Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.yu/filomat

Filomat **21:2** (2007), 99–108

ON FUZZY GENERALIZED α -CLOSED SET AND ITS APPLICATIONS

Bayaz Daraby and S. B. Nimse

Abstract

In this paper, we define and study fuzzy generalized α -closed sets and r-open sets of a given *L*-fuzzy topological space and prime element $r \in P(L)$ and coprime element $\alpha \in M(L)$. The concept of *L*-fuzzy ropen sets was introduced in [10], and it was proved that all r-open sets for *L*-fuzzy topological space form a new *L*-fuzzy topology, which is called stratiform *L*-fuzzy topology. Making use of the fuzzy generalized α -closed sets, fuzzy generalized α -continuous map is presented.

1 Introduction

In this paper, we study fuzzy generalized α -closed sets, fuzzy r-open sets, fuzzy α -continuous functions and their applications. In section 2 we give preliminaries and some definitions. Section 3 is devoted to studying generalized fuzzy α -closed sets and their properties. Section 4 is devoted to studying generalized fuzzy α -continuous mappings and their properties. In section 5 we introduce fuzzy g α -cirresolute maps and their properties.

2 Preliminaries

Throughout this paper, $L = (\leq, \lor, \land, \prime)$ always denotes a fuzzy lattice, and 0 and 1 are the smallest and the greatest element of L, respectively. By a fuzzy lattice we mean a completely distributive lattice L, if L has an order-reversing involution $\prime : L \to L$. Let X be a nonempty crisp set. A mapping

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 03E72.

Key words and phrases. Fuzzy generalized α -closed set; Fuzzy generalized r-open set; Fuzzy generalized α -continuous function; Fuzzy generalized α closed-irresolute.

Received: April 16, 2006

from X into L is said to be an L-fuzzy set on X. The collection of all L-fuzzy sets on X, denoted by L^X , can be naturally seen as a fuzzy lattice $(L^X, \leq, \lor, \land, \prime)$. For $\alpha \in L, \alpha_X$ denotes a constant value L-fuzzy set on X, i.e., $\alpha_X(x) \equiv \alpha, \forall x \in X$.

Definition 2.1 Let X be a nonempty ordinary set, L a fuzzy lattice, $\delta \subset L^X$. δ is called a L-fuzzy topology on X, and (L^X, δ) is called an L-fuzzy topological space, or L-fts for short, if δ satisfies the following three conditions: (LFT1) $\underline{0}, \underline{1} \in \delta$;

(LFT2) $\forall \mathcal{A} \subset \delta, \bigvee \mathcal{A} \in \delta;$

(LFT3) $\forall U, V \in \delta, U \land V \in \delta$.

Particularly, when L = [0, 1], call an L-fuzzy topological space (L^X, δ) a F - topological space or a F-ts for short, and simply denote it by (X, δ) .

Each fuzzy mapping $f : L^X \to L^Y$ considered in this paper is induced from a crisp mapping $f : X \to Y$ as usual, i.e., for $A \in L^X, B \in L^Y, x \in X, y \in Y$,

$$f(A)(y) = \bigvee \{A(x) : x \in X, f(x) = y\},\$$

$$f^{-1}(B)(x) = B(f(x)).$$

Definition 2.2 Let L be a fuzzy lattice. $\alpha \in L$ is called a union-irreducible element (or a molecule [6]) of L, if for arbitrary $a, b \in L$ we have $\alpha \leq a \lor b \Rightarrow \alpha \leq a$ or $\alpha \leq b$. The set of all the nonzero union- irreducible elements of L is denoted by M(L). The set of all molecules of a fuzzy lattice L^X is denoted by $M^*(L^X)$.

Definition 2.3 Let *L* be a fuzzy lattice. $r \in L$ is called a prime element of *L*, if for arbitrary $a, b \in L$ we have $a \wedge b \leq r \Rightarrow a \leq r$ or $b \leq r$. The set of all the prime elements which are not 1 of *L* is denoted by P(L). Clearly, $r \in P(L)$ iff $r' \in M(L)$.

