Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **21:2** (2007), 1–9

SOME SUBCLASSES OF MEROMORPHIC FUNCTIONS

Mugur Acu

Abstract

In this paper we define some subclass of meromorphic functions and we obtain some properties of these classes.

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}, A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}, \mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\} \text{ and } S = \{f \in A : f \text{ is univalent in } U\}.$ Let $\dot{U} = \{w \in \mathbb{C} : 0 < |w| < 1\}, U^- = \{\zeta \in \mathbb{C}_\infty : |\zeta| > 1\} \text{ and } \Sigma$ be the class of all functions φ which are meromorphic in U^- with $\varphi(\infty) = \infty$ and $\varphi'(\infty) = 1$:

$$\varphi(\zeta) = \zeta + \alpha_0 + \frac{\alpha_1}{\zeta} + \dots + \frac{\alpha_n}{\zeta^n} + \dots , \ |\zeta| > 1$$
(1)

The purpose of this note is to define some subclasses of close to convex meromorphic functions and give some properties of these classes.

2 Preliminary results

Let $E(\varphi) = \mathbb{C} \setminus \varphi(U^-)$ and $\Sigma_0 = \{\varphi \in \Sigma : \varphi(\zeta) \neq 0, \zeta \in U^-\}.$

²⁰⁰⁰ Mathematics Subject Classifications. 30C45.

Key words and Phrases. Meromorphic functions, integral operators. Received: May 5, 2004

Remark 2.1 We have the bijection $T: S \to \Sigma_0$ with

$$T(f) = \varphi , \ \varphi(\zeta) = \frac{1}{f(z)} , \ \zeta = \frac{1}{z} , \ \zeta \in U^- \ and \ T(S) = \Sigma_0,$$

$$T^{-1}(\Sigma_0) = S. \ It \ is \ easy \ to \ see \ that \ \frac{\zeta \varphi'(\zeta)}{\varphi(\zeta)} = \frac{zf'(z)}{f(z)} \ , \ \zeta = \frac{1}{z} \ , \ \zeta \in U^-.$$

Definition 2.1 [4] A function φ in form (1) is called starlike in U^- if φ is univalent in U^- and $E(\varphi)$ is starlike in respect to the origin.

Remark 2.2 From Definition 2.1 we have $0 \in E(\varphi)$ and thus $\varphi \in \Sigma_0$.

Definition 2.2 [4] $\Sigma^* = \{\varphi \in \Sigma_0 : \varphi \text{ is starlike in } U^-\}.$

Remark 2.3 From Remark 2.1 we have $\Sigma^* = \{\varphi \in \Sigma_0 : Re\frac{\zeta\varphi'(\zeta)}{\varphi(\zeta)} > 0, \zeta \in U^-\}$ and $\Sigma^* = T(S^*)$, where S^* is the well know class of starlike functions. If $\gamma_{\rho} = \{\zeta : |\zeta| = \rho > 1\}$ and we denote $\Gamma_{\rho} = \varphi(\gamma_{\rho})$ then the condition $Re\frac{\zeta\varphi'(\zeta)}{\varphi(\zeta)} > 0, \zeta \in U^-$ show that if φ is starlike in U^- then Γ_{ρ} is a starlike curve in respect to the origin for all $\rho > 1$.

Definition 2.3 [4] Let $g(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, 0 < |z| < 1 meromorphic in \dot{U} . We say that g is starlike in \dot{U} if the function $\varphi(\zeta) = g(\frac{1}{\zeta})$, $\zeta \in U^$ is starlike in U^- .

Remark 2.4 For $g(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in U$, g univalent in \dot{U} , $g(z) \neq 0$, $z \in \dot{U}$ and $\varphi(\frac{1}{z}) = g(z)$ with $\varphi \in \Sigma_0$ we have

$$\frac{zg'(z)}{g(z)} = -\frac{\zeta\varphi'(\zeta)}{\varphi(\zeta)} \ , \ \zeta = \frac{1}{z}, \quad z \in U.$$

Theorem 2.1 [4] Let $g(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in U$ meromorphic in Uwith $g(z) \neq 0$, $z \in \dot{U}$. Then g is starlike in U if and only if g is univalent in \dot{U} and $Re\left[-\frac{zg'(z)}{g(z)}\right] > 0$, $z \in \dot{U}$.

We denote also with Σ^* the class of all these functions.

