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ESTIMATION IN REAL DATA SET
BY SPLIT–ARCH MODEL

Vladica Stojanović and Biljana Popović

Abstract

Famous models of conditional heteroscedasticity describe various
effects of behavior of the financial markets. In this paper, we investi-
gate the related model, called Split–ARCH, in some of its stochastic
aspects, as the necessary and sufficient conditions of the strong station-
arity and the estimation procedure. The basic asymptotic properties
of those estimates are described, too. The most important segment
of our work is dedicated to the practical issue of Split–ARCH model
in analysis of the dynamics of the real data. We compared the Split–
ARCH with standard models of ARCH type and showed that it was
better stochastic model for the explanation of the world market prices
of some precious metals.

1 Introduction

The stochastic analysis of financial sequences is commonly based on the
time series modelling of data set which will be able to describe the distri-
bution or behavior of a real data. It has been shown empirically that the
most of financial series exhibit nonlinear changes in the dynamics which will
obviously imply nonlinearity of the corresponding stochastic models. The
starting point of these models is the market price flow usually denoted as

S = (Sn)n∈D

where D ⊆ Z. It is considered to be the sequence of random variables
defined on the same probability space (Ω,F , P ) expanded by the filtration
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F = (Fn) of nondecreasing σ–algebras on Ω. Applying the efficient market’s
continuous compounding principle, the price Sn can be represented as

Sn = S0e
Hn , (1.1)

where the compound return Hn =
∑n

k=1 hk is the sum of Fn adaptive daily
returns hn. So, from the statistical point of view, the main problem is to
detect the probability behavior of the sequence h = (hn)n∈D. Conditional
heteroscedastic models are based on the following definition of the daily
returns

hn = σnεn, n ∈ D (1.2)

where (σn) is the sequence of Fn−1 adaptive random variables well known as
the volatility, and (εn) is the white noise sequence of (0,1) i.i.d. Fn adaptive
random variables. So, hn has, for all n ∈ D, the appropriate expectation as
follows

E(hn) = E [E(hn|Fn−1)] = 0, V ar(hn) = E
[
E(h2

n|Fn−1)
]

= E(σ2
n)

and it can be easily seen that hn is a martingale difference for all n, i. e.
h = (hn) is the sequence of uncorrelated random variables (we illustrate
some typical empirical situations in Figure 1).

Figure 1: The log-returns of the fluctuations of the precious metals
prices in the period 1998–2005. (Source: Kitco Inc. & London Fix
database)
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The class of the stochastic processes called autoregressive conditional
heteroscedastic (ARCH) process was introduced by Engle [6] and successfully
applied in many of the analysis of financial markets. Tim Bolerslev [2]
spread this idea when he introduced generalized autoregressive conditional
heteroscedastic (GARCH) model. These two models were able to explain
a number of the properties of financial indexes (first of all heavy tails and
clustering).

But, many of the empirical data sets indicate outstanding nonlinearity of
the empirical volatility σ̂n which can be manifested in the various manners,
as the sharp growth of the price occurs in a relatively short time intervals,
and, consequently, empirical volatility grows extremely sharp. In order to
solve these problems, many generalizations of standard ARCH and GARCH
models were done, for example, Zakoian [15] or Fornari and Mele [7]. In
[12] we introduce the new model of the conditional heteroscedasticity that
had been named Split–ARCH model. It explained, subject to the experi-
mental investigation, the ’small sample’ experiment – soybean meal price
data from Product Exchange Novi Sad and a ’large sample’ one – oil price
data according to the Wall Street Journal source. In this way, our model
describes nonlinear behavior of volatility caused by the great fluctuation of
price which will properly correspond to the changes of values of (hn) and,
also, the volatility sequence (σ2

n). The general definition of Split–ARCH will
follow the equation (1.2) and the following one

σ2
n = α0 +

p∑

i=1

αih
2
n−i +

q∑

j=1

fj(σ2
n−j)I

(
ε2
n−j ≥ c

)
, n ∈ D . (1.3)