Definition 2.4 Let (L^X, δ) be an *L*-fts, and $r \in P(L)$, and $A \in L^X$. A is called an r-open set, if for any $x \in X$, $A^{\circ}(x) \leq r \Rightarrow A(x) \leq r$ [11].

The set of all r-open sets in (L^X, δ) is denoted by $O_r(\delta)$. Clearly, $\forall r \in P(L), \delta \subset O_r(\delta)$.

Definition 2.5 Let (L^X, δ) be an *L*-fts, and $\alpha \in M(L)$, and $A \in L^X$. A is called an α -closed set, if for any $x \in X$, $\overline{A}(x) \ge \alpha \Rightarrow A(x) \ge \alpha$.

The set of all α -closed sets in (L^X, δ) is denoted by $C_{\alpha}(\delta)$. Clearly, $\forall \alpha \in M(L), \delta' \subset C_{\alpha}(\delta)$.

On fuzzy generalized α -closed sets and its applications

Theorem 2.6 Let (L^X, δ) be an *L*-fts, $\alpha \in M(L), A \in L^X$. Then *A* is α -closed iff A' is α' -open [11].

Definition 2.7 Let (L^X, δ) be an *L*-fts, $\alpha \in M(L), r \in P(L)$. $(L^X, O_r(\delta))$ and $(L^X, C_\alpha(\delta))$ are called stratiform *L*-fuzzy topological spaces of (L^X, δ) .

Theorem 2.8 [10] Let (L^X, δ) be an *L*-fts, and $A \in L^X$. Then (1) $A \in \delta$ iff $\forall r \in P(L), A \in O_r(\delta)$. (2) $A \in \delta'$ iff $\alpha \in M(L), A \in C_\alpha(\delta)$. It is clear that $A \in C_\alpha(\delta)$, implies $A' \in O_{\alpha'}(\delta)$. Also $A \in O_r(\delta)$, implies $A' \in C_{r'}(\delta)$.

3 Fuzzy generalized α -closed sets in *L*-fuzzy topological spaces

In this section, we study α -closed set and its properties. After that we want to introduce open r-cover, fuzzy r-compact, fuzzy r-regular and fuzzy α -closed map.

Definition 3.1 If λ is an *L*-fuzzy set in a *L*-fts L^X and $\alpha \in M(L)$ then $cl_{\alpha}(\lambda) = \bigcap \{ \mu : \mu \geq \lambda \}, \mu$ "is fuzzy α -closed set", is called a fuzzy α -closure of λ .

An L-fuzzy set λ in a L-fts (L^X, δ) is fuzzy α -closed if and only if $\lambda = cl_{\alpha}(\lambda)$.

Definition 3.2 Let (L^X, δ) be an *L*-fts, and $\alpha \in M(L)$, and $\lambda \in L^X$. λ is called an fuzzy generalized α -closed set (in short Fg α -closed set), if $cl_{\alpha}(\lambda) \leq \mu$ whenever $\lambda \leq \mu$ and μ is fuzzy α' -open.

Remark 3.3 Let (L^X, δ) be an L-fts, $\alpha \in M(L)$, and $\lambda \in L^X$. If λ is fuzzy α -closed set then λ' is fuzzy α' -open set.

Theorem 3.4 If λ_1 and λ_2 are Fg α -closed sets then $\lambda_1 \lor \lambda_2$ is a $Fg\alpha$ -closed set.

Proof: Follows from the definition of $Fg\alpha$ -closed and the fact that $cl_{\alpha}(\lambda_1 \vee \lambda_2) = cl_{\alpha}(\lambda_1) \vee cl_{\alpha}(\lambda_2).$

However, the intersection of two $Fg\alpha$ -closed sets is not fuzzy generalized α -closed set as the following example shows.

Example 3.5 The intersection of two $Fg\alpha$ -closed sets is not generally a $Fg\alpha$ -closed set.