Definition 2.4 [4] Let $\alpha < 1$. We say that a function $f \in \Sigma$ is a meromorphic starlike of order α function if $Re\left[-\frac{zf'(z)}{f(z)}\right] > \alpha$, $z \in \dot{U}$. We denote this class with $\Sigma^*(\alpha)$.

Some subclasses of meromorphic functions

Let $\gamma \in \mathbb{C}$ with $\operatorname{Re} \gamma > 0$. We consider the integral operator $I_{\gamma} : \Sigma \to \Sigma$ defined as

$$I_{\gamma}(F)(z) = \frac{\gamma}{z^{\gamma+1}} \int_{0}^{z} t^{\gamma} \cdot F(t) dt .$$
⁽²⁾

Theorem 2.2 [5] Let $\alpha < 1$, $\gamma > 0$ and $F \in \Sigma^*(\alpha)$. If $f = I_{\gamma}(F)$, where I_{γ} is defined in (2), with $f(z) \neq 0$, $z \in \dot{U}$, then $f \in \Sigma^*(\beta)$ where

$$\beta = \frac{1}{4} \left[2\alpha + 2\gamma + 3 - \sqrt{(2(\gamma - \alpha) + 1)^2 + 8\gamma} \right].$$

Remark 2.5 It is easy to see that from Theorem 2.2, with $\alpha = 0$, we have for $F \in \Sigma^*$ and $f = I_{\gamma}(F)$, with $f(z) \neq 0$, $z \in \dot{U}$, that $f \in \Sigma^*$.

The next theorem is due to P.T. Mocanu and S.S. Miller (see [1], [2], [3]).

Theorem 2.3 Let q convex in U and $j : U \to \mathbb{C}$ with Re[j(z)] > 0. If $p \in \mathcal{H}(U)$ and p satisfied $p(z) + j(z) \cdot zp'(z) \prec q(z)$ then $p(z) \prec q(z)$.

3 Main results

Definition 3.1 Let $\varphi \in \Sigma_0$. We say that φ is close to convex in U^- if subsist a function $\psi \in \Sigma^*$ such as $Re \frac{\zeta \varphi'(\zeta)}{\psi(\zeta)} > 0$, $\zeta \in U^-$. We denote with Σ^{cc} this class. Thus

$$\Sigma^{cc} = \left\{ \varphi \in \Sigma_0 : (\exists) \ \psi \in \Sigma^* \ , \ Re\frac{\zeta \varphi'(\zeta)}{\psi(\zeta)} > 0 \ , \ \zeta \in U^- \right\}$$

Remark 3.1 If we take $\varphi \in \Sigma^*$, $\varphi = \psi$, we have $\Sigma^* = \Sigma^{cc}$.

Definition 3.2 Let $f(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, 0 < |z| < 1 meromorphic in \dot{U} . We say that f is close to convex in \dot{U} with respect to the function $g(z) = \frac{1}{z} + \beta_0 + \beta_1 z + \cdots$, 0 < |z| < 1 meromorphic and starlike in \dot{U} , if the function $\varphi(\zeta) = f\left(\frac{1}{\zeta}\right)$, $\zeta \in U^-$ is close to convex in U^- with respect to the function $\psi(\zeta) = g\left(\frac{1}{\zeta}\right)$, $\zeta \in U^-$ which is starlike in U^- . **Theorem 3.1** Let $f(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in U$ meromorphic in U with $f(z) \neq 0$, $z \in \dot{U}$. Then the function f is close to convex in U with respect to the function $g(z) = \frac{1}{z} + \beta_0 + \beta_1 z + \cdots$, $z \in U$, with $g(z) \neq 0$, $z \in \dot{U}$, meromorphic and starlike in U, if and only if f is univalent in \dot{U} and $\operatorname{Re}\left[-\frac{zf'(z)}{g(z)}\right] > 0$, $z \in \dot{U}$.

We denote also with Σ^{cc} the class of all this functions.

Proof.

We know that the conditions f is univalent in \dot{U} and $f(z) \neq 0$, $z \in \dot{U}$ are equivalent with $\varphi \in \Sigma_0$ where $\varphi\left(\frac{1}{z}\right) = f(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$

From Theorem 2.1 with $g(z) = \frac{1}{z} + \beta_0 + \beta_1 z + \cdots$, $g(z) \neq 0$, $z \in \dot{U}$ which is meromorphic and starlike in U, we have $\psi \in \Sigma^*$ where $\psi(\frac{1}{z}) = g(z)$.

