Faculty of Sciences and Mathematics, University of Nis, Serbia

Available at: http://www.pmf.ni.ac.yu/filomat

Filomat 21:2 (2007), 153-160

DIVERGENT CESARO MEANS OF FOURIER
EXPANSIONS WITH RESPECT TO POLYNOMIALS
ASSOCIATED WITH THE MEASURE
(1—z)*(1+2)° +MA_,

Bujar Xh. Fejzullahu

Abstract

We prove that, for certain indices of ¢, there are functions whose
Cesaro means of order § of the Fourier expansion with respect to the
polynomials associated with the measure (1 — x)*(1 + z)? + MA_y,
where A, is the delta function at a point ¢, are divergent almost every-
where on [—1,1]. We follow Meaney’s paper (2003), where divergent
Cesaro and Riesz means of Jacobi expansions were proved.

1 Introduction

Let du be a finite positive Borel measure on the interval I C R such that
supp (du) is an infinite set and let p,(du) denote the corresponding or-
thonormal polynomials. For f € L(I,du), let S, f denote the nth partial
sum of the orthonormal Fourier expansion of f in {py(dp)}>2, :

N
Snf(@) =" en(f)pa(a), (1)
n=0

lf) = [ foudn
The Cesaro means of order § of the expansion (1) are defined by

N A5
U?Vf(m) = Z ilvg_n en(f)pn(),
N

n=0
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where Ai = (k?:s)

The study of the convergence of Fourier series (1) with respect to polyno-
mials associated with the measure dy = (1 —2)*(14z)%dz+ MA_1+ NA;
has been discussed in [2] (see also [4]). If o, 3 > —1/2, then (see [2])

[[Snflze(any < CNFlLe(ap) Vn >0, Vfe LP(du)

if and only if p belongs to the open interval (pg, p1), where

4(a+1) _ 4(a+1)

PO 3 20+ 1

when a > f and a > —1/2 (and the analogous formulas with « replaced by
Bif B> a).

We show that, for 1 <p < pgand 0 <J < 2‘%2 — %, there are functions
whose Fourier expansions associated to a measure dy = (1 —z)*(1+x)?dz +
MA_1 have almost everywhere divergent Cesaro means of order 9.

2 Koornwinder’s Jacobi-type polynomials

Let wyp(z) = (1 — 2)%(1 + z)?, (o, 3 > —1), be the Jacobi measure on
the interval [—1,1]. In [5] T. H. Koornwinder introduced the polynomials
{Pﬁ’B’M’N(a:) }>° o which are orthogonal on the interval [—1, 1] with respect

to the weight function

Fa+5+2)

du(z) = 20H8HI (v + DT(B 4 1)

wag(x)dr + MA_1(z) + NA(z), (2)

where a > —1, 3 > —1, M > 0, and N > 0. We call these polynomials the
Koornwinder’s Jacobi-type polynomials.

We denote the orthonormal Koornwinder’s Jacobi-type polynomial by p,

which differs from P{***) by normalization constant ([9, p. 81]).
Some basic properties of p,(za’ﬁ AMN) (see [9, Chapter IV]), we will need in

the following, are given below:

—a=3/2 §f N >0

(@B,MN) () " 3
Pn (1) {naﬂ/z N = 0. (3)

n=P=3/2 if M >0

(a,8,M,N)( __ ~
BB M (1) {nmm o ()

(0r,8,M,N)

I
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9—&—1/2 f < 6 < 2
(av/BvMJV)(COSe)‘ — {O( ) 1 C/TL — — 7T/ 9 (5)

i O(n**1/2)  if0<6<c¢/n
fora>—-1/2, > —1/2, and n > 1.
Asymptotic behaviour of the Jacobi orthonormal polynomials p,(f“’ﬁ ), for z €
[-1+¢€,1—¢ and € > 0, it is given by (see [8, Theorem 8.21.8])

P (@) = 1991 — )1 )9 eos(h +2) + O, (6)
where x = cos0, k = n+ (a+ 3+ 1)/2, v = —(a + 1/2)7/2 and Tgﬂ -
2(a+B+1)/2 () —1/2 1/2
e, T
(a,3,M,0)

Now we will show that the polynomials p, have a similar asymptotic

behaviour to the one of pi™”) (x).

Lemma 1. Let p&a’B’M’O) be the polynomials orthonormal with respect to a

measure dp = wq gdr + MA_1 and Ay, B, the corresponding coefficients
which appear in [3, Proposition 4]. Then, for x € [-1+¢€,1 —¢€] and € > 0,
we have

pgla,@M,O)(x) — Sg’ﬁ(l _ x)—a/2—1/4(1 + 1‘)_6/2_1/4608(16‘9 + ,7) + O(n_l),

a,B+2
n—1 -

where s37 = Anrd” + Bur
Proof. By [3, Proposition 4]
MO () = Aup9) (2) + Bolw + 1pyt (@), (7)
JFrom (6), we have
PO () = p B2 (1) "N (1—a) 2 VA (1) P2 A o5 (kO+) +O(n ).
Hence, from this and (6), we obtain
pgla,ﬁ,M,O) (x) — (1 _ x)fa/2*1/4(1 + x)fﬁ/Q*lMCOS(ke + fy)
[Anr? + Bury Y% 4 [Ay + Bu(x + 1)]O(n ™)

Since
An = Cn72ﬂ727 Bn = 17 (8)

see [8, p. 72, (4.5.8)] and [3, Proposition 4], where by u, = v, we mean
that the sequence u,, /v, converges to 1, we get

p%a’B’M’O)(.%') — Sg”@(l o x)*a/271/4(1 + x)fﬂ/271/4cos(k9 + 7) + 0(77,71).
]
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The formula of Mehler-Heine type for Jacobi orthonormal polynomials
is (see [8, Theorem 8.1.1])

lim n_a_I/ng"’B)(cos%) =ca,5(2/2)" " Ja(2), 9)

n—oo

where «, 3 real numbers, ¢, g is positive constant independent of n and z,
and J,(z) is the Bessel function. This formula holds uniformly for |z| < R,
R fixed.