Let $X = \{x_1, x_2, x_3\}$. Define $f_1, f_2, f_3 : X \to [0, 1]$ as follows. $f_1 = 0_X; f_2 = 1_X; f_3(x_2) = f_3(x_3) = 0, f_3(x_1) = 1.$

Clearly, $\delta = \{f_1, f_2, f_3\}$ is a fuzzy topology on X. Define $\lambda_1, \lambda_2 : X \to [0, 1]$ as follows:

 $\lambda_1(x_1) = \lambda_1(x_2) = 1, \ \lambda_1(x_3) = 0.$ $\lambda_2(x_1) = \lambda_2(x_3) = 1, \ \lambda_2(x_2) = 0.$

Since $Cl_{\alpha}(\lambda_1) \leq 1_X, 1_X \in \delta$ and $\delta \subseteq O_{\alpha'}(\delta)$, it follows that λ_1 is Fgaclosed set. Similarly λ_2 is $Fg\alpha$ -closed set but $\lambda_1 \wedge \lambda_2 = f_3$ is not $Fg\alpha$ -closed set.

Theorem 3.6 If λ is $Fg\alpha$ -closed set and $\lambda \leq \mu \leq \overline{\lambda}$, then μ is $Fg\alpha$ -closed set.

Proof: Let β be a fuzzy α' -open set such that $\beta \geq \mu$. Since $\mu \geq \lambda, \beta \geq \lambda$, and λ is Fg α -closed set. It follows that $\beta \geq \overline{\lambda}$. But $\overline{\lambda} \geq \overline{\mu}$, since $\overline{\lambda} \geq \mu$ and so $\beta \geq \overline{\mu}$. Since $\overline{\mu}$ is α -closed set, $cl_{\alpha}(\mu) \leq \beta$. Hence μ is $Fg\alpha$ -closed set.

Definition 3.7 Let $(L^X, O_r(\delta))$ for $r \in P(L)$ be an *L*-fts, $\lambda \in L^X$, $\mathcal{A} \subset O_r(\delta)$. \mathcal{A} is called an open r-cover of λ , if $\bigvee \mathcal{A} \geq \lambda$; particularly, \mathcal{A} is called an open r-cover of $(L^X, O_r(\delta))$, if \mathcal{A} is an open r-cover of <u>1</u>.

Definition 3.8 Let $(L^X, O_r(\delta))$ for $r \in P(L)$ be an *L*-fts, $\lambda \in L^X, \lambda$ is called r-compact, if every open r-cover of λ of $(L^X, O_r(\delta))$ has a finite subcover.

Theorem 3.9 Let $(L^X, O_r(\delta))$ be a fuzzy r-compact (Lindelof, countably r-compact) space and suppose that λ is a Fgr'-closed set of L^X . Then λ is fuzzy r-compact (Lindlof, countably r-compact).

Proof: We prove the case of fuzzy r-compactness as the proof is similar for other cases. Let $\{\mu_t\}_{t\in T}$ be a family of r-open sets in L^X such that $\lambda \leq \bigvee_{t\in T} \mu_t$. Since λ is Fgr'-closed set and $\bigvee_{t\in T} \mu_t$ is fuzzy r-open, it follows that $\overline{\lambda} \leq \bigvee_{t\in T} \mu_t$. But $\overline{\lambda}$ is fuzzy r-compact and therefore it follows that $\lambda \leq \overline{\lambda} \leq \mu_{r_1} \vee \mu_{r_2} \vee \cdots \vee \mu_{r_n}$ for some natural number $n \in N$.

Definition 3.10 Let $(L^X, O_r(\delta))$ be an *L*-fts and $r \in P(L)$. $(L^X, O_r(\delta))$ is called r-regular, if for $\mu \in O_r(\delta)$ there exsists $\vartheta \subset O_r(\delta)$ such that $\bigvee \vartheta = \mu$ and $\overline{\lambda} \leq \mu$ for every $\lambda \in \vartheta$.

On fuzzy generalized α -closed sets and its applications

Theorem 3.11 If $(L^X, O_r(\delta)), r \in P(L)$, is fuzzy r-regular and λ is fuzzy r-compact, then λ is Fg?-closed set.