The coefficients of the model satisfy the conditions α0 > 0 and αi ≥ 0,
i = 1, 2, . . . , p, while fj = fj(u), j = 1, . . . , q, u ≥ 0 is a nonnegative Fn−j

measurable function of the volatility sequence which will specify the reaction
to the extremely large values in (εn). Obviously, it will be difficult to discuss
the model and its properties, specially its application in the general case of
fj . So, further on, we shall investigate just the class of linear functions

fj(u) = β
(j)
0 + β

(j)
1 u, j = 1, ..., q , (1.4)

where β
(j)
0 , β

(j)
1 ≥ 0. Therefore, our model will follow ARCH regime for the

’small’ absolute values of white noise and GARCH regime for the others. The
order (p, q) of this model is analogous to the standard GARCH model, but
it represents the most general model of the conditional heteroscedasticity.
Namely, for c = 0 the Split-ARCH model has the GARCH structure and,
moreover, for q = 0 model becomes the standard ARCH model.



136 V. Stojanović and B. Popović

The constant c > 0 will be chosen as a proper critical value for the
reaction, i.e. it will be the level which will determine which value of the noise
will be statistically significant to let the inclusion of the previous value of the
volatility in the autoregression sum of (1.3). As it is well known, according
to the equation mc = E

[
I(ε2

n ≥ c)
]

= P (ε2
n ≥ c), it will be easily seen that

the level c and the significant level mc are connected. In the following, we
explore a manner of the parameters estimations of Split-ARCH model which
includes the estimation of critical value c, as well as the corresponding value
mc. Before that, we specify some stationarity conditions of our model, which
are very important in the estimation procedure.

2 Strong stationarity

In order to prove the strong stationarity of the model, we shall follow the
methodology used for standard GARCH model. We proved the set of con-
ditions for the wide sense stationarity of the Split-ARCH model in [12]. In
the following we shall show that the similar set of conditions is necessary
and sufficient for the strong stationarity of our model. According to the
standard GARCH procedure (see, for example, Mikosch [9]) or the Markov
representation of conditional heteroscedasticity models described in Francq
et al. [8], we can represent the Split–ARCH model by the stochastic differ-
ence equation of order one

Yn = Wn + AnYn−1 (2.1)

where

Wn =
(

α0 +
q∑

j=1
ωn−j 0 · · · 0

)′
, Yn =

(
σ2

n σ2
n−1 · · · σ2

n−r+1

)′
,

An =




ψn−1 ψn−2 · · · ψn−r+1 ψn−r

1 0 · · · 0 0

0 1 · · · 0 0

...
...

...
...

0 0 · · · 1 0




,
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and

ωn−j = β
(j)
0 I(ε2

n−j ≥ c), ψn−j = αj ε2
n−j + β

(j)
1 I(ε2

n−j ≥ c), j = 1, . . . , r

αp+i = β
(q+j)
0 = β

(q+j)
1 = 0, i = 1, . . . , r − p, j = 1, . . . , r − q

where we denoted r = max{p, q}.

Theorem 2.1 Let the model, Split–ARCH, be defined by the equations (1.2),
(1.3) and (1.4). Then, the following conditions are equivalent:

(i) The polynomial P (λ) = λr −
r∑

j=1
γj λr−j , where

r = max{p, q}, γj =





αj + mcβ
(j)
1 , 1 ≤ j ≤ min{p, q}

αj , q < j ≤ p

mcβ
(j)
1 , p < j ≤ q

,

has the roots λ1, ..., λr which satisfy the condition

|λj | < 1, ∀j = 1, ..., r. (2.2)

(ii) The equation (2.1) has the unique, strong stationary and ergodic solution
in the form

Yn = Wn +
∞∑

k=1

AnAn−1 · · ·An−k+1Wn−k. (2.3)

(iii)
r∑

j=1
γj =

p∑
i=1

αi + mc

q∑
j=1

β
(j)
1 < 1.

