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ON NONLINEAR DISCONTINUOUS TWO-POINT
BOUNDARY VALUE PROBLEMS FOR

THIRD ORDER DIFFERENTIAL EQUATIONS

M. S. N. Murty and G. Suresh Kumar

Abstract

In this paper we prove existence of weak extremal solutions for
third order nonlinear discontinuous two-point boundary value prob-
lems. Further, we obtain two weak differential inequalities for proving
boundedness and uniqueness of solutions of related boundary value
problems.

1 Introduction

The importance of boundary value problems in the theory of differential
equations and their applications to different areas of science and technology
are well known. This paper is concerned with proving existence of weak
maximal and minimal solutions of a class of nonlinear discontinuous two-
point boundary value problems of the form

y′′′ = f(t, y, y′, y′′) a.e., t ∈ I = [a, b] (1.1)

y′(a) = y′′(a) = y(b) = 0, (1.2)

where f : I×R×R×R → R is a function satisfying the following conditions;
(i) f is bounded on I ×R×R×R, i.e., there exists a constant M > 0 such
that

|f(t, x, y, z)| ≤ M , ∀(t, x, y, z) ∈ I ×R×R×R.
(ii) f(t, x, y, z) is nondecreasing in x, y, and z for all most all t ∈ I.
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(iii) f(., x(.), y(.), z(.)) is Lebesgue measurable for all Lebesgue measurable
functions x, y and z on I.

Many authors [2, 4, 5, 6] have studied existence and uniqueness theorems,
extremal solutions with discontinuous right hand side for second order non-
linear boundary value problems under certain generalized measurability and
Lipschitz condition and also with monotonicity conditions. Recently Dhage
[4] obtained existence of extremal solutions for second order nonlinear dis-
continuous boundary value problem under certain monotonicity conditions.
Dhage also obtained weak differential inequalities which are applied to es-
tablish boundedness and uniqueness of solutions of related boundary value
problems.

In this paper we obtain existence of maximal and minimal weak solutions
for third order differential equations. Further weak differential inequalities
are also obtained, which are useful for proving uniqueness and boundedness
of related boundary value problems. This paper generalizes the results of
Dhage [4] to third order two-point boundary value problems.

2 Existence of Weak Maximal and Minimal
Solutions

In this section we prove existence of weak maximal and minimal solutions
for the third order nonlinear differential equation (1.1) satisfying two-point
boundary conditions (1.2).

Definition 2.1 The weak solution of a problem (1.1) satisfying (1.2) is a
function y ∈ H2(I), satisfying the equations (1.1) and (1.2), where H2(I)
denote the Sobolev space of all real valued functions on I, defined by

H2(I) =
{
y ∈ AC(I, R)/y, y′ ∈ L1(I, R)

}
, (2.1)

where AC(I,R) denote the space of all absolutely continuous functions map-
ping from I to R.

Let ||.||H2 denote the usual norm in the Sobolev space H2(I) given by

||y||H2 =

b∫

a

|y(t)|dt +

b∫

a

|y′(t)|dt +

b∫

a

|y′′(t)|dt. (2.2)

It is well known that H2(I) is a Banach space with the above norm.
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Definition 2.2 A partial ordering ≤ in Sobolev space H2(I) is given by
y ≤ z if and only if y(t) ≤ z(t), y′(t) ≤ z′(t), and y′′(t) ≤ z′′(t) for all t ∈ I,
and we write y ≤ z on I.

Lemma 2.1 (H2(I),≤) is a complete lattice.

Proof. Let u, v ∈ H2(I) be such that u ≤ v on I. Then u(t) ≤ v(t),
u′(t) ≤ v′(t), and u′′(t) ≤ v′′(t) for all t ∈ I. For any w ∈ H2(I), we have
(u+w)(t) ≤ (v+w)(t), (u+w)′(t) ≤ (v+w)′(t), and (u+w)′′(t) ≤ (v+w)′′(t),
for all t ∈ I, which implies that u+w ≤ v +w on I. Similarly if λ ≥ 0, then
λu ≤ λv on I. Therefore H2(I) is a vector lattice.

Let u, v ∈ H2(I) be such that u ≤ 0, v ≤ 0, and u ≤ v on I, then we
have

||u||H2 =

b∫

a

|u(t)|dt +

b∫

a

|u′(t)|dt +

b∫

a

|u′′(t)|dt

≤
b∫

a

|v(t)|dt +

b∫

a

|v′(t)|dt +

b∫

a

|v′′(t)|dt

= ||v||H2 . (2.3)

This shows that (H2(I),≤) is a Banach lattice.
For u, v ∈ H2(I) with u ≤ 0 and v ≤ 0 on I, consider

||u + v||H2 =

b∫

a

|u(t) + v(t)|dt +

b∫

a

|u′(t) + v′(t)|dt +

b∫

a

|u′′(t) + v′′(t)|dt

≤
b∫

a

|u(t)|dt +

b∫

a

|u′(t)|dt +

b∫

a

|u′′(t)|dt

+

b∫

a

|v(t)|dt +

b∫

a

|v′(t)|dt +

b∫

a

|v′′(t)|dt

= ||u||H2 + ||v||H2 . (2.4)

Hence (H2(I),≤) is a complete lattice.