Proof : Suppose that $\lambda \leq \mu$, and $\lambda, \mu \in O_r(\delta)$, since $(L^X, O_r(\delta))$ is fuzzy r-regular, we can write $\mu = \bigvee_{t \in T} \mu_t$, T being an index set, $\mu_t \in O_r(\delta), \overline{\mu_t} \leq \mu$. Hence for some finite subset $T_\circ \subset T$ we will have

$$\lambda \leq \bigvee_{t \in T_{\circ}} \mu_t \leq \overline{\bigvee_{t \in T_{\circ}} \mu_t} \leq \mu.$$

This shows that $\overline{\lambda} \leq \mu$. Since $\overline{\lambda} \in C_{r'}(\delta)$, thus $\overline{\lambda} = cl_{r'}(\lambda) \leq \mu$ i.e. λ is Fgr'-closed set. \Box

Definition 3.12 An *L*-fuzzy set λ is called fuzzy generalized α' -open (in short Fg α' -open) iff λ' is Fg α -closed set for $\alpha \in M(L)$.

We shall now prove some properties of fuzzy generalized r-open sets.

Definition 3.13 If λ is an *L*-fuzzy set in a *L*-fts (L^X, δ) and $r \in P(L)$, then $rInt(\lambda) = Int_r(\lambda) = \bigcup \{\mu : \lambda \ge \mu\}, \mu$ is fuzzy r-open set, is called a fuzzy r-Interior of λ .

An L-fuzzy set λ in a L-fts (L^X, δ) is fuzzy r-open if and only if $\lambda = Int_r(\lambda)$.

Theorem 3.14 Let $\alpha \in M(L)$. An *L*-fuzzy set λ is Fg α' -open set $\Leftrightarrow \mu \leq Int_{\alpha'}(\lambda)$ whenever μ is fuzzy α -closed set and $\mu \leq \lambda$.

Proof: Let λ be a Fg α' -open set and μ be a fuzzy α -closed set such that $\mu \leq \lambda$. Now $\mu \leq \lambda \Rightarrow \mu' \geq \lambda'$ and λ' is $Fg\alpha$ -closed set, that is, $(\overline{\lambda'})' \geq (\mu')' = \mu$. But $(\overline{\lambda'})' = Int_{\alpha'}(\lambda)$ [3].

Thus we obtain that $\mu \leq Int_{\alpha'}(\lambda)$.

Conversely, suppose that λ is a fuzzy set such that $\mu \leq Int_{\alpha'}(\lambda)$ whenever μ is fuzzy α -closed and $\mu \leq \lambda$. We claim λ' is Fg α -closed set. So let $\lambda' \leq \mu$ where μ is fuzzy α' -open.

Now $\lambda' \leq \mu$, then $\mu' \leq \lambda$. Hence, by assumption we must have :

 $\mu' \leq Int_{\alpha'}(\lambda)$, i.e. $(Int_{\alpha'}(\lambda))' \leq \mu$. But $(Int_{\alpha'}(\lambda))' = (\overline{\lambda'})$ [3]. Hence $(\overline{\lambda'}) \leq \mu$. This shows λ' is Fg α -closed set.

Remark 3.15 (1) The union of two Fg α' -open sets is not generally Fg α' -open set.

(2) The intersection of any two $Fg\alpha'$ -open sets is $Fg\alpha'$ -open set.

Theorem 3.16 Let $\alpha \in M(L)$. If $Int_{\alpha'}(\lambda) \leq \mu \leq \lambda$ and λ is Fg α' -open set, then μ is Fg α' -open set.

Proof: Given $Int_{\alpha'}(\lambda) \leq \mu \leq \lambda$, we have $\lambda' \leq \mu' \leq (Int_{\alpha'}(\lambda))' = \overline{\lambda'}$. Since λ is Fg α' -open, λ' is Fg α -closed and so it follows by Theorem (3.6) that μ' is Fg α -closed set, i.e. μ is Fg α' -open set.

Definition 3.17 A map $f : L^X \to L^Y$ is called fuzzy α -closed (in short $F\alpha$ -closed) if the image of every α -closed set in L^X is α -closed set in L^Y .

Theorem 3.18 If λ is a Fg α -closed set in L^X and if $f : L^X \to L^Y$ is F-continuous and F α -closed, then $f(\lambda)$ is Fg α -closed set in L^Y .

