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RIGIDITY OF TOROID FORMED BY REVOLUTION
OF PARALLELOGRAM

Ljubica S. Velimirović and Svetozar R. Rančić

Abstract

One of the main tasks of the deformation theory is to point out
to the rigid and flexible surfaces. In this paper we signify a torus like
class of surfaces generated by parallelogram in E3. It is proved that
this class is rigid due to infinitesimal bending. Infinitesimal bending
of generated surfaces is considered using Cohn-Vossen’s method.

1 Introduction

The first result of the infinitesimal bending of the non-convex surface belongs
to H. Liebman [6],[7]. He has proved that the torus and analytic surfaces
containing the convex strip are rigid in a sense of infinitesimal bending.

In 1938 A. D. Alexandrov [1] has widened the above mentioned result of
Liebman. He considered closed surfaces, divided in finite number of regions
by piecewise smooth curves with constant Gaussian curvature. He called
this surfaces T-surfaces and proved that analytical T-surfaces are rigid in a
sense of the analytic infinitesimal bending.

Later, T. Minagawa and T. Rado enforced the results of H. Liebman [6],
[7]. They have proved the rigidity of torus [9] and surface of revolution of
class C1, containing convex strip of class C2 [11], on the presumption that
the bending field is of the class C1.

The results of H. Liebman on the rigidity of the torus and the ovaloid
naturally led to the question of the existence of non-rigid closed surfaces.
The first to answer this question was S. Cohn-Vossen [3], [5]. He has proved
that from each plane curve we can get the meridian of non-rigid surface
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of revolution of genius 0. This result of S. Cohn-Vossen and his method,
indicated many works on infinitesimal bending of non-convex surfaces of
revolution.

Surfaces of revolution of genius 0 or 1 generated by rotation of broken
(polygonal line) were considered by Cohn-Vossen, Bublik, K. M. Belov [2],
N. G. Perlova [11].

Cohn-Vossen considered surfaces of genius 0 generated by polygonal line
and concluded about the non-rigidity of some of them. K. M. Belov [2] has
pointed out a class of toroids with meridian in shape of special quadrangle
(with mutually perpendicular diagonals-one parallel to the axe of rotation),
unlike parallelogram.

Generalization of the consideration from the paper [2] was given at [13]-
[17] and [8]. Toroid surfaces non containing plane part, generated by trian-
gular meridian are rigid [13].

We shall consider here infinitesimal bending of toroid rotational surfaces
generated by meridian shaped like parallelogram. We also consider existence
of the field of infinitesimal bending. The rigidity condition expressed by the
coordinates of vertex of polygon, ie. by an analytical expression is considered
geometrically.

2 The basic facts of the infinitesimal bending the-
ory

We shall give the basic facts of the theory of infinitesimal bending of surfaces
according to [4] and [5]. The basic concept used in this work can be defined
in different ways.

2.1 Infinitesimal deformations of surfaces

Let’s consider surface S ⊂ < of the class Cα, α ≥ 3.

Definition 2.1.The surface Sε is deformation of the surface S if it is
included in continuous family of surfaces

Sε : r̄ = (u, v, ε) = r̄ε(u, v), (u, v) ∈ D ⊂ <2, ε ∈ [0, 1],

r̄ε : D × [0, 1] → <3,

and we get S for ε = 0.
We will here consider a kind of continuous family of surfaces, defining

them according to [4].
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Definition 2.2.Let the surface

(2.1) S : r̄ = r̄(u, v), (u, v) ∈ D, D ⊂ <2

be included in a family of surfaces

(2.2) Sε : r̄ε = r̄ε(u, v, ε), (ε ≥ 0, ε → 0),

depending continuously on the parameter ε and we get S for ε = 0. In this
way

(2.3) Sε : r̄ε = r̄(u, v) + ε
(1)
z̄ (u, v) + ε2

(2)
z̄ (u, v) + ... + εm

(m)
z̄ (u, v), m ≥ 1,

where
(j)
z̄ (u, v) ∈ Cα(α ≥ 3), j = 1, ..., m, are given fields, family Sε is

infinitesimal deformation of the order m of the surface S.
Theory considering geometric objects in connection with Sε up to the

precision of the order m with respect to ε (ε → 0) is infinitesimal de-
formation theory of surfaces of the order m.

Giving different more special conditions we get different kinds of surface
deformations.

Higher order deformations of polyhedral surfaces were considered at [12].

2.2 Infinitesimal bending of the first order

Let the regular surface S of the class Cα, α ≥ 3 be given in the vector
form with (2.1) included in the family of surfaces

(2.4) Sε : r̄ε(u, v, ε) = r̄(u, v) + εz̄(u, v),

where ε(ε → 0), (u, v) ∈ D, D ⊂ < and r̄0(u, v, 0) = r̄(u, v).
Definition 2.3.The surfaces (2.4) are infinitesimal bending of the first
order of the surface S if

(2.5) ds2
ε − ds2 = o(ε)

ie. if the difference of the squares of the line elements of this surfaces is of
the order higher then the first.