Definition 2.3 Let S ⊂ H2(I). A mapping T : S → H2(I) is said to be
isotone increasing if u, v ∈ H2(I), u ≤ v on I, then Tu ≤ Tv on I.

Now we state the following fixed point theorem of Tarski.
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Theorem 2.1. (Tarski fixed point theorem [8]) Let

(i) Ω = (A,≤) be a complete lattice,

(ii) f be an increasing function on A to A,

(iii) P be the set of all fixed points of f .

Then the set P is non-empty and the system (P,≤) is a complete lattice; in
particular

⋃
P =

⋃
Ex[f(x) ≥ x] ∈ P and

⋂
P =

⋂
Ex[f(x) ≤ x] ∈ P .

Now we prove the theorem on existence of extremal solutions for the
problem (1.1) satisfying (1.2) by using the Tarski fixed point theorem.

Theorem 2.2. Assume (i)-(iii) holds. Then the boundary value problem
(1.1) satisfying (1.2) has weak maximal and weak minimal solutions on I.

Proof. Consider a uniform bounded subset of the Sobolev space H2(I) by

S =
{
u ∈ H2(I)/||u||H2 ≤ N

}
, (2.5)

where N = Mh2

6

(
h2 + 3h + 6

)
and h = b− a.

Clearly S is a nonempty, closed, convex and bounded subset of the complete
lattice H2(I), so it is a complete lattice [3].

If y(t) is a solution of the discontinuous boundary value problem (1.1)
satisfying (1.2) if and only if it is a solution of the integral equation

y(t) =

b∫

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds, t ∈ I (2.6)

where G(t, s) is a Green’s function for the homogeneous boundary value
problem

y′′′(t) = 0 (2.7)

satisfying
y′(a) = y′′(a) = y(b) = 0, (2.8)

given by

G(t, s) =

{
(t−s)2−(b−s)2

2 , if a ≤ s ≤ t ≤ b
−(b−s)2

2 , if a ≤ t ≤ s ≤ b.



Discontinuous two-point boundary value problems 189

Consider

max
t∈I

b∫

a

|G(t, s)|ds = max
t∈I





t∫

a

|G(t, s)|ds +

b∫

t

|G(t, s)|ds





= max
t∈I

{
(b− a)3 − (t− a)3

6

}

The maximum value of the above function attains at t = a and hence

max
t∈I

b∫

a

|G(t, s)|ds ≤ (b− a)3

6
. (2.9)

Again consider

max
t∈I

b∫

a

|Gt(t, s)|ds = max
t∈I

{
(t− a)2

2

}
≤ (b− a)2

2
. (2.10)

Also consider

max
t∈I

b∫

a

|Gtt(t, s)|ds = max
t∈I

{t− a} ≤ b− a. (2.11)

Define the operator T : S → H2(I) by

[Ty](t) =

b∫

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds,∀ t ∈ I. (2.12)

Therefore the problem of existence of weak solutions of boundary value
problem (1.1) satisfying (1.2) is equivalent to finding the fixed point of the
operator T on S.

Claim. T : S → S.

¿From the definition of [Ty], it is absolutely continuous function on I. i.e.
[Ty] ∈ AC(I, R) for each y ∈ S. Since f satisfies (i) and (iii), implies that
f(., y(.), y′(.), y′′(.)) is Lebesgue measurable on I, so [Ty]′, [Ty]′′ ∈ L1(I,R)
for all y ∈ S. Thus T : S → H2(I).
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Let y ∈ S, then

||Ty||H2 =

b∫

a

|[Ty](t)|dt +

b∫

a

|[Ty]′(t)|dt +

b∫

a

|[Ty]′′(t)|dt

≤
b∫

a




b∫

a

|G(t, s)||f(s, y(s), y′(s), y′′(s))|ds


 dt

+

b∫

a




b∫

a

|Gt(t, s)||f(s, y(s), y′(s), y′′(s))|ds


 dt

+

b∫

a




b∫

a

|Gtt(t, s)||f(s, y(s), y′(s), y′′(s))|ds


 dt

≤
b∫

a

M
(b− a)3

6
dt +

b∫

a

M
(b− a)2

2
dt +

b∫

a

M(b− a)dt

= M

[
h4

6
+

h3

2
+ h2

]
= N.