Proof: If $f(\lambda) \leq \mu$ where μ is $F\alpha'$ -open in L^Y , then $\lambda \leq f^{-1}(\lambda)$. Since λ is Fg α -closed and $f^{-1}(\mu)$ is $F\alpha'$ -open, $cl_{\alpha}(\lambda) = \overline{\lambda} \leq f^{-1}(\mu)$ i.e. $f(\overline{\lambda}) \leq \mu$. Now by assumption, $f(\overline{\lambda})$ is $F\alpha$ -closed and $\overline{f(\lambda)} \leq \overline{f(\overline{\lambda})} = f(\overline{\lambda}) \leq \mu$. We know that $\overline{f(\lambda)} = cl_{\alpha}(f(\lambda))$, thus $cl_{\alpha}(f(\lambda)) \leq \mu$. This means $f(\lambda)$ is Fg α -closed set.

Example 3.19 Under F α -closed, F-continuous maps Fg α' -open sets are generally not taken into Fg α' -open sets.

Let $X = \{a\}, Y = \{b, c\}, T_1 = \{0_X, 1_X\}, T_2 = \{0_Y, 1_Y, f_1\}$ where $f_1 : Y \to [0, 1]$ is such that : $f_1(b) = 1 \quad f_1(c) = 0.$

Clearly, T_1 and T_2 are fuzzy topologies on X and Y, respectively. Define $f: X \to Y$ as follows:

 $a \longmapsto f(a) = c.$

One can verify that f is F-continuous and F α -closed. Now we shall show that f does not take Fg α' -open sets to Fg α' -open set.

Clearly, 1_X is Fg α' -open on X. But $f(1_X) = 1 - f_1$ which is not Fg α' -open on Y.

4 Fuzzy generalized α -continuous mapping and its properties

In this section, by means of fuzzy α -closed set and Fg α -closed set, we study fuzzy generalized α -continuous mapping and its properties.

Definition 4.1 Let (L^X, δ) and (L^Y, σ) be two L-fuzzy topological spaces. A map $f : L^X \to L^Y$ is called fuzzy generalized α -continuous (in short Fg α -continuous) if the invers image of every fuzzy α -closed set in L^Y is Fg α -closed in L^X . The following are the properties of Fg α -continuous functions. **Theorem 4.2** If $f : L^X \to L^Y$ is fuzzy α -continuous then it is Fg α -continuous. The convers of Theorem 4.2 is not true.

Example 4.3 let $X = \{a, b, c\}, Y = \{p, q\}$. Define $\delta_1 = \{0_X, 1_X, \lambda\}$ where $\lambda : X \to [0, 1]$ is such that $\lambda(a) = 1$, $\lambda(b) = 0$, $\lambda(c) = 0$, and $\delta_2 = \{0_Y, 1_Y, \mu\}$ where $\mu : Y \to [0, 1]$ is such that $\mu(p) = 0, \mu(q) = 1$. Also define $f : X \to Y$ as f(a) = f(c) = q; f(b) = p. Then f is not fuzzy α -continuous since $f^{-1}(\mu)$ is not in δ_1 for $\mu \in \delta_2$. But however f is Fg α -continuous.

Theorem 4.4 Let $f : (L^X, \delta) \to (L^Y, \sigma)$ be a map. Then the following statements are equalent :

- (a) f is Fg α -continuous.
- (b) The inverse image of each fuzzy α'-open set in L^Y is Fgα'-open in L^X. We define the fuzzy generalized α-closure operator cl^{*}_α for any fuzzy set λ in (X, δ) as follows:

 $cl^*_{\alpha}(\lambda) = \bigwedge \{\mu \mid \lambda \leq \mu\}, \mu \text{ is Fg}\alpha\text{-closed.}$

Theorem 4.5 Let $f : L^X \to L^Y$ be Fg α -continuous. Then $f[cl^*_{\alpha}(\lambda)] \leq cl_{\alpha}[f(\lambda)]$ where λ is any L-fuzzy set in L^X .