The field z̄(u, v) for which

(2.6)
∂r̄(u, v, ε)

∂ε
= z̄(u, v)
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is velocity or infinitesimal bending field of the infinitesimal bending.
According to [4],[5] this definition is equivalent to the next theorem:

Theorem 2.1.Necessary and sufficient condition for the surface Sε (2.4) to
be infinitesimal bending of the surface S (2.1) is

(2.7) dr̄dz̄ = 0,

where z̄(u, v) is the velocity field at the initial moment of deformation.¤
The equation (2.7) is equivalent to the next three partial differential

equations:

(2.8) r̄uz̄u = 0, r̄uz̄v + r̄v z̄u = 0, r̄v z̄v = 0.

Under infinitesimal bending of the surfaces each line element gets non-
zero addition, which is the infinitesimal value of the second order with re-
spect to ε, ie.

(2.9) dsε − ds = o(ε) ≥ 0.

Theorem 2.2.Let s = s(ε) be the arc length of the curve Cε on the surface
Sε. Necessary and sufficient condition for the infinitesimal bending of the
initial surface S = S0 is

(2.10)
∂sε

∂ε
|ε=0 = 0,

i.e. the velocity of the change of arc length at the initial moment to be zero.¤
Definition 2.4.Bending field is trivial, ie. it is a field of the rigid motion
of the surface if it can be given in the form

(2.11) z̄ = ā× r̄ + b̄,

where ā and b̄ are constant vectors.
Definition 2.5.A surface is rigid if it doesn’t alow bending field other then
trivial.

If the surface is rigid of the order m it is rigid of the order n, n > m.

3 Infinitesimal rigidity of toroid with meridian shaped
as parallelogram

Theorem 3.1. Toroid surface of revolution generated by a meridian in a
shape of parallelogram, containing conical parts, is rigid.
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Proof. Let P4 be the parallelogram with apices Ai(uiρi), (i = 1, 2, 3, 4)
considered at Descartes coordinate system uOρ with the axe of rotation u.
The equations of the sides are:

(3.1)
AiAi+1 : ρ(i) = ρi +

ρi+1 − ρi

ui+1 − ui
(u− ui),

ρ
′
(i) =

ρi+1 − ρi

ui+1 − ui
= ki (i = 1, 2, 3, 4;A5 ≡ A1)

where ρi is the value of ρ on AiAi+1.
In order to investigate infinitesimal bending of rotational surface we shall

use Cohn-Vossen’s method [5]. If we denote ē is unit vector of the axis
of rotation, ā(v) unit vector of the ρ-axis, where v is the angle between
the plane of initial position of the meridian and ā(v) then ā′(v)⊥ā(v) and
ā′(v)⊥ē (see [5], page 90, or [4] page 253). Radius vector of a surface of
rotation, in the coordinate system with the base ē, ā, ā′ is

r̄(u, v) = uē + ρ(u)ā(v).

Fundamental field of infinitesimal bending of the surface we try to find
in the form

z̄(u, v) = z̄k(u, v) = [ϕk(u)eikv + ϕ̃k(u)e−ikv]ē+

[ψk(u)eikv + ψ̃k(u)e−ikv]ā(v) + [χk(u)eikv + χ̃k(u)e−ikv]ā′(v),

where ϕ̃k(u) conjugated complex value for ϕk(u). The functions ϕk(u),
ψk(u), χk(u) satisfy the equations

ϕ′k(u) + ρ′(u)ψ′k(u) = 0,

ψk(u) + ikχ′k(u) = 0,

ikψk(u) + ρ′(u)[ikψk(u)− χk(u)] + ρ(u)χ′k(u) = 0.

Functions ψk(u), χk(u) satisfy also the equation

(3.2) ρ(u)λ′′(u) + (k2 − 1)ρ′′(u)λ(u) = 0,

where λ(u) is unknown function. We omit index k, and denote with ψ(i) the
value of the function ψ on AiAi+1, i = 1, 2, 3, 4, A5 ≡ A1.
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¿From the equations (3.1) and (3.2) it follows also the linearity of the
functions ψi(u)

(3.3) ψ(i) = Miu + Ni (i = 1, 2, 3, 4)

At the points u = σ of the meridian, where ρ(σ − 0) = ρ(σ + 0), ie. at the
apices of the parallelogram, continuity of the function ψ(i)(u) gives us

ψ(i)(ui) = ψ(i−1)(ui), i = 1, 2, 3, 4; ψ(0)(u1) = ψ(4)(u1)

and from there based on (3.3)

Miui + Ni = Mi−1ui + Ni−1 (i = 1, 2, 3, 4); M0 ≡ M4, N0 ≡ N4

Considering this system as a system with respect to unknowns Ni, i =
1, 2, 3, 4, we get

(3.4)