(iv) The top Lyapunov exponent

γ = inf
n∈N

E

(
1
n

ln ‖AnAn−1 · · ·A1‖
)

is strictly negative.

Proof. (i) ⇒ (ii): Following Francq et al. [8] we introduce, for n, k ∈ D,
the sequence of random vectors Hk(n) ∈ Rr by the equality

Hk(n) =
{

0, k < 0
Wn + AnHk−1(n− 1), k ≥ 0.
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Then, we have

Hk(n)−Hk−1(n) =





0, k < 0
Wn, k = 0
An

[
Hk−1(n− 1)−Hk−2(n− 1)

]
, k > 0

and, for all k > 0,

E ‖Hk(n)−Hk−1(n)‖ = E ‖An · · ·An−k+1Wn−k‖ = 11×r ·Ak ·W (2.4)

where

A = E(An) =




γ1 γ2 · · · γr−1 γr

1 0 · · · 0 0

0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0




,

W = E(Wn) =
(

α0 + mc

q∑
j=1

β
(j)
0 0 · · · 0

)′
.

After some computation it will be seen that

det (A− λI) = (−1)pP (λ),

it means that the eigenvalues of the matrix A are the roots of the character-
istics polynomial P (λ). According to the assumption (2.2) and the equality
(2.4) we have

E ‖Hk(n)−Hk−1(n)‖ −→ 0, k −→∞

i.e. the sequence Hk(n) converges almost sure, as k −→∞, to the limit Yn,
defined by (2.3). Since, for all fixed k ∈ D, the Hk(n) is strong stationary
sequence, the limit Yn is also strong stationary, for all n ∈ D.

(ii) ⇒ (iii): According to the equality (2.3) we have

E(Yn)=(I−A)−1 W=


α0 + mc

q∑

j=1

β
(j)
0





1−

p∑

i=1

αi −mc

q∑

j=1

β
(j)
1



−1

1r×1
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and, therefore, the time series (h2
n) has the mean

E
(
h2

n

)
= E

(
σ2

n

)
=


α0 + mc

q∑

j=1

β
(j)
0





1−

p∑

i=1

αi −mc

q∑

j=1

β
(j)
1



−1

.

(2.5)
From that, as α0 > 0 and β

(j)
0 ≥ 0, j = 1, . . . , q, it will be

1−
p∑

i=1

αi −mc

q∑

j=1

β
(j)
1 > 0

and that is obviously (iii).

(iii) ⇒ (i): Let Sr(A) = max
j
{λj} the spectral radius of the matrix A,

defined in (i) ⇒ (ii). Then

Sr(A) ≤ ||A||

where we may set

||A|| = max
{ r∑

j=1

γj , 1
}

= 1.

If we suppose that Sr(A) = 1, then for some ϕ ∈ [0, 2π) there exists an
eigenvalue λ′ = eiϕ which satisfies

P (λ′) = eirϕ −
r∑

j=1

γj ei(r−j)ϕ = 0 .

After that, according to

∣∣ eirϕ
∣∣ ≤

r∑

j=1

γj

∣∣∣ ei(r−j)ϕ
∣∣∣ ,

it will be
r∑

j=1
γj ≥ 1, which contradicts (iii). So, Sr(A) < 1 and according

to the above, it is equivalent to (i).
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(ii) ⇔ (iv): As {(An,Wn), n ∈ D} is strong stationary and ergodic
sequence and

E ln+ ‖W0‖ = E ln+

∥∥∥∥∥∥
α0 +

q∑

j=1

ω−j

∥∥∥∥∥∥

≤ E ln+

(
‖α0‖+

q∑

j=1

∥∥∥β
(j)
0 I(ε2

−j ≥ c)
∥∥∥

)
< ∞

and

E ln+ ‖A0‖ = E ln+
(

max{1,
r∑

j=1

ψ−j}
)

≤ E ln+
(
1 +

r∑

j=1

αjε
2
−j + β

(j)
1 I(ε2

−j ≥ c)
)