Proof: Now $cl_{\alpha}f(\lambda)$ is a fuzzy α -closed set in L^{Y} . Since f is Fg α continuous, $f^{-1}(cl_{\alpha}^{*}(\lambda))$ is Fg α -closed in L^{X} . $\lambda \leq f^{-1}[cl_{\alpha}f(\lambda)]$ and so $cl_{\alpha}^{*}(\lambda) \leq f^{-1}[cl_{\alpha}f(\lambda)]$. Hence, $f[cl_{\alpha}^{*}(\lambda)] \leq cl_{\alpha}f(\lambda)$.

The converse of Theorem 4.5 is not true.

Example 4.6 Let $X = \{a, b, c\}$. Define $\delta_1 = \{1_X, 0_X, \lambda\}$ where $\lambda : X \to [0, 1]$ is such that $\lambda(a) = 1; \lambda(b) = \lambda(c) = 0, \ \delta_2 = \{1_X, 0_X, \mu\}$ where $\mu : X \to [0, 1]$ is such that $\mu(a) = \mu(c) = 1, \mu(b) = 0$. Define $f: (X, \delta_1) \to (X, \delta_2)$ as f(a) = b, f(b) = a, f(c) = c. Then for any fuzzy set $\lambda, f(cl^*_{\alpha}(\lambda)) \leq cl_{\alpha}(f(\lambda))$, but f is not Fg α -continuous. (Since μ' is a fuzzy α -closed set in Y but $f^{-1}(\mu')$ is not Fg α -closed in X.)

Definition 4.7 An L-fuzzy topological space (L^X, δ) is said to be fuzzy $\alpha - T_{1/2}$, if every fuzzy generalized α -closed set in L^X is fuzzy α -closed in L^X .

Theorem 4.8 Let $f: L^X \to L^Y$ and $g: L^Y \to L^Z$ be mappings and L^Y

be fuzzy α - $T_{1/2}$. If f and g are Fg α -continuous, then the composition g.f is Fg α -continuous.

Theorem 4.8 is not valid if L^Y is not fuzzy $\alpha - T_{1/2}$.

Example 4.9 Put $X = \{a, b, c\}$. Define $\delta_1 = \{0_X, 1_X, \lambda\}$ where $\lambda : X \to [0, 1]$ is such that $\lambda(a) = \lambda(c) = 0$ and $\lambda(b) = 1$. $\delta_2 = \{0_X, 1_X, \mu, \nu\}$ where $\mu : X \to [0, 1]$ is such that $\mu(b) = \mu(c) = 1, \mu(a) = 0, \nu : X \to [0, 1]$ is such that $\nu(a) = 1, \nu(b) = \nu(c) = 0$. $\delta_3 = \{0_X, 1_X, \rho\}$ where $\rho : X \to [0, 1]$ is such that $\rho(a) = \rho(c) = 1; \rho(b) = 0$. Also define $f : (X, \delta_1) \to (X, \delta_2)$ as f(a) = f(c) = c; f(b) = b and let $g : (X, \delta_2) \to (X, \delta_3)$ be the identity map. Then f and g are Fg α -continuous but g.f is not Fg α -continuous; since $\rho' \in \delta'_3 \subset C_{\alpha}(\delta_3)$ is α -closed, $g^{-1}(\rho') = \rho'$ and $f^{-1}(g^{-1}(\rho')) = f^{-1}(\rho') = \lambda$ is not Fg α -closed in (X, δ_1) . Therefore, g.f is not Fg α -continuous. Further (X, δ_2) is not fuzzy $\alpha - T_{1/2}$.

5 Fuzzy g α c-irresolute maps and their properties

In this section, we use from fuzzy generalized α -closed concept to introduce fuzzy generalized α closed-irresolute map (in short Fg α c-irresolute) map.

Definition 5.1 Let $\alpha \in M(L)$. A map $f : L^X \to L^Y$ is called fuzzy gacirresolute, if the inverse image of every Fg α -closed set in L^Y is Fg α -closed in L^X .

The following are the propreties of fuzzy $g\alpha c$ -irresolute maps.