N1 −N4 = −M1u1 + M4u1

N1 −N2 = −M1u2 + M2u2

N2 −N3 = −M2u3 + M3u3

N3 −N4 = −M3u4 + M4u4

At the apices of the polygon according to Cohn-Vossen we have the next
equation

ρ(σ)[ψ′k(σ + 0)− ψ′k(σ − 0)] + (k2 − 1)ψk(σ)[ρ′(σ + 0)− ρ′(σ − 0)] = 0,

applying this equation to the apices Mi, i = 1, 2, 3, 4 we get the system of
the equations

(3.5)
ρi(Mi −Mi−1) + (k2 − 1)((Miui + Ni)(ki − ki−1) = 0,

(i = 1, 2, 3, 4; M0 ≡ M4, k0 ≡ k4)

The equations (3.4) and (3.5) present the system of linear equations with
respect to unknowns Mi,Ni, (i = 1, 2, 3, 4). Let us consider the system
(3.4) with respect to Ni. We shall do the elementary transformations on
rows of the matrix of the system. This steps transform system into next one
with unknowns N1, N2, N3, N4

N1 −N4 = (M4 −M1)u1

−N2 +N4 = (M1 −M4)u1 + (M2 −M1)u2

−N3 +N4 = (M1 −M4)u1 +
3∑

l=2

(Ml −Ml−1)ul

0 = (M1 −M4)u1 +
4∑

l=2

(Ml −Ml−1)ul(Ml −Ml−1)ul
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The system is compatible if and only if rank of matrix of the system is
equal to the rank of the extended matrix of this system, that lead us to

(M1 −M4)u1 +
4∑

l=2

(Ml −Ml−1)ul(Ml −Ml−1)ul = 0

ie.

M4 =
1

u1 − u4

n−1∑

i=1

(ui − ui+1)Mi.

Further we can express N1, N2, N3 in (3.4) over N4,M1,M2,M3 and replace
them in (3.5). This way gives us system of algebraic homogenous linear
equations with determinant of the coefficients A. Necessary and sufficient
condition to have nontrivial solution is

detA = 0.

Condition for the existence of the field of infinitesimal bending is

(3.6)

[ρ1ρ2u43k32 + ρ1ρ3u24k12 + ρ2ρ3u14k41

+ ρ1(k2 − 1)u23u43k12k23]×
[ρ4u12u31k41 + (k2 − 1)u12u43u14k14k34 + ρ1u43u24k34]−

−(ρ1u23u43k23 + ρ3u12u14k41)
× [ρ1ρ2u34k34 + ρ1ρ4u32k12 + ρ2ρ4u31k41

+ ρ2(k2 − 1)u14u43k14k34] = 0,

where
ui − uj = uij

ki − kj = kij .

On the Fig.1. is shown an example of toroid obtained by revolution of
meridian shaped as parallelogram around u axe. Fig.1. is obtained using
symbolic program package Mathematica.

We shall examine four possible cases of parallelogram non containing
plane parts generated by sides perpendicular to the axe of rotation, and
cylindrical parts generated by sides parallel to the axe of rotation. Follow-
ing figures show four different cases of parallelograms and examine rigidity
conditions on them. Parallelogram’s vertices are expressed in terms of pos-
itive values a, b, c, d and e > 0.
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Fig.1.

Case 1:

Fig.2.

On the Fig.2. is shown parallelogram with apices A[−a, b], B[a, b + e],
C[a− d, b + c + e] and D[−a− d, b + c]. In this case non rigidity conditions
given by (3.6) is

−b(2ac + ed)4k4

4a2d
= 0.

It is easy to see that expression on the left can not be equal 0 as it is always
less then 0 according to assumption a, b, c, d and e greater then 0. This
means that field of infinitesimal bending for this case does not exist.
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Case 2:

Fig.3.

On the Fig.3. is shown parallelogram with apices A[−a, b], B[a, b + c],
C[a + d, b + c + e] and D[−a + d, b + e]. In this case non rigidity conditions
given by (3.6) is

−b(−2ac + ed)4k4

4a2d
= 0.

Expression on the left can be equal 0 if and only if

−2ac + ed = 0.

This condition can be written as
e

d
=

c

2a
⇔ tg(α) = tg(β).

If this is true, then parallelogram does not exist, as its vertices lie on a line.
Case 3:

On the Fig.4. is shown parallelogram with apices A[−a, b + c], B[a, b],
C[a− d, b + e] and D[−a− d, b + c + e]. In this case non rigidity conditions
given by (3.6) is

−(b + c)(−2ae + cd)4k4

4a2d
= 0.

Expression on the left can be 0 if and only if

−2ae + cd = 0.

This condition can be written as
c

2a
=

e

d
⇔ tg(δ) = tg(γ)
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Fig.4.

If this is true, vertices of parallelogram lie on a line and than parallelogram
does not exist.

Case 4:

Fig.5.

On the Fig.5. is shown parallelogram with apices A[−a, b + c], B[a, b],
C[a + d, b + e] and D[−a + d, b + c + e]. In this case non rigidity conditions
given by (3.6) is

−(b + c)(2ae + cd)4k4

4a2d
= 0.

According to assumption it is easy to see that expression on the left is never
= 0, actually it is always < 0, so field of infinitesimal bending does not exist
for this case also.¤
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