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DIVERGENT CESÀRO MEANS OF FOURIER
EXPANSIONS WITH RESPECT TO POLYNOMIALS

ASSOCIATED WITH THE MEASURE
(1− x)α(1 + x)β + M∆−1

Bujar Xh. Fejzullahu

Abstract

We prove that, for certain indices of δ, there are functions whose
Cesàro means of order δ of the Fourier expansion with respect to the
polynomials associated with the measure (1 − x)α(1 + x)β + M∆−1,
where ∆t is the delta function at a point t, are divergent almost every-
where on [−1, 1]. We follow Meaney’s paper (2003), where divergent
Cesàro and Riesz means of Jacobi expansions were proved.

1 Introduction

Let dµ be a finite positive Borel measure on the interval I ⊂ R such that
supp (dµ) is an infinite set and let pn(dµ) denote the corresponding or-
thonormal polynomials. For f ∈ L1(I, dµ), let Snf denote the nth partial
sum of the orthonormal Fourier expansion of f in {pn(dµ)}∞n=0 :

SNf(x) =
N∑

n=0

cn(f)pn(x), (1)

cn(f) =
∫

I
fpndµ.

The Cesàro means of order δ of the expansion (1) are defined by

σδ
Nf(x) =

N∑

n=0

Aδ
N−n

Aδ
N

cn(f)pn(x),
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where Aδ
k =

(
k+δ

k

)
.

The study of the convergence of Fourier series (1) with respect to polyno-
mials associated with the measure dµ = (1−x)α(1+x)βdx+M∆−1 +N∆1

has been discussed in [2] (see also [4]). If α, β ≥ −1/2, then (see [2])

||Snf ||Lp(dµ) ≤ C||f ||Lp(dµ) ∀n ≥ 0, ∀f ∈ Lp(dµ)

if and only if p belongs to the open interval (p0, p1), where

p0 =
4(α + 1)
2α + 3

, p1 =
4(α + 1)
2α + 1

when α ≥ β and α > −1/2 (and the analogous formulas with α replaced by
β if β ≥ α).
We show that, for 1 ≤ p < p0 and 0 ≤ δ < 2α+2

p − 2α+3
2 , there are functions

whose Fourier expansions associated to a measure dµ = (1−x)α(1+x)βdx+
M∆−1 have almost everywhere divergent Cesàro means of order δ.

2 Koornwinder’s Jacobi-type polynomials

Let ωα,β(x) = (1 − x)α(1 + x)β, (α, β > −1), be the Jacobi measure on
the interval [−1, 1]. In [5] T. H. Koornwinder introduced the polynomials
{Pα,β,M,N

n (x)}∞n=0 which are orthogonal on the interval [−1, 1] with respect
to the weight function

dµ(x) =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)
ωα,β(x)dx + M∆−1(x) + N∆1(x), (2)

where α > −1, β > −1, M ≥ 0, and N ≥ 0. We call these polynomials the
Koornwinder’s Jacobi-type polynomials.
We denote the orthonormal Koornwinder’s Jacobi-type polynomial by p

(α,β,M,N)
n ,

which differs from P
(α,β,M,N)
n by normalization constant ([9, p. 81]).

Some basic properties of p
(α,β,M,N)
n (see [9, Chapter IV]), we will need in

the following, are given below:

p(α,β,M,N)
n (1) ∼

{
n−α−3/2 if N > 0
nα+1/2 if N = 0;

(3)

|p(α,β,M,N)
n (−1)| ∼

{
n−β−3/2 if M > 0
nβ+1/2 if M = 0;

(4)
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|p(α,β,M,N)
n (cosθ)| =

{
O(θ−α−1/2) if c/n ≤ θ ≤ π/2,

O(nα+1/2) if 0 ≤ θ ≤ c/n
(5)

for α ≥ −1/2, β ≥ −1/2, and n ≥ 1.
Asymptotic behaviour of the Jacobi orthonormal polynomials p

(α,β)
n , for x ∈

[−1 + ε, 1− ε] and ε > 0, it is given by (see [8, Theorem 8.21.8])

p(α,β)
n (x) = rα,β

n (1− x)−α/2−1/4(1 + x)−β/2−1/4cos(kθ + γ) + O(n−1), (6)

where x = cosθ, k = n + (α + β + 1)/2, γ = −(α + 1/2)π/2 and rα,β
n =

2(α+β+1)/2(πn)−1/2

||P (α,β)
n ||2

→ (2/π)1/2.