Theorem 5.2 $f: L^X \to L^Y$ is fuzzy gac-irresolute iff the inverse image of every Fga-open set in L^Y is Fga-open set in L^X .

Theorem 5.3 If $f : L^X \to L^Y$ is fuzzy gac-irresolute then it is Fgacontinuous.

The converse of Theorem 5.3 is not true.

Example 5.4 Let $X = \{a, b, c\}$. Define $\delta_1 = \{0_X, 1_X, \lambda_1, \lambda_2, \lambda_3\}$ where $\lambda_1 : X \to [0, 1]$ such that $\lambda_1(a) = 1, \lambda_1(b) = \lambda_1(c) = 0; \lambda_2 : X \to [0, 1]$ such that $\lambda_2(a) = \lambda_2(b) = 0, \lambda_2(c) = 1; \lambda_3 : X \to [0, 1]$ such that $\lambda_3(a) = \lambda_3(c) = 1, \lambda_3(b) = 0$; and also define $\delta_2 = \{0_X, 1_X, \lambda_1\}$.

Define $f : (X, \delta_1) \to (X, \delta_2)$ as follows: f(a) = a; f(b) = b; f(c) = a. Then f is Fg α -continuous but f is not fuzzy Fg α -irresolute. For λ_3 is Fg α - closed in (X, δ_2) but $f^{-1}(\lambda_3) = \lambda_3$ is not Fg α -closed in (X, δ_1) .

Theorem 5.5 Suppose $f: L^X \to L^Y$, $g: L^Y \to L^Z$ be maps. Assume f is fuzzy gac-irresolute and g is Fga-continuous. Then g.f is Fga-continuous.

Proof : Let λ be a α -closed set in L^Z , since g is Fg α -continuous, it follows that $g^{-1}(\lambda)$ is a Fg α -closed set in L^Y . Now by assumption, $f^{-1}(g^{-1}(\lambda))$ is a Fg α -closed set in L^X . This show that g.f is Fg α -continuous.

Acknowledgement

The authors are thankful to the referee for his valuable suggestions in the preparation of this paper.

References

- G. Balasubramanian, On extensions of fuzzy topologies, Kybernetika 28 (1992) 239-244.
- [2] G. Balasubramanian and P. Sundaram, On sume generalizations of fuzzy continuous functions, Fuzzy Sets and Sustems 86 (1997) 93-100.
- [3] B. Daraby and S.B. Nimse, On fuzzy α-semicontinuous maps between L-fuzzy topological spaces, Acta Ciencia Indica, Vol. XXXII M, No. 3 (2006) 1193-1198.
- [4] U.V. Fatteh and D.S. Bassan, Fuzzy connectedness and its stronger forms, J. Math. Anal. Appl. 111 (1985) 449-464.
- [5] Y. Li, The theory of L-fuzzy closed graph and strong closed graph, Fuzzy Systems Math. 2 (1991) 30-37.
- [6] Y. Liu and J. Liang, Fuzzy topology-stratification and pointed approach, Adv. Math. 23 (1994) 304-321 (in Chinese).
- [7] Y.M. Liu and M.K. Luo, *Fuzzy topology*, World Scientific publishing, 1997.
- [8] G. Meng, Lowen's compactness in L-fuzzy topological space, Fuzzy Sets and Systems 53 (1993) 329-333.
- G. Meng, Some additive L-fuzzy topological properties, Fuzzy Sets and Systems 77 (1996) 385-392.
- [10] F. Shi and C. Zheng, A new type of strong fuzzy paracompactness in L-fuzzy topological spaces, Fuzzy Systems Math. 3 (1995) 40-48 (in Chinese).

[11] X. Zhang, G. Meng, Y. Zheng and Q. Zhang, On stratiform L-fuzzy topologies and their application, Fuzzy Sets and Systems, 119 (2001) 513- 519.

Address:

Department of Mathematics, University of Maragheh, Maragheh, Iran Principal, New Arts, Commerce and Science College, Ahmednagar (Pune University), India

E-mail

Bayaz Daraby: bayazdaraby@yahoo.com

S. B. Nimse: nacasca@rediffmail.com