Faculty of Sciences and Mathematics, University of Niš, Serbia
Available at: http://www.pmf.ni.ac.yu/filomat
Filomat 21:2 (2007), 153-160

DIVERGENT CESÀRO MEANS OF FOURIER EXPANSIONS WITH RESPECT TO POLYNOMIALS ASSOCIATED WITH THE MEASURE

$(1-x)^{\alpha}(1+x)^{\beta}+M \Delta_{-1}$

Bujar Xh. Fejzullahu

Abstract

We prove that, for certain indices of δ, there are functions whose Cesàro means of order δ of the Fourier expansion with respect to the polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \Delta_{-1}$, where Δ_{t} is the delta function at a point t, are divergent almost everywhere on $[-1,1]$. We follow Meaney's paper (2003), where divergent Cesàro and Riesz means of Jacobi expansions were proved.

1 Introduction

Let $d \mu$ be a finite positive Borel measure on the interval $I \subset R$ such that supp $(d \mu)$ is an infinite set and let $p_{n}(d \mu)$ denote the corresponding orthonormal polynomials. For $f \in L^{1}(I, d \mu)$, let $S_{n} f$ denote the nth partial sum of the orthonormal Fourier expansion of f in $\left\{p_{n}(d \mu)\right\}_{n=0}^{\infty}$:

$$
\begin{align*}
S_{N} f(x) & =\sum_{n=0}^{N} c_{n}(f) p_{n}(x), \tag{1}\\
c_{n}(f) & =\int_{I} f p_{n} d \mu .
\end{align*}
$$

The Cesàro means of order δ of the expansion (1) are defined by

$$
\sigma_{N}^{\delta} f(x)=\sum_{n=0}^{N} \frac{A_{N-n}^{\delta}}{A_{N}^{\delta}} c_{n}(f) p_{n}(x)
$$

where $A_{k}^{\delta}=\binom{k+\delta}{k}$.
The study of the convergence of Fourier series (1) with respect to polynomials associated with the measure $d \mu=(1-x)^{\alpha}(1+x)^{\beta} d x+M \Delta_{-1}+N \Delta_{1}$ has been discussed in [2] (see also [4]). If $\alpha, \beta \geq-1 / 2$, then (see [2])

$$
\left\|S_{n} f\right\|_{L^{p}(d \mu)} \leq C\|f\|_{L^{p}(d \mu)} \quad \forall n \geq 0, \forall f \in L^{p}(d \mu)
$$

if and only if p belongs to the open interval $\left(p_{0}, p_{1}\right)$, where

$$
p_{0}=\frac{4(\alpha+1)}{2 \alpha+3}, \quad p_{1}=\frac{4(\alpha+1)}{2 \alpha+1}
$$

when $\alpha \geq \beta$ and $\alpha>-1 / 2$ (and the analogous formulas with α replaced by β if $\beta \geq \alpha$).
We show that, for $1 \leq p<p_{0}$ and $0 \leq \delta<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2}$, there are functions whose Fourier expansions associated to a measure $d \mu=(1-x)^{\alpha}(1+x)^{\beta} d x+$ $M \Delta_{-1}$ have almost everywhere divergent Cesàro means of order δ.

2 Koornwinder's Jacobi-type polynomials

Let $\omega_{\alpha, \beta}(x)=(1-x)^{\alpha}(1+x)^{\beta},(\alpha, \beta>-1)$, be the Jacobi measure on the interval $[-1,1]$. In [5] T. H. Koornwinder introduced the polynomials $\left\{P_{n}^{\alpha, \beta, M, N}(x)\right\}_{n=0}^{\infty}$ which are orthogonal on the interval $[-1,1]$ with respect to the weight function

$$
\begin{equation*}
d \mu(x)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \omega_{\alpha, \beta}(x) d x+M \Delta_{-1}(x)+N \Delta_{1}(x), \tag{2}
\end{equation*}
$$