Now we will show that the polynomials p
(α,β,M,0)
n have a similar asymptotic

behaviour to the one of p
(α,β)
n (x).

Lemma 1. Let p
(α,β,M,0)
n be the polynomials orthonormal with respect to a

measure dµ = ωα,βdx + M∆−1 and An, Bn the corresponding coefficients
which appear in [3, Proposition 4]. Then, for x ∈ [−1 + ε, 1− ε] and ε > 0,
we have

p(α,β,M,0)
n (x) = sα,β

n (1− x)−α/2−1/4(1 + x)−β/2−1/4cos(kθ + γ) + O(n−1),

where sα,β
n = Anrα,β

n + Bnrα,β+2
n−1 .

Proof. By [3, Proposition 4]

p(α,β,M,0)
n (x) = Anp(α,β)

n (x) + Bn(x + 1)p(α,β+2)
n−1 (x). (7)

¿From (6), we have

p
(α,β+2)
n−1 (x) = rα,β+2

n−1 (1+x)−1(1−x)−α/2−1/4(1+x)−β/2−1/4cos(kθ+γ)+O(n−1).

Hence, from this and (6), we obtain

p(α,β,M,0)
n (x) = (1− x)−α/2−1/4(1 + x)−β/2−1/4cos(kθ + γ)

[Anrα,β
n + Bnrα,β+2

n−1 ] + [An + Bn(x + 1)]O(n−1)

Since
An

∼= cn−2β−2, Bn
∼= 1, (8)

see [8, p. 72, (4.5.8)] and [3, Proposition 4], where by un
∼= vn we mean

that the sequence un/vn converges to 1, we get

p(α,β,M,0)
n (x) = sα,β

n (1− x)−α/2−1/4(1 + x)−β/2−1/4cos(kθ + γ) + O(n−1).
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The formula of Mehler-Heine type for Jacobi orthonormal polynomials
is (see [8, Theorem 8.1.1])

lim
n→∞n−α−1/2p(α,β)

n (cos
z

n
) = cα,β (z/2)−α Jα(z), (9)

where α, β real numbers, cα,β is positive constant independent of n and z,
and Jα(z) is the Bessel function. This formula holds uniformly for |z| ≤ R,
R fixed.
Using (7), (8) and (9) we have:

Lemma 2. Let α > −1, β > −1 and M > 0. Then

lim
n→∞n−α−1/2p(α,β,M,0)

n (cos
z

n
) = 2cα,β+2 (z/2)−α Jα(z),

which holds uniformly for |z| ≤ R, R fixed.

For every function f ∈ L1([−1, 1], dµ) the Fourier coefficients of the series
(1) can be written as

cn(f) = c′n(f) + Mf(−1)p(α,β,M,N)
n (−1) + Nf(1)p(α,β,M,N)

n (1), (10)

where

c′n(f) =
Γ(α + β + 2)

2α+β+1Γ(α + 1)Γ(β + 1)

∫ 1

−1
f(x)p(α,β,M,N)

n (x)ωα,β(x)dx.

We next need to know the bounds for the integral involving Koorwinder’s
Jacobi-type polynomials

∫ 1

−1
|p(α,β,M,N)

n (x)|qωα,β(x)dx

where 1 ≤ q < ∞.
For M = N = 0 the calculation of this integral is in [8, p.391. Exercise 91]
(see also [6]).
First we prove the upper bound for this integral:

Theorem 1. Let M ≥ 0 and N ≥ 0. For α ≥ −1/2

∫ 1

0
(1− x)α|p(α,β,M,N)

n (x)|qdx =





O(1) if 2α > qα− 2 + q/2,

O(log n) if 2α = qα− 2 + q/2,

O(nqα+q/2−2α−2) if 2α < qα− 2 + q/2.
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Proof. ¿From (5), for qα + q/2− 2α− 2 6= 0, we have

∫ 1

0
(1− x)α|p(α,β,M,N)

n (x)|qdx = O(1)
∫ π/2

0
θ2α+1|p(α,β,M,N)

n (cosθ)|qdθ

= O(1)
∫ n−1

0
θ2α+1nqα+q/2dθ + O(1)

∫ π/2

n−1

θ2α+1θ−qα−q/2dθ

= O(nqα+q/2−2α−2) + O(1),

and for qα + q/2− 2α− 2 = 0 we have

∫ 1

0
(1− x)α|p(α,β,M,N)

n (x)|qdx = O(log n).