≤ E

(
r∑

j=1

αjε
2
−j + β

(j)
1 I(ε2

−j ≥ c)

)
< ∞,

based on the well known facts from Brandt [4] or Bougerol and Picard [3],
the condition γ < 0 is equivalent to (ii). ¤

Remark. The correlation function ρ(k) = Corr
(
h2

n, h2
n+k

)
of the wide

sense stationary sequence (h2
n) will be calculated from the relation

ρ(k) =
R(k)−E(h2

n)2

R(0)− E(h2
n)2

, k ≥ 0,

where

R(k) = E(h2
nh2

n+k) = E(h2
n)+

M∑

j=1

γj R(k−j), R(−k) = R(k), R(0) = E(h4
n).

Therefore, the correlation function ρ(k) satisfies the difference equation

ρ(k) =
r∑

j=1

γj ρ(k − j), k ≥ r (2.6)

with the initial conditions

ρ(0) = 1, ρ(k)−
r∑

j=1

γj ρ(k − j) = 0, 0 < k < r.
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The relation (2.6) may be very useful in the parameters estimation pro-
cedure, like in Baillie and Chung [1], where the estimation procedure of the
models of standard GARCH type is described. In the next part of this paper
we shall analyze that. We shall solve the problem of estimation parameters
of Split-ARCH.

3 Estimation

We shall suppose that the unknown parameters of Split-ARCH model can be
defined so that they belong to the two vector sets. Let θA = (α0, α1, . . . , αr)

′ ∈
Rr+1 belongs to the set

ΘA =
{

θA

∣∣∣ α0 > 0, αj ≥ 0, j = 1, . . . , r ∧
r∑

j=1

αj < 1
}

which is the available set of parameters subject to the stationarity condi-
tion of standard ARCH models. Similarly, if we use the notation θB =
(b0, b1, ..., br)′ ∈ Rr+1, where b0 = α0 +

∑r
j=1 β

(j)
0 , bj = αj + β

(j)
1 , j =

1, . . . , r we shall define the open set

ΘB =
{

θB

∣∣∣ b0 > 0, bj ≥ 0, j = 1, . . . , r ∧
r∑

j=1

bj < 1
}

and remark that ΘB is subset of the parameters set on which the strong
stationarity condition of Split-ARCH model is fulfilled (Theorem 2.1).

Further on, we shall be able to estimate θA and θB as follows. As the
beginning of the estimation procedure, we shall stratify the sample SN ={

ht

∣∣ t = 1, . . . , N
}

according to the sets

AN (c) =
{

ht

∣∣ ε2
t−j < c, t = r + 1, . . . , N, j = 1, . . . , r

}

BN (c) =
{

ht

∣∣ ε2
t−j ≥ c, t = r + 1, . . . , N, j = 1, . . . , r

}

CN (c) = SN \ (
AN (c) ∪BN (c)

)
.

We can remark that Split–ARCH model will obey the ARCH structure on
the data set AN (c), i.e.

σ2
t = α0 +

r∑

j=1

αjh
2
t−j .
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Now, we use the conditional least squares (CLS) method and minimize the
sum

QN (θA) =
∑

ht∈AN (c)

[
h2

t − E
(
h2

t |Ft−1

)]2
. (3.1)

Because of σ2
t = E

(
h2

t | Ft−1

)
, the estimator θ̂A can be interpreted as a

value which will minimize the objective function

QN (θA) =
∑

ht∈AN (c)

(
h2

t − α0 −
r∑

j=1

αjh
2
t−j

)2

and, in that way, the estimator will be any solution of the system of equations

∂QN (θA)
∂αj

= 0, j = 0, . . . , r.

Then, the estimator θ̂A can be written in the form

θ̂A =




N1 − r
∑

h2
t−1 · · · ∑

h2
t−r

∑
h2

t−1

∑
h4

t−1 · · · ∑
h2

t−1h
2
t−r

...
...