Using (7), (8) and (9) we have:

Lemma 2. Let « > —1, 8> —1 and M > 0. Then

lim n‘“‘”QpSLﬂﬂmoNcosn)——20a@+2(z/2) Ja(2),

which holds uniformly for |z| < R, R fized.

For every function f € L'([—1, 1], du) the Fourier coefficients of the series
(1) can be written as

en(f) = G (f) + MF(=1)p M (1) + NP (1), - (10)

where

f e I'(a+ B +2) (08, M.N)
4) = grrmra LT / fla (@) ()

We next need to know the bounds for the integral involving Koorwinder’s
Jacobi-type polynomials

/ PPN () 9 ()

where 1 < g < c0.

For M = N = 0 the calculation of this integral is in [8, p.391. Exercise 91]
(see also [6]).

First we prove the upper bound for this integral:

Theorem 1. Let M >0 and N > 0. For a > —1/2
0(1) if 2o > qoe — 2 4 q/2,

1
/ (1= 2)*|pf M) ()| " = § O(log n) if 20 = qa — 2+ q/2,
0 O(nao+a/2=20=2)  yf 90 < qor — 2 + /2.
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Proof. jFrom (5), for go + q/2 — 2ac — 2 # 0, we have

1 w/2
/ (1 — @) PPN (1)1 = O(1) / G2t (@B MN) (050 10
0 0

-1

20(1)/ 92a+1nqa+q/2d9+0(1)/
0 n—1

_ O<nqa+q/272a72) + O(l),

7/

2
92a+19—qa—q/2d9

and for ga + q/2 — 2a — 2 = 0 we have

1
/ (1 — 2)*[pl@PMN) (3 |9dz = O(log n).
0

O]

Now using a technique similar to the one used in [8, Theorem 7.34] we
obtain:

Theorem 2. Let M >0 and N =0. For a > —1/2 and 2a < qoo — 2+ q/2
we have

1
/ (1— w)a‘p%aﬁ,M,O) (2)|0dz ~ ndota/2—20-2
0

Proof. For the proof of Theorem 2 it is sufficient to prove just the lower
bound for the integral.
Let o > —1/2 and M > 0. According to Lemma 2, we have

—1

w/2 "
/ 620+ 1| (@B:M.0) (050746 > / 2o+t pleBM0) (co50)|9d0
0 0

1
>~ c/ (Z/n)2a+1nqa+q/2’(z/2)*a<]a(z)|q nlds ~ nqa+q/2f2a72'
0

O]
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3 Divergent Cesaro means of the Fourier expan-
sion with respect to polynomials associated with
the measure (1 — 2)%(1 +z)° + MA_,

In [10, Theorem 3.1.22] it is proved

Lemma 3. Suppose that ]\l]zm o f(z) exists for some x € [~1,1] and § >
—00
—1. Then

len (f)pn(z)] < CsN? onax, |03 f(2)], VN > 0.

From Egorov’s theorem and Lemma 3 it follows that if the series (1) is
Cesaro summable of order ¢ on a set of positive measure in [—1, 1] then there
is a set of positive measure E on which

[0 (f)pi MO ()] < AL
Hence, from Lemma 1, we have
In"%cn(f) (cos(kO +7) + O(n™h)) | < A.

uniformly for cosf € E. Using the argument of the subsection 1.5 in [7] we
obtain

\C"(f)! < A, Vn > 1. (11)

no

From Theorem 2, for &« > —1/2 and 1 < ¢ < oo, we have

1 1/q
( [ tfesaso <x>|qwa,ﬂ<x>da:) >
1 1/q
</ <1—x)a\p;aﬂ’M70><w>\‘Idw) ~ AR (1)
0

where ¢ > 42(311).

For ¢ = co and @ > 3 > —1/2 we have (see [9, (4.42), p.90])

ma [p O (@)~ plE MO (1) 2 (13)
—1<z<1

Now we are in position to prove our main result:
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Theorem 3. Let given numbers «, 3, p, and ¢ be such that o > —1/2;
1
_Z<B<a
5 <8<

4(a+1)
Sp< 5
200 + 3

0§6<2a+2_2a+3.
p 2

There is an f € LP([—1,1],wq), supported in [0,1], whose Cesdaro means
O‘?Vf(l') is divergent almost everywhere on [—1,1].

Proof. Suppose that
- 20+2 2a+3

P 2

5

For ¢ conjugate to p, from last inequality, we get

From the argument given in [7, Subsection 1.4], (12) and (13), for linear

. «a o,B,M, .
functional ¢, (f) = gerrtsermigs o1 £ @pn M (@)wa s(2)da, it fol-
lows that there is an f € LP([—1,1],wq ), supported on [0, 1], for which

satisfy

/
enlf) — 00, as n — oo.
nd
Hence, from (10), we obtain
enlf) — 00, as n — oo.
nd

Since this result is contrary with (11) it follows that for this f the o3 f(z)
is divergent almost everywhere. O

Remark 1. Using formulae in [1], which relate the Riesz and Cesaro means
of order & > 0, we conclude that Theorem 8 holds for Riesz means.

Remark 2. From the simmetry Pr(La’B’M’O)(fx) = (71)"P,(L/B’Q’O’M) () we get
the same results as above for the measure dj = wq gdx + NA;.
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