Now using a technique similar to the one used in [8, Theorem 7.34] we
obtain:

Theorem 2. Let M ≥ 0 and N = 0. For α ≥ −1/2 and 2α < qα− 2 + q/2
we have ∫ 1

0
(1− x)α|p(α,β,M,0)

n (x)|qdx ∼ nqα+q/2−2α−2

Proof. For the proof of Theorem 2 it is sufficient to prove just the lower
bound for the integral.
Let α ≥ −1/2 and M > 0. According to Lemma 2, we have

∫ π/2

0
θ2α+1|p(α,β,M,0)

n (cosθ)|qdθ >

∫ n−1

0
θ2α+1|p(α,β,M,0)

n (cosθ)|qdθ

∼= c

∫ 1

0
(z/n)2α+1nqα+q/2|(z/2)−αJα(z)|q n−1dz ∼ nqα+q/2−2α−2.
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3 Divergent Cesàro means of the Fourier expan-
sion with respect to polynomials associated with
the measure (1− x)α(1 + x)β + M∆−1

In [10, Theorem 3.1.22] it is proved

Lemma 3. Suppose that lim
N→∞

σδ
Nf(x) exists for some x ∈ [−1, 1] and δ >

−1. Then

|cN (f)pN (x)| ≤ CδN
δ max

0≤n≤N
|σδ

nf(x)|, ∀N ≥ 0.

From Egorov’s theorem and Lemma 3 it follows that if the series (1) is
Cesàro summable of order δ on a set of positive measure in [−1, 1] then there
is a set of positive measure E on which

|n−δcn(f)p(α,β,M,0)
n (x)| ≤ A.

Hence, from Lemma 1, we have

|n−δcn(f)
(
cos(kθ + γ) + O(n−1)

) | ≤ A.

uniformly for cosθ ∈ E. Using the argument of the subsection 1.5 in [7] we
obtain

|cn(f)
nδ

| ≤ A, ∀n ≥ 1. (11)

From Theorem 2, for α > −1/2 and 1 ≤ q < ∞, we have

(∫ 1

−1
|p(α,β,M,0)

n (x)|qωα,β(x)dx

)1/q

>

c

(∫ 1

0
(1− x)α|p(α,β,M,0)

n (x)|qdx

)1/q

∼ nα+1/2−2α/q−2/q (12)

where q > 4(α+1)
2α+1 .

For q = ∞ and α ≥ β ≥ −1/2 we have (see [9, (4.42), p.90])

max
−1≤x≤1

|p(α,β,M,0)
n (x)| ∼ p(α,β,M,0)

n (1) ∼ nα+1/2. (13)

Now we are in position to prove our main result:
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Theorem 3. Let given numbers α, β, p, and δ be such that α > −1/2;

−1
2
≤ β ≤ α;

1 ≤ p <
4(α + 1)
2α + 3

;

0 ≤ δ <
2α + 2

p
− 2α + 3

2
.

There is an f ∈ Lp([−1, 1], ωα,β), supported in [0, 1], whose Cesàro means
σδ

Nf(x) is divergent almost everywhere on [−1, 1].

Proof. Suppose that

δ <
2α + 2

p
− 2α + 3

2
.

For q conjugate to p, from last inequality, we get

δ < α +
1
2
− 2α

q
− 2

q
.

From the argument given in [7, Subsection 1.4], (12) and (13), for linear
functional c′n(f) = Γ(α+β+2)

2α+β+1Γ(α+1)Γ(β+1)

∫ 1
−1 f(x)p(α,β,M,0)

n (x)ωα,β(x)dx, it fol-
lows that there is an f ∈ Lp([−1, 1], ωα,β), supported on [0, 1], for which
satisfy

c′n(f)
nδ

→∞, as n →∞.

Hence, from (10), we obtain

cn(f)
nδ

→∞, as n →∞.

Since this result is contrary with (11) it follows that for this f the σδ
Nf(x)

is divergent almost everywhere.

Remark 1. Using formulae in [1], which relate the Riesz and Cesàro means
of order δ ≥ 0, we conclude that Theorem 3 holds for Riesz means.

Remark 2. From the simmetry P
(α,β,M,0)
n (−x) = (−1)nP

(β,α,0,M)
n (x) we get

the same results as above for the measure dµ = ωα,βdx + N∆1.
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