It is easy to see that

$$\frac{\zeta \varphi'(\zeta)}{\psi(\zeta)} = -\frac{zf'(z)}{g(z)} , \ \zeta = \frac{1}{z} , \ z \in U .$$

Thus f is close to convex in \dot{U} with respect to the function g starlike in \dot{U} if and only if $Re\left[-\frac{zf'(z)}{g(z)}\right] > 0$, $z \in \dot{U}$.

Definition 3.3 Let $0 \le \alpha < 1$ and $\beta > \alpha$. we say that a function $g \in \Sigma$ is in the class $\Sigma^*_{\alpha,\beta}$ if $\alpha < Re\left[-\frac{zg'(z)}{g(z)}\right] < \beta$, $z \in \dot{U}$. Thus

$$\Sigma^*_{\alpha,\beta} = \left\{g \in \Sigma \ : \ \alpha < Re\left[-\frac{zg'(z)}{g(z)}\right] < \beta \ , \ z \in \dot{U}\right\}$$

Remark 3.2 It is easy to see that $\Sigma^*_{\alpha,\beta} \subset \Sigma^*(\alpha) \subset \Sigma^*$, and if we consider $\beta \to \infty$ in the definition of the class $\Sigma^*_{\alpha,\beta}$ we obtain the definition of the class $\Sigma^*(\alpha)$.

Theorem 3.2 Let $0 \leq \alpha < 1$, $\beta > \alpha$, $\gamma > 0$ and $G(z) \in \Sigma^*_{\alpha,\beta}$. If $g(z) = I_{\gamma}(G)(z)$, where I_{γ} is defined in (2), and $g(z) \neq 0$, $z \in \dot{U}$, then $g \in \Sigma^*_{\alpha,\beta'}$ where $\beta' = \min \{\beta, \gamma + 1\}$.

Proof.

In the conditions from hypothesis it is sufficient to prove that

$$\alpha < Re\left\{-\frac{zg'(z)}{g(z)}\right\} < \beta',$$

where $\beta' = \min{\{\beta, \gamma+1\}},\, z \in \dot{U}$.

From (2) we have:

$$(\gamma + 1)g(z) + zg'(z) = \gamma G(z) \tag{3}$$

Then from this relation we obtain:

$$(\gamma + 2)g'(z) + zg''(z) = \gamma G'(z) \tag{4}$$

We observe that from Remark 2.5 we have $g \in \Sigma^*$ i.e.

$$Re\left[-rac{zg'(z)}{g(z)}
ight] > 0 \;,\; z \in \dot{U}.$$

We have from (3) and (4):

$$-\frac{zG'(z)}{G(z)} = -\frac{z\gamma G'(z)}{\gamma G(z)} = \frac{(\gamma+2) \cdot p(z) - \frac{z^2 g''(z)}{g(z)}}{(\gamma+1) - p(z)}$$
(5)

where $p(z) = -\frac{zg'(z)}{g(z)}$ with $p \in \mathcal{H}(U)$ and p(0) = 1. From $p(z) = -\frac{zg'(z)}{g(z)}$ we obtain:

$$zp'(z) = p(z) - \frac{z^2 g''(z)}{g(z)} + p^2(z)$$

and thus

$$-\frac{z^2g''(z)}{g(z)} = zp'(z) - p(z)(p(z) + 1).$$

In this conditions from (5) we have:

$$-\frac{zG'(z)}{G(z)} = p(z) + \frac{1}{(\gamma+1) - p(z)} \cdot zp'(z).$$

Let q convex in U with $q(U) = \Delta = \{w \in \mathbb{C} : \alpha < \operatorname{Re} w < \beta\}$. Then from $G \in \Sigma^*_{\alpha,\beta}$ we have $-\frac{zG'(z)}{G(z)} \prec q(z)$ and thus:

$$p(z) + \frac{1}{(\gamma+1) - p(z)} \cdot zp'(z) \prec q(z)$$

If we consider $\operatorname{Re} p(z) < \gamma + 1$, $z \in U$ we have $\operatorname{Re} \left[\frac{1}{(\gamma + 1) - p(z)}\right] > 0$ and thus from Theorem 2.3 we obtain $p(z) \prec q(z)$ i.e.

$$\alpha < Re\left\{-rac{zg'(z)}{g(z)}
ight\} < \beta \ , \ z \in U.$$

 $\begin{array}{l} \text{Using the condition } Re\left\{-\frac{zg'(z)}{g(z)}\right\} < \gamma+1 \text{ we have } \alpha < Re\left\{-\frac{zg'(z)}{g(z)}\right\} < \beta', \\ \text{where } \beta' = \min\left\{\beta,\gamma+1\right\} \text{ or } g \in \Sigma^*_{\alpha,\beta'} \ . \end{array}$