...
...∑

h2
t−r

∑
h2

t−1h
2
t−r · · · ∑

h4
t−r




−1

·




∑
h2

t

∑
h2

t h
2
t−1

...∑
h2

t h
2
t−r




where N1 = cardAN (c), and all the summations are subject to t such that
ht ∈ AN (c). It is easy to show that in the case of Gaussian noise εn : N (0, 1)
the estimator θ̂A is, also, the quasi maximum likelihood estimator, described
in Engle [6] or Mikosch [9]. Therefore,

θ̂A = min
θA∈ΘA

QN (θA) = max
θA∈ΘA

LN (θA)

where LN (θA) is the log-likelihood function of stratum variables ht ∈ AN (c).
On the other hand, the elements of the set BN (c) satisfy the relation

σ2
t = α0 +

r∑

j=1

[
β

(j)
0 +

(
αj ε2

t−j + β
(j)
1

)
σ2

t−j

]

meaning that the model is of GARCH type. So, a common way of estimating
parameters is some iterative method, like Newton–Raphson’s procedure (see,
for instance [13]) or methods based on the minimum distance estimators of
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the model’s autocorrelation as in Baillie and Chung [1]. Meanwhile, instead
of that, we can use the maximum likelihood estimator for the elements of
the volatility sequence σ̂2

t = h2
t , 1 ≤ t ≤ N . After that, determine the

regression coefficients θB applying the least squares optimization procedure
on the specified sum

Q′
N (γ1, . . . , γr) =

∑

ht∈BN (c)

(
h2

t − b0 −
r∑

j=1

bjh
2
t−j

)2
. (3.2)

This implies

θ̂B =




N2 − r
∑

h2
t−1 · · · ∑

h2
t−p

∑
h2

t−1

∑
h4

t−1 · · · ∑
h2

t−1h
2
t−p

...
...

...
...∑

h2
t−p

∑
h2

t−1h
2
t−p · · · ∑

h4
t−p




−1

·




∑
h2

t

∑
h2

t h
2
t−1

...∑
h2

t h
2
t−p




where N2 = cardBN (c) and the summations are subject to t such that
ht ∈ BN (c). Finally, the estimates θ̂A and θ̂B imply

( ∑r
j=1 β̂

(j)
0 , β̂

(1)
1 , . . . , β̂

(r)
1

)′
= θ̂A − θ̂B

where the estimates β̂
(1)
0 , . . . , β̂

(r)
0 can be computed by the same CLS meth-

ods, using the previously obtain estimates and the following stratification of
the stratum CN (c):

C
(j)
N (c) =

{
ht

∣∣ ε2
t−j ≥ c, ε2

t−k < c, k = 1, . . . , r, k 6= j
}

, 1 ≤ j ≤ r

C
(r+1)
N (c) = CN (c) \

r⋃

j=1

C
(j)
N .

In the next proposition we inquire the asymptotic properties of this ”two–
step” procedure.

Theorem 3.1 Let, for some N0 > 0 and all N ≥ N0, is θ̂A ∈ ΘA and
θ̂B ∈ ΘB. Then, the estimators θ̂A and θ̂B are strictly consistent and asymp-
totically normally distributed estimators for θA and θB, respectively.

Proof. Let θ
(0)
A be the true value of the unknown parameter θA and let us

set the sequence υt = h2
t − σ2

t , t = 1, . . . , N. Then, we have

E (υt | Ft−1) = E
(
h2

t | Ft−1

)− σ2
t = 0
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i.e. (υt) is a martingale difference and so it is the sequence of the uncorre-
lated random variables. Furthermore, on the set AN (c) is

h2
t = σ2

t + υ2
t = α0 +

p∑

j=1

αjh
2
t−j + υt

and (h2
t ) is the autoregressive time series with a white noise (υt). Therefore,

we can use this representation to compute the spectral density of h2
t :

f(ω) =
V ar(υt)

2π

p∏

j=1

1
1− 2λjcosω + λ2

j

and it follows that

f(0) =
V ar(υt)

2π

p∏

j=1

1
(1− λj)2

.