Hence the claim.
Let y, z ∈ S be such that y ≤ z on I. Since f satisfies (ii), it follows that

[Ty](t) =

b∫

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds

≤
b∫

a

G(t, s)f(s, z(s), z′(s), z′′(s))ds = [Tz](t),

[Ty]′(t) =

b∫

a

Gt(t, s)f(s, y(s), y′(s), y′′(s))ds

≤
b∫

a

Gt(t, s)f(s, z(s), z′(s), z′′(s))ds = [Tz]′(t),
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and

[Ty]′′(t) =

b∫

a

Gtt(t, s)f(s, y(s), y′(s), y′′(s))ds

≤
b∫

a

Gtt(t, s)f(s, z(s), z′(s), z′′(s))ds = [Tz]′′(t)

for all t ∈ I. Hence Ty ≤ Tz on I, which shows that T is isotone increasing
on S. From Tarski fixed point theorem, the operator T has a fixed point,
which is a solution of the boundary value problem (1.1) satisfying (1.2), and
also the set of all solutions is a complete lattice. Hence the boundary value
problem (1.1) satisfying (1.2) has weak maximal and weak minimal solutions
on I.

3 Weak Differential Inequalities And Applications

In this section we obtain two basic weak differential inequalities in terms
of the weak extremal solutions of the boundary value problem (1.1) satisfy-
ing (1.2). Further, we apply the inequalities for proving boundedness and
uniqueness of solutions of the related boundary value problem on I.

Theorem 3.1. Assume (i)-(iii) holds. Further, if there is a function w ∈ S,
where S is defined by (2.5) such that

w′′′ ≤ f(t, w, w′, w′′) a.e., t ∈ I (3.1)

satisfying
w′(a) = w′′(a) = w(b) = 0, (3.2)

w′(t) ≤
t∫

a

(t− s)f(s, w(s), w′(s), w′′(s))ds a.e., t ∈ I (3.3)

and

w′′(t) ≤
t∫

a

f(s, w(s), w′(s), w′′(s))ds a.e., t ∈ I. (3.4)

Then, there is a maximal weak solution yM of the boundary value problem
(1.1) satisfying (1.2) such that

w ≤ yM on I. (3.5)
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Proof. Let γ = supS. Consider the lattice interval [w, γ], clearly this is a
complete lattice. Now define the operator T on [w, γ] as in (2.12).

First, we show that T : [w, γ] → [w, γ]. For this, it suffices to show
that if y ∈ S is any element such that w ≤ y implies w ≤ Ty on I. From
inequalities (3.1), (3.3), and (3.4), we have

w(t) ≤
b∫

a

G(t, s)f(s, w(s), w′(s), w′′(s))ds

≤
b∫

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds = [Ty](t),

w′(t) ≤
t∫

a

(t− s)f(s, w(s), w′(s), w′′(s))ds

=

b∫

a

Gt(t, s)f(s, w(s), w′(s), w′′(s))ds

≤
b∫

a

Gt(t, s)f(s, y(s), y′(s), y′′(s))ds = [Ty]′(t),

and

w′′(t) ≤
t∫

a

f(s, w(s), w′(s), w′′(s))ds

=

b∫

a

Gtt(t, s)f(s, w(s), w′(s), w′′(s))ds

≤
b∫

a

Gtt(t, s)f(s, y(s), y′(s), y′′(s))ds = [Ty]′′(t),

for all t ∈ I. It follows that w ≤ Ty on I. Again as in the proof of Theorem
2.1, it is easily seen that T is isotone increasing on [w, γ], and an application
of Tarski fixed point theorem yields that there is a maximal weak solution
yM of the problem (1.1) satisfying (1.2) in [w, γ]. Hence we have

w ≤ yM on I.
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Theorem 3.2. Assume (i)-(iii) holds. Further, if there is a function u ∈ S,
where S is defined by (2.5) such that

u′′′ ≥ f(t, u, u′, u′′) a.e., t ∈ I (3.6)

satisfying
u′(a) = u′′(a) = u(b) = 0, (3.7)

u′(t) ≥
t∫

a

(t− s)f(s, u(s), u′(s), u′′(s))ds a.e., t ∈ I (3.8)

and

u′′(t) ≥
t∫

a

f(s, u(s), u′(s), u′′(s))ds a.e., t ∈ I. (3.9)

Then, there is a minimal weak solution ym of the boundary value problem
(1.1) satisfying (1.2) such that

ym ≤ u on I. (3.10)

Proof. The proof is similar to the proof of Theorem 3.1.

Now we obtain boundedness and uniqueness of the weak solution of the
boundary value problem (1.1) satisfying (1.2) on I.

Consider the problem

φ′′′ = ψ(t, φ) , t ∈ I (3.11)

satisfying the two-point boundary conditions

φ′(a) = φ′′(a) = φ(b) = 0, (3.12)

where φ : I → R+, and ψ : I ×R+ → R+ are functions.