where $\alpha>-1, \beta>-1, M \geq 0$, and $N \geq 0$. We call these polynomials the Koornwinder's Jacobi-type polynomials.
We denote the orthonormal Koornwinder's Jacobi-type polynomial by $p_{n}^{(\alpha, \beta, M, N)}$, which differs from $P_{n}^{(\alpha, \beta, M, N)}$ by normalization constant ($[9$, p. 81]).
Some basic properties of $p_{n}^{(\alpha, \beta, M, N)}$ (see [9, Chapter IV]), we will need in the following, are given below:

$$
\begin{align*}
p_{n}^{(\alpha, \beta, M, N)}(1) & \sim \begin{cases}n^{-\alpha-3 / 2} & \text { if } N>0 \\
n^{\alpha+1 / 2} & \text { if } N=0\end{cases} \tag{3}\\
\left|p_{n}^{(\alpha, \beta, M, N)}(-1)\right| & \sim \begin{cases}n^{-\beta-3 / 2} & \text { if } M>0 \\
n^{\beta+1 / 2} & \text { if } M=0\end{cases} \tag{4}
\end{align*}
$$

$$
\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|= \begin{cases}O\left(\theta^{-\alpha-1 / 2}\right) & \text { if } c / n \leq \theta \leq \pi / 2 \tag{5}\\ O\left(n^{\alpha+1 / 2}\right) & \text { if } 0 \leq \theta \leq c / n\end{cases}
$$

for $\alpha \geq-1 / 2, \beta \geq-1 / 2$, and $n \geq 1$.
Asymptotic behaviour of the Jacobi orthonormal polynomials $p_{n}^{(\alpha, \beta)}$, for $x \in$ $[-1+\epsilon, 1-\epsilon]$ and $\epsilon>0$, it is given by (see [8, Theorem 8.21.8])

$$
\begin{equation*}
p_{n}^{(\alpha, \beta)}(x)=r_{n}^{\alpha, \beta}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma)+O\left(n^{-1}\right), \tag{6}
\end{equation*}
$$

where $x=\cos \theta, k=n+(\alpha+\beta+1) / 2, \gamma=-(\alpha+1 / 2) \pi / 2$ and $r_{n}^{\alpha, \beta}=$ $\frac{2^{(\alpha+\beta+1) / 2}(\pi n)^{-1 / 2}}{\left\|P_{n}^{(\alpha, \beta)}\right\|_{2}} \rightarrow(2 / \pi)^{1 / 2}$.
Now we will show that the polynomials $p_{n}^{(\alpha, \beta, M, 0)}$ have a similar asymptotic behaviour to the one of $p_{n}^{(\alpha, \beta)}(x)$.
Lemma 1. Let $p_{n}^{(\alpha, \beta, M, 0)}$ be the polynomials orthonormal with respect to a measure $d \mu=\omega_{\alpha, \beta} d x+M \Delta_{-1}$ and A_{n}, B_{n} the corresponding coefficients which appear in [3, Proposition 4]. Then, for $x \in[-1+\epsilon, 1-\epsilon]$ and $\epsilon>0$, we have

$$
p_{n}^{(\alpha, \beta, M, 0)}(x)=s_{n}^{\alpha, \beta}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma)+O\left(n^{-1}\right),
$$

where $s_{n}^{\alpha, \beta}=A_{n} r_{n}^{\alpha, \beta}+B_{n} r_{n-1}^{\alpha, \beta+2}$.
Proof. By [3, Proposition 4]

$$
\begin{equation*}
p_{n}^{(\alpha, \beta, M, 0)}(x)=A_{n} p_{n}^{(\alpha, \beta)}(x)+B_{n}(x+1) p_{n-1}^{(\alpha, \beta+2)}(x) . \tag{7}
\end{equation*}
$$

¿From (6), we have
$p_{n-1}^{(\alpha, \beta+2)}(x)=r_{n-1}^{\alpha, \beta+2}(1+x)^{-1}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma)+O\left(n^{-1}\right)$.
Hence, from this and (6), we obtain

$$
\begin{aligned}
& p_{n}^{(\alpha, \beta, M, 0)}(x)=(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma) \\
& {\left[A_{n} r_{n}^{\alpha, \beta}+B_{n} r_{n-1}^{\alpha, \beta+2}\right]+\left[A_{n}+B_{n}(x+1)\right] O\left(n^{-1}\right) }
\end{aligned}
$$