Because of |λj | < 1 for all θA ∈ ΘA, the function f(ω) is continuous
for ω = 0. Then, (h2

t ), as well as (υt), is ergodic and stationary sequence
of random variables. Now, according to the Taylor expansion of ∂QN/∂θA

around θA = θ
(0)
A , we have

∂QN (θA)
∂θA

=
∂QN (θ(0)

A )
∂θA

+
∂2QN (θ(0)

A )
∂θA∂θ′A

· (θA − θ
(0)
A ).

and, substituting θA with θ̂A and setting ∂QN (θ̂A)/∂θA = 0, we have

θ̂A − θ
(0)
A = −

[
∂2QN (θ(0)

A )
∂θA∂θ′A

]−1

· ∂QN (θ(0)
A )

∂θA
. (3.3)

On the other hand,

N1

N
=

1
N

∑

ht∈AN (c)

r∏

j=1

I
(
ε2
t−j < c

) a.s.−→ [F (c)]r , N →∞

where F (c) = P
(
ε2
t < c

)
< ∞. Then, N1

a.s.−→ ∞, when N → ∞, and we
may apply the ergodic theorem on the random sums of sequences (υt) and
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(h2
t ) (see, for instance Embrechts et al. [5]). So, we shall have the following

almost sure convergence

1
−2(N1 − r)

· ∂QN (θ(0)
A )

∂θA
=




1
N1−r

∑
υt

1
N1−r

∑
υth

2
t−1

...
1

N1−r

∑
υth

2
t−r




a.s.−→ 0, when N →∞

and also

2(N1−r)

[
∂2QN (θ(0)

A )
∂θA∂θ′A

]−1

=

=




1 1
N1−r

∑
h2

t−1 . . . 1
N1−r

∑
h2

t−r

1
N1−r

∑
h2

t−1
1

N1−r

∑
h4

t−1 . . . 1
N1−r

∑
h2

t−1h
2
t−r

...
...

...
1

N1−r

∑
h2

t−r
1

N1−r

∑
h2

t−1h
2
t−r . . . 1

N1−r

∑
h4

t−r




−1

a.s.−→ Γ−1

where ht ∈ AN (c) and the second-moment matrix Γ = E (hth′t) , where
ht =

(
1, h2

t−1, . . . , h
2
t−r

)′
, does not depend on t for all θA that satisfy the

stationarity condition. That means for all θA ∈ ΘA. These two convergences
yield, with probability one,

θ̂A − θ
(0)
A → 0, N →∞

i.e. the estimator θ̂A is strictly consistent.
Now, we shall show the asymptotic normality of θ̂A. Using the represen-

tation (3.3) we can write
√

N1 − r
(
θ̂A − θ

(0)
A

)
= U−1

N ·VN

where

UN =
1

2(N1 − r)
· ∂2Qn(θ(0)

A )
∂θA∂θ′A

, VN =
−1

2
√

N1 − r
· ∂QN (θ(0)

A )
∂θA

.

For any nonzero constant vector c = (c0, . . . , cr)′ ∈ Rr+1 the random se-
quence

√
N1 − r c′VN =

∑

ht∈AN (c)

υt

(
c0 +

r∑

j=1

cjh
2
t−j

)



146 V. Stojanović and B. Popović

is a martingale and, according to the Billingsley’s central limit theorem for
martingales (see for instance [10]), we have:

c′VN
d→ N (0, c′Λc)

where Λ = E(gtg′t), gt = υt

(
1, h2

t−1, . . . , h
2
t−r

)′ and Λ does not depend on
t. Using this convergence and Cramer-Wald’s decomposition, we have

VN
d−→ N (0, Λ)

and, because of U−1
N

a.s.−→ Γ−1 when N →∞, we got finally
√

N1 − r
(
θ̂A − θ

(0)
A

) d→ N (0,Γ−1Λ Γ−1).