Theorem 3.3. Suppose that ψ satisfies (i)-(iii). Further, if the functions
f and ψ satisfy the condition

|f(t, y, z, w)| ≤ ψ(t, |y|) a.e., t ∈ I (3.13)

for all y, z, w ∈ R, then there is a maximal weak solution φM of the boundary
value problem (3.11) satisfying (3.12) such that

|y| ≤ φM on I,

where y is any solution of the boundary value problem (1.1) satisfying (1.2)
on I.
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Proof. Let y be any solution of the boundary value problem (1.1) satisfying
(1.2) on I. Then it is a solution of the integral equation

y(t) =

b∫

a

G(t, s)f(s, y(s), y′(s), y′′(s))ds.

From (3.13) we have

|y(t)| ≤
b∫

a

|G(t, s)||f(s, y(s), y′(s), y′′(s))|ds

≤
b∫

a

|G(t, s)|ψ(s, |y(s)|)ds. (3.14)

Therefore |y(t)| is a solution of the problem

φ′′′ ≤ ψ(t, φ) a.e., t ∈ I (3.15)

satisfying (3.12). If y(t) 6= 0, then

(|y(t)|)′ ≤ |y′(t)|, and (|y(t)|)′′ ≤ |y′′(t)|, t ∈ I.

Therefore

(|y(t)|)′ ≤
b∫

a

|Gt(t, s)||f(s, y(s), y′(s), y′′(s))|ds

≤
b∫

a

|Gt(t, s)|ψ(t, |y(s)|)ds

=

t∫

a

(t− s)ψ(t, |y(s)|)ds, (3.16)

and

(|y(t)|)′′ ≤
b∫

a

|Gtt(t, s)||f(s, y(s), y′(s), y′′(s))|ds

≤
b∫

a

|Gtt(t, s)|ψ(t, |y(s)|)ds
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=

t∫

a

(ψ(t, |y(s)|)ds. (3.17)

From (3.15)-(3.17), and by an application of Theorem 3.1 yields that there
exists a maximal solution φM of the boundary value problem (3.11) satisfy-
ing (3.12) such that

|y| ≤ φM on I.

Theorem 3.4. Suppose that ψ satisfies (i)-(iii). Further, if the functions
f and ψ satisfy the condition

|f(t, y1, y2, y3)− f(t, z1, z2, z3)| ≤ ψ(t, |y1 − z1|) a.e., t ∈ I (3.18)

for all y1, y2, y3, z1, z2, and z3 ∈ R. Further, if the identically zero function
is the only weak solution of the boundary value problem (3.11) satisfying
(3.12) existing on I, then the boundary value problem (1.1) satisfying (1.2)
has a unique solution on I.

Proof. Suppose the boundary value problem (1.1) satisfying (1.2) has two
solutions y and z on I. Then we have

|y(t)− z(t)| ≤
b∫

a

|G(t, s)||f(s, y(s), y′(s), y′′(s))− f(s, z(s), z′(s), z′′(s))|ds

≤
b∫

a

|G(t, s)|ψ(s, |y(s)− z(s)|)ds. (3.19)

Hence |y(t)− z(t)| is a solution of (3.15). Again

(|y(t)− z(t)|)′ ≤ |y′(t)− z′(t)|

≤
b∫

a

|Gt(t, s)|ψ(s, |y(s)− z(s)|)ds

=

t∫

a

(t− s)ψ(s, |y(s)− z(s)|)ds, (3.20)
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and

(|y(t)− z(t)|)′′ ≤ |y′′(t)− z′′(t)|

≤
b∫

a

|Gtt(t, s)|ψ(s, |y(s)− z(s)|)ds

=

t∫

a

ψ(s, |y(s)− z(s)|)ds. (3.21)

From (3.20), (3.21), and Theorem 3.1, we have

|y(t)− z(t)| ≤ 0 on I.

Hence y(t) = z(t), ∀ t ∈ I.

Example 3.1 Consider the boundary value problem

y′′′ = p(t)yq(y′)r(y′′) a.e., t ∈ [0, 1] (3.22)

satisfying
y′(0) = y′′(0) = y(1) = 0, (3.23)

where the functions p, q, r : R → R+ are given by

p(t) =
{

1, t is irrational
2, t is rational

, q(y) =
{

2, y > 0
0, y ≤ 0

, and r(y) =
{

1, y > 0
0, y ≤ 0

.

It is easily seen that f : [0, 1]×R×R×R → R defined by

f(t, x, y, z) = p(t)xq(y)r(z), ∀(t, x, y, z) ∈ [0, 1]×R×R×R

satisfies the conditions (i)-(iii). By the application of Theorem 2.1, the
boundary value problem (3.22) satisfying (3.23) has weak maximal and min-
imal solutions on [0, 1].
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