If we take $\beta > \gamma + 1$ from Theorem 3.2 we obtain:

Corollary 3.1 Let $0 \leq \alpha < 1$, $\gamma > 0$, $\beta > \gamma + 1$ and $G(z) \in \Sigma^*_{\alpha,\beta}$. If $g(z) = I_{\gamma}(G)(z)$, where I_{γ} is defined in (2), and $g(z) \neq 0$, $z \in \dot{U}$, then $g \in \Sigma^*_{\alpha,\gamma+1}$.

Remark 3.3 In the conditions from Corollary 3.1 with $\alpha = 0$ we have that $G(z) \in \Sigma_{0,\beta}^*$ and $g(z) = I_{\gamma}(G)(z)$ with $g(z) \neq 0$, $z \in \dot{U}$ imply that $g(z) \in \Sigma_{0,\gamma+1}^*$.

Theorem 3.3 Let $\gamma > 0$, $\beta > \gamma + 1$ and $F(z) \in \Sigma^{cc}$ with respect to the function $G(z) \in \Sigma^*_{0,\beta}$. If $f(z) = I_{\gamma}(F)(z)$, where I_{γ} is defined in (2), with $f(z) \neq 0$, $z \in \dot{U}$ and $g(z) = I_{\gamma}(G)(z)$ with $g(z) \neq 0$, $z \in \dot{U}$, then $f(z) \in \Sigma^{cc}$ with respect to the function $g(z) \in \Sigma^*_{0,\gamma+1}$.

Proof.

In the given conditions it is sufficient to prove that

$$Re\left[-rac{zf'(z)}{g(z)}
ight] > 0 \;,\; z \in \dot{U}.$$

From (2) we have:

$$(\gamma + 1)f(z) + zf'(z) = \gamma F(z) \tag{6}$$

Some subclasses of meromorphic functions

and

$$(\gamma + 1)g(z) + zg'(z) = \gamma G(z) \tag{7}$$

From (6) we have:

$$(\gamma + 2)f'(z) + zf''(z) = \gamma F'(z)$$
 (8)

Using (7) and (8) we have:

$$-\frac{zF'(z)}{G(z)} = -\frac{z\gamma F'(z)}{\gamma G(z)} = \frac{(\gamma+2)p(z) - \frac{z^2 f''(z)}{g(z)}}{(\gamma+1) - h(z)}$$
(9)

where $p(z) = -\frac{zf'(z)}{g(z)}$ and $h(z) = -\frac{zg'(z)}{g(z)}$ with $p \in \mathcal{H}(U)$, $h \in \mathcal{H}(U)$ and p(0) = h(0) = 1. From $p(z) = -\frac{zf'(z)}{g(z)}$ we obtain: $-\frac{z^2f''(z)}{g(z)} = zp'(z) - p(z) [1 + h(z)]$ (10)

Using (10) we have from (9):

$$-\frac{zF'(z)}{G(z)} = p(z) + \frac{1}{(\gamma+1) - h(z)} \cdot zp'(z)$$
(11)

From $F(z) \in \Sigma^{cc}$ with respect to the function $G(z) \in \Sigma^*_{0,\beta}$ we have from (11):

$$p(z) + \frac{1}{(\gamma+1) - h(z)} \cdot zp'(z) \prec \frac{1+z}{1-z}$$

Using the Remark 3.3 we have from $G(z) \in \Sigma_{0,\beta}^*$ that $g(z) \in \Sigma_{0,\gamma+1}^*$. Thus $0 < \operatorname{Re} h(z) < \gamma + 1$. In this condition we have from Theorem 2.3 that $p(z) \prec \frac{1+z}{1-z}$ i.e. $\operatorname{Re} \left[-\frac{zf'(z)}{g(z)}\right] > 0$, $z \in U$.

Definition 3.4 Let $\delta < 1$ and $f(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in U$ meromorphic and univalent in \dot{U} , with $f(z) \neq 0$, $z \in \dot{U}$. We say that f is close to convex of order δ with respect to the function $g(z) = \frac{1}{z} + \beta_0 + \beta_1 z + \cdots$, $z \in U$ meromorphic and starlike of order δ in U, with $g(z) \neq 0$, $z \in \dot{U}$, if $Re\left[-\frac{zf'(z)}{g(z)}\right] > \delta$, $z \in \dot{U}$. We denote this class with $\Sigma^{cc}(\delta)$.