In the analogue way, it can be easily proved the strong consistency and the
asymptotic normality of the sequence θ̂B. ¤

4 Application

Aforesaid method of the CLS-estimating of the Split-ARCH parameters can
be easily applied in the empirical analysis of the most financial sequences.
In following, we present the results of estimation of log-returns of the price
of precious metals, upon the Kitco Inc. data and the database London
Fix in the period 1998-2005. Like a comparatione, we estimated both the
coefficients of standard ARCH and Split-ARCH model, taking the most
simple case of those models. The results of the estimation of the parameters
of ARCH(1) model

hn = σnεn, σ2
n = α0 + α1h

2
n−1, n ∈ D

are presented in Table 1.
We presented the size of the observed time series in the first row of

the table and then we showed the realized values based on the Lagrange
multiplier (LM) test, introduced by Engle [6]. The most precisely, these
values show the asymptotic values of LM statistics, which can be calculated
as NR2, where N is the size of the observed series and R2 is the coefficient of
determination (square of the multicorrelation coefficient), calculated by the
regression procedure of the parameters’ estimation. As Engle [6] showed, LM
statistic is asymptotically χ2

p distributed (p is the order of ARCH model),
under the null hypotheses that there is no ARCH effect in the observed data,
i.e.

H0 : α1 = · · · = αp = 0.
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Table 1: Estimated values of ARCH(1) model

Parameters
Precious metals

Gold Silver Palladium Platinum

N 1 841 1 803 1 668 1 705

LM 64.745 97.645 51.872 52.392

α̂0 7.57 · 10−5 2.03 · 10−4 5.32 · 10−4 1.65 · 10−4

α̂1 0.1875 0.2327 0.1762 0.1752

SEE 3.55 · 10−4 6.82 · 10−4 1.68 · 10−4 4.70 · 10−4

ρ̂ 75.79% 75.68% 92.02% 85.98%

It is easily seen that, in our case, the obtained values of LM statistics indi-
cate that all the observed time series have the emphatic ARCH effect and the
given results in parameters’ estimation are adequate. In fact, the estimated
values of the parameters α1 satisfied the stationarity condition |α1| < 1 and
we may use the standard procedure in ARCH modeling of those empirical
data sets. We can see the quality of that modeling in the last two rows of
the table above. We showed the standard errors of the estimation (SEE)
there, as the estimated values of the correlation coefficients (ρ̂) between the
empirical and the ARCH-modeled data, respectively. In Figure 2, the degree
of the correlation of the ARCH(1)-modeled values with the log-returns of
the gold’s prices can be seen.

Figure 2: Comparative illustrations for the original data (left) and
ARCH(1) modeled gold data (right).
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After that, the same data set was processed in two–step Split–ARCH
modeling scheme. The stratification was done using the estimates

ε̂t = ht/σ̂t, t = 1, . . . , N,

where σ̂t was the empirical standard deviation of the sample (see Figure
3). As a critical value for the reaction, we used the mean value of the χ2

1

distribution, i.e. c = E(ε2
t ) = 1 and that was the starting point for the

following Split–ARCH estimation of the real data set.

Table 2: Estimated values of Split-ARCH(1,1) model

Parameters
Gold Silver Palladium Platinum

I stratum

N1 1 342 1 413 1 248 1 188

LM 5.138 5.453 12.536 17.209

α̂0 5.90 · 10−5 6.57 · 10−5 1.28 · 10−4 9.51 · 10−5

α̂1 0.0619 0.0621 0.0040 0.1210

SEE 2.21 · 10−5 8.10 · 10−5 1.42 · 10−5 4.47 · 10−5

II stratum

N2 499 390 420 517

LM 16.264 19.268 5.249 20.129

γ̂0 9.14 · 10−5 7.59 · 10−4 1.94 · 10−4 4.47 · 10−4

γ̂1 0.1805 0.2222 0.1118 0.1975

SEE 6.44 · 10−4 1.25 · 10−3 2.87 · 10−4 7.38 · 10−4

ρ̂ 97.85% 85.07% 97.97% 91.94%

We can see the estimated values of the Split–ARCH parameters in Table
2. The simple comparatione of the displayed values can give the explanation
why to proceed the dynamic of the prices of precious metals by Split–ARCH.
First of all, the considered real data have greater the correlation coefficient
to the values modelled by Split–ARCH than to the ARCH(1). Also, it can
be seen that the fluctuation of Split–ARCH values is more likely the real
data values than when comparing ARCH approximation (see Figure 3).
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Figure 3: Stratification of the residuals of log-returns (left) and
Split-ARCH modelled gold data set (right).

