem 3.1]).   If A has a generalized inverse 
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