Since

$$
\begin{equation*}
A_{n} \cong c n^{-2 \beta-2}, \quad B_{n} \cong 1, \tag{8}
\end{equation*}
$$

see $[8$, p. $72,(4.5 .8)]$ and $[3$, Proposition 4$]$, where by $u_{n} \cong v_{n}$ we mean that the sequence u_{n} / v_{n} converges to 1 , we get

$$
p_{n}^{(\alpha, \beta, M, 0)}(x)=s_{n}^{\alpha, \beta}(1-x)^{-\alpha / 2-1 / 4}(1+x)^{-\beta / 2-1 / 4} \cos (k \theta+\gamma)+O\left(n^{-1}\right)
$$

The formula of Mehler-Heine type for Jacobi orthonormal polynomials is (see [8, Theorem 8.1.1])

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta)}\left(\cos \frac{z}{n}\right)=c_{\alpha, \beta}(z / 2)^{-\alpha} J_{\alpha}(z), \tag{9}
\end{equation*}
$$

where α, β real numbers, $c_{\alpha, \beta}$ is positive constant independent of n and z, and $J_{\alpha}(z)$ is the Bessel function. This formula holds uniformly for $|z| \leq R$, R fixed.
Using (7), (8) and (9) we have:
Lemma 2. Let $\alpha>-1, \beta>-1$ and $M>0$. Then

$$
\lim _{n \rightarrow \infty} n^{-\alpha-1 / 2} p_{n}^{(\alpha, \beta, M, 0)}\left(\cos \frac{z}{n}\right)=2 c_{\alpha, \beta+2}(z / 2)^{-\alpha} J_{\alpha}(z)
$$

which holds uniformly for $|z| \leq R, R$ fixed.
For every function $f \in L^{1}([-1,1], d \mu)$ the Fourier coefficients of the series (1) can be written as

$$
\begin{equation*}
c_{n}(f)=c_{n}^{\prime}(f)+M f(-1) p_{n}^{(\alpha, \beta, M, N)}(-1)+N f(1) p_{n}^{(\alpha, \beta, M, N)}(1), \tag{10}
\end{equation*}
$$

where

$$
c_{n}^{\prime}(f)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} f(x) p_{n}^{(\alpha, \beta, M, N)}(x) \omega_{\alpha, \beta}(x) d x .
$$

We next need to know the bounds for the integral involving Koorwinder's Jacobi-type polynomials

$$
\int_{-1}^{1}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} \omega_{\alpha, \beta}(x) d x
$$

where $1 \leq q<\infty$.
For $M=N=0$ the calculation of this integral is in [8, p.391. Exercise 91] (see also [6]).
First we prove the upper bound for this integral:
Theorem 1. Let $M \geq 0$ and $N \geq 0$. For $\alpha \geq-1 / 2$

$$
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} d x= \begin{cases}O(1) & \text { if } 2 \alpha>q \alpha-2+q / 2 \\ O(\log n) & \text { if } 2 \alpha=q \alpha-2+q / 2 \\ O\left(n^{q \alpha+q / 2-2 \alpha-2}\right) & \text { if } 2 \alpha<q \alpha-2+q / 2\end{cases}
$$

Proof. ¿From (5), for $q \alpha+q / 2-2 \alpha-2 \neq 0$, we have

$$
\begin{array}{r}
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} d x=O(1) \int_{0}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, N)}(\cos \theta)\right|^{q} d \theta \\
=O(1) \int_{0}^{n^{-1}} \theta^{2 \alpha+1} n^{q \alpha+q / 2} d \theta+O(1) \int_{n^{-1}}^{\pi / 2} \theta^{2 \alpha+1} \theta^{-q \alpha-q / 2} d \theta \\
=O\left(n^{q \alpha+q / 2-2 \alpha-2}\right)+O(1)
\end{array}
$$

and for $q \alpha+q / 2-2 \alpha-2=0$ we have

$$
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, N)}(x)\right|^{q} d x=O(\log n) .
$$