Finally, we shall investigate the prediction of the future values of log–
returns (hn) in two cases: when follow the time series model of ARCH and
Split-ARCH type. Let us predict hn+m according to the finite part of the
one realization of log-returns: h1, . . . , hn. The optimal prediction according
to the minimum mean square error procedure will be trivial as (hn) is the
sequence of martingale differences,

ĥn+m = E (hn+m| Fn) = 0 .

But, if we predict a nonlinear function of hn+m instead, as for instance is
h2

n+m, we shall have

ĥ2
n+m = E

(
h2

n+m|Fn

)
= E

[
σ2

n+m E
(
ε2
n+m| Fn+m−1

) | Fn

]
= σ̂2

n+m

and our task is changed in the sense that we should predict volatility σ2
n+m.

Meanwhile, (2.1) implies

Yn+m = Wn+m+
m−1∑

k=1

An+m . . .An+m−k+1Wn+m−k+

(
m∏

k=1

An+m−k+1

)
Yn

and the corresponding estimator for Yn+m will be

Ŷn+m = E (Yn+m| Fn) = (I−Am) (I−A)−1 W + AmYn. (4.1)

In the simplest case of Split-ARCH time series, where p = q = 1, equa-
tion (4.1) expresses the prediction of volatility

σ̂2
n+m = γ0

1− γm
1

1− γ1
+ γm

1 h2
n
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and this equality becomes most simple for ARCH(1) model, just needs to
substitute γ0, γ1 with α0, α1, respectively. Now, those formulas can be used
when solving some practical problem in the prediction of the empirical data
sets. Let

Sn+m = Snehn+1+···+hn+m

according to (1.1) be a price at some future moment n + m. If the limit
distribution of (hn) is normal, then, because of

E
[
(hn+1 + . . . hn+m)2

∣∣Fn

]
=

m∑

k=1

E
(
h2

n+k| Fn

)
=

m∑

k=1

σ̂2
n+k

the (1− α)%–confidence interval for the future price Sn+m is

Sn e
−zα/2

s
mP

k=1
bσ2

n+k ≤ Sn+m ≤ Sn e
zα/2

s
mP

k=1
bσ2

n+k

, (4.2)

where
1√
2π

zα/2∫

−∞
e−x2/2dx = 1− α/2.

Figure 4: Extrapolation of the price of gold according to ARCH
and Split-ARCH representation.

We displayed the application of the this procedure in Figure 4. The
London Fix market’s data between the 1st of May and the 30th of June
2005. were predicted, where we used the following procedure (4.2) and 90%-
confidence interval for the price. The data were fitted by ARCH(1) and



Estimation In Real Data Set by Split–ARCH model 151

Split-ARCH(1,1) time series model defined as above. Let us emphasize that
the price value is inside the both of displayed confidence intervals, but the
Split-ARCH prediction is somewhat better regarding the adequate ARCH
prediction.

5 Conclusion

We applied the Split–ARCH(1,1) model which we defined for the soybean
meal from the Product Exchange Novi Sad and for the oil price according
to Wall Street Journal in [12]. Also, we applied it to the real data of the
prices of precious metals according to the Kitco Inc. data and the database
London Fix. Here we estimated parameters of Split–ARCH in the way that
is common for all ARCH type models. We found out that the Split–ARCH
is more convenient for this data. We compare the correlation coefficients of
the models and the real data sets. It is more efficient in prediction also and
we demonstrated that using the price of gold on London Fix market.
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