Remark 3.4 We have $\Sigma^{cc}(0) = \Sigma^{cc}$ and $\Sigma^*(\delta) \subset \Sigma^{cc}(\delta)$.

Theorem 3.4 Let $\gamma > 0$, $\beta > \gamma + 1$, $0 \le \delta < 1$ and $F(z) \in \Sigma^{cc}(\delta)$ with respect to the function $G(z) \in \Sigma^*_{\delta,\beta}$. If $f(z) = I_{\gamma}(F)(z)$, where I_{γ} is defined in (2), with $f(z) \ne 0$, $z \in \dot{U}$ and $g(z) = I_{\gamma}(G)(z)$ with $g(z) \ne 0$, $z \in \dot{U}$, then $f(z) \in \Sigma^{cc}(\delta)$ with respect to the function $g(z) \in \Sigma^*_{\delta,\gamma+1}$.

Proof.

In a similarly way with the proof of the Theorem 3.3 we have:

$$-\frac{zF'(z)}{G(z)} = p(z) + \frac{1}{(\gamma+1) - h(z)} \cdot zp'(z) \prec q(z)$$

where $p(z) = -\frac{zf'(z)}{g(z)}$, $h(z) = -\frac{zg'(z)}{g(z)}$ and q is convex with $q(U) = \Delta = \{w \in \mathbb{C} : Re \ w > \delta\}$.

From Corollary 3.1 we have from $G(z) \in \Sigma_{\delta,\beta}^*$ that $g(z) \in \Sigma_{\delta,\gamma+1}^*$ and thus $\operatorname{Re} h(z) < \gamma + 1$. In this condition from Theorem 2.3 we obtain $p(z) \prec q(z)$ i.e. $f(z) \in \Sigma^{cc}(\delta)$.

Definition 3.5 Let $0 \leq \delta < 1$, $\beta > \delta$ and $f(z) = \frac{1}{z} + \alpha_0 + \alpha_1 z + \cdots$, $z \in U$ meromorphic and univalent in \dot{U} , with $f(z) \neq 0$, $z \in \dot{U}$. We say that fis in the class $\Sigma_{\delta,\beta}^{cc}$ with respect to the function $g(z) = \frac{1}{z} + \beta_0 + \beta_1 z + \cdots$, $z \in U$ meromorphic in U, with $g(z) \neq 0$, $z \in \dot{U}$, and $g(z) \in \Sigma_{\delta,\beta}^*$, if $\delta < Re\left[-\frac{zf'(z)}{g(z)}\right] < \beta$, $z \in \dot{U}$.

Remark 3.5 We have $\Sigma_{\delta,\beta}^* \subset \Sigma_{\delta,\beta}^{cc}$ and if we consider $\beta \to \infty$ we have $\Sigma_{\delta,\infty}^{cc} = \Sigma^{cc}(\delta)$.

In a similarly way with the proof of the Theorem 3.4 we obtain:

Theorem 3.5 Let $\gamma > 0$, $\beta > \gamma + 1$, $0 \le \delta < 1$ and $F(z) \in \Sigma_{\delta,\beta}^{cc}$ with respect to the function $G(z) \in \Sigma_{\delta,\beta}^*$. If $f(z) = I_{\gamma}(F)(z)$, where I_{γ} is defined in (2), with $f(z) \ne 0$, $z \in \dot{U}$ and $g(z) = I_{\gamma}(G)(z)$ with $g(z) \ne 0$, $z \in \dot{U}$, then $f(z) \in \Sigma_{\delta,\beta}^{cc}$ with respect to the function $g(z) \in \Sigma_{\delta,\gamma+1}^*$. Some subclasses of meromorphic functions

References

- S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Mich. Math., 28(1981), 157-171.
- S.S. Miller, P.T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations, 56(1985), 297-308.
- [3] S.S. Miller, P.T. Mocanu, On some classes of first order differential subordinations, Mich. Math., 32(1985), 185-195.
- [4] P.T. Mocanu, T. Bulboaca, G. Salagean, Teoria geometrica a functiilor univalente, Casa Cartii de Stiinta (Cluj), 1999.
- [5] P.T. Mocanu, Gr. Salagean, Integral operators and meromorphic starlike functions, Mathematica (Cluj), 32(55), 2(1990), 147-152.

Address:

"Lucian Blaga" University Department of Mathematics 550012 Sibiu Romania

E-mail: acu_mugur@yahoo.com