Now using a technique similar to the one used in [8, Theorem 7.34] we obtain:

Theorem 2. Let $M \geq 0$ and $N=0$. For $\alpha \geq-1 / 2$ and $2 \alpha<q \alpha-2+q / 2$ we have

$$
\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, 0)}(x)\right|^{q} d x \sim n^{q \alpha+q / 2-2 \alpha-2}
$$

Proof. For the proof of Theorem 2 it is sufficient to prove just the lower bound for the integral.
Let $\alpha \geq-1 / 2$ and $M>0$. According to Lemma 2, we have

$$
\begin{aligned}
& \int_{0}^{\pi / 2} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, 0)}(\cos \theta)\right|^{q} d \theta>\int_{0}^{n^{-1}} \theta^{2 \alpha+1}\left|p_{n}^{(\alpha, \beta, M, 0)}(\cos \theta)\right|^{q} d \theta \\
& \quad \cong c \int_{0}^{1}(z / n)^{2 \alpha+1} n^{q \alpha+q / 2}\left|(z / 2)^{-\alpha} J_{\alpha}(z)\right|^{q} n^{-1} d z \sim n^{q \alpha+q / 2-2 \alpha-2}
\end{aligned}
$$

3 Divergent Cesàro means of the Fourier expansion with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \Delta_{-1}$

In [10, Theorem 3.1.22] it is proved
Lemma 3. Suppose that $\lim _{N \rightarrow \infty} \sigma_{N}^{\delta} f(x)$ exists for some $x \in[-1,1]$ and $\delta>$ -1 . Then

$$
\left|c_{N}(f) p_{N}(x)\right| \leq C_{\delta} N^{\delta} \max _{0 \leq n \leq N}\left|\sigma_{n}^{\delta} f(x)\right|, \quad \forall N \geq 0
$$

From Egorov's theorem and Lemma 3 it follows that if the series (1) is Cesàro summable of order δ on a set of positive measure in $[-1,1]$ then there is a set of positive measure E on which

$$
\left|n^{-\delta} c_{n}(f) p_{n}^{(\alpha, \beta, M, 0)}(x)\right| \leq A
$$

Hence, from Lemma 1, we have

$$
\left|n^{-\delta} c_{n}(f)\left(\cos (k \theta+\gamma)+O\left(n^{-1}\right)\right)\right| \leq A
$$

uniformly for $\cos \theta \in E$. Using the argument of the subsection 1.5 in [7] we obtain

$$
\begin{equation*}
\left|\frac{c_{n}(f)}{n^{\delta}}\right| \leq A, \quad \forall n \geq 1 \tag{11}
\end{equation*}
$$

From Theorem 2, for $\alpha>-1 / 2$ and $1 \leq q<\infty$, we have

$$
\begin{align*}
& \left(\int_{-1}^{1}\left|p_{n}^{(\alpha, \beta, M, 0)}(x)\right|^{q} \omega_{\alpha, \beta}(x) d x\right)^{1 / q}> \\
& \quad c\left(\int_{0}^{1}(1-x)^{\alpha}\left|p_{n}^{(\alpha, \beta, M, 0)}(x)\right|^{q} d x\right)^{1 / q} \sim n^{\alpha+1 / 2-2 \alpha / q-2 / q} \tag{12}
\end{align*}
$$

where $q>\frac{4(\alpha+1)}{2 \alpha+1}$.
For $q=\infty$ and $\alpha \geq \beta \geq-1 / 2$ we have (see [9, (4.42), p.90])

$$
\begin{equation*}
\max _{-1 \leq x \leq 1}\left|p_{n}^{(\alpha, \beta, M, 0)}(x)\right| \sim p_{n}^{(\alpha, \beta, M, 0)}(1) \sim n^{\alpha+1 / 2} \tag{13}
\end{equation*}
$$

Now we are in position to prove our main result:

Theorem 3. Let given numbers α, β, p, and δ be such that $\alpha>-1 / 2$;

$$
\begin{gathered}
-\frac{1}{2} \leq \beta \leq \alpha \\
1 \leq p<\frac{4(\alpha+1)}{2 \alpha+3} \\
0 \leq \delta<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2} .
\end{gathered}
$$

There is an $f \in L^{p}\left([-1,1], \omega_{\alpha, \beta}\right)$, supported in $[0,1]$, whose Cesàro means $\sigma_{N}^{\delta} f(x)$ is divergent almost everywhere on $[-1,1]$.

Proof. Suppose that

$$
\delta<\frac{2 \alpha+2}{p}-\frac{2 \alpha+3}{2}
$$

For q conjugate to p, from last inequality, we get

$$
\delta<\alpha+\frac{1}{2}-\frac{2 \alpha}{q}-\frac{2}{q} .
$$

From the argument given in [7, Subsection 1.4], (12) and (13), for linear functional $c_{n}^{\prime}(f)=\frac{\Gamma(\alpha+\beta+2)}{2^{\alpha+\beta+1} \Gamma(\alpha+1) \Gamma(\beta+1)} \int_{-1}^{1} f(x) p_{n}^{(\alpha, \beta, M, 0)}(x) \omega_{\alpha, \beta}(x) d x$, it follows that there is an $f \in L^{p}\left([-1,1], \omega_{\alpha, \beta}\right)$, supported on $[0,1]$, for which satisfy

$$
\frac{c_{n}^{\prime}(f)}{n^{\delta}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Hence, from (10), we obtain

$$
\frac{c_{n}(f)}{n^{\delta}} \rightarrow \infty, \quad \text { as } n \rightarrow \infty
$$

Since this result is contrary with (11) it follows that for this f the $\sigma_{N}^{\delta} f(x)$ is divergent almost everywhere.

Remark 1. Using formulae in [1], which relate the Riesz and Cesàro means of order $\delta \geq 0$, we conclude that Theorem 3 holds for Riesz means.

Remark 2. From the simmetry $P_{n}^{(\alpha, \beta, M, 0)}(-x)=(-1)^{n} P_{n}^{(\beta, \alpha, 0, M)}(x)$ we get the same results as above for the measure $d \mu=\omega_{\alpha, \beta} d x+N \Delta_{1}$.

References

[1] J. J. Gergen, Summability of double Fourier series, Duke Math. J., 3 (1937), 133-148.
[2] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Convergence in the mean of the Fourier series with respect to polynomials associated with the measure $(1-x)^{\alpha}(1+x)^{\beta}+M \delta_{-1}+N \delta_{1}$, Orthogonal polynomials and their applications (Spanish), (1989), 91-99.
[3] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Asymptotic behaviour of orthogonal polynomials relative to measures with mass points, Mathematika, 40 (1993), 331-344.
[4] J. J. Guadalupe, M. Pérez, F. J. Ruiz and J. L. Varona, Weighted norm inequalities for polynomial expansions associated to some measures with mass points, Constr. Approx., 12 (1996), 341-360.
[5] T. H. Koornwinder, Orthogonal polynomials with weight function (1$x)^{\alpha}(1+x)^{\beta}+M \delta(x+1)+N \delta(x-1)$, Canad. Math. Bull., 27 (1984), 205-214.
[6] C. Markett, Cohen type inequalities for Jacobi, Laguerre and Hermite expansions, SIAM J. Math. Anal., 14 (1983), no. 4, 819-833.
[7] Ch. Meaney, Divergent Cesàro and Riesz means of Jacobi and Laguerre expansions, Proc. Amer. Math. Soc., 131 (2003), no. 10, 3123-3128.
[8] G. Szegő, Orthogonal polynomials, Amer. Math. Soc. Colloq. Pub. 23, Amer. Math. Soc., Providence, RI (1975).
[9] J. L. Varona, Convergencia en L^{p} con pesos de la serie de Fourier respecto de algunos sistemas ortogonales, Ph. D. Thesis, Sem. Mat. García de Galdeano, sec. 2, no. 22. Zaragoza, (1989); http://www.unirioja.es/cu/jvarona/papers.html.
[10] A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London (1968).

Faculty of Mathematics and Sciences, University of Pristina Mother Teresa 5, 10000 Pristina, Kosovo, Serbia
E-mail: bujarfej@uni-